Properties

Label 440.2.v.b
Level $440$
Weight $2$
Character orbit 440.v
Analytic conductor $3.513$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,2,Mod(153,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.153");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.v (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q - 4 q^{3} + 8 q^{5} - 8 q^{11} + 24 q^{15} - 28 q^{23} + 4 q^{25} - 4 q^{27} + 24 q^{31} - 12 q^{33} + 4 q^{37} - 28 q^{45} + 8 q^{47} + 24 q^{53} + 12 q^{55} - 52 q^{67} + 48 q^{71} - 24 q^{75} + 56 q^{77}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
153.1 0 −2.10267 2.10267i 0 −2.17481 + 0.519798i 0 −3.44647 3.44647i 0 5.84244i 0
153.2 0 −2.10267 2.10267i 0 −2.17481 + 0.519798i 0 3.44647 + 3.44647i 0 5.84244i 0
153.3 0 −1.62830 1.62830i 0 1.07475 + 1.96085i 0 −1.24708 1.24708i 0 2.30275i 0
153.4 0 −1.62830 1.62830i 0 1.07475 + 1.96085i 0 1.24708 + 1.24708i 0 2.30275i 0
153.5 0 −1.50516 1.50516i 0 1.52592 1.63449i 0 −1.92066 1.92066i 0 1.53101i 0
153.6 0 −1.50516 1.50516i 0 1.52592 1.63449i 0 1.92066 + 1.92066i 0 1.53101i 0
153.7 0 −0.185627 0.185627i 0 −2.05027 + 0.892416i 0 −0.202657 0.202657i 0 2.93108i 0
153.8 0 −0.185627 0.185627i 0 −2.05027 + 0.892416i 0 0.202657 + 0.202657i 0 2.93108i 0
153.9 0 0.179637 + 0.179637i 0 2.16046 + 0.576544i 0 −1.58807 1.58807i 0 2.93546i 0
153.10 0 0.179637 + 0.179637i 0 2.16046 + 0.576544i 0 1.58807 + 1.58807i 0 2.93546i 0
153.11 0 0.395428 + 0.395428i 0 −0.0577165 2.23532i 0 −2.57694 2.57694i 0 2.68727i 0
153.12 0 0.395428 + 0.395428i 0 −0.0577165 2.23532i 0 2.57694 + 2.57694i 0 2.68727i 0
153.13 0 1.78145 + 1.78145i 0 −0.300869 + 2.21573i 0 −1.52953 1.52953i 0 3.34712i 0
153.14 0 1.78145 + 1.78145i 0 −0.300869 + 2.21573i 0 1.52953 + 1.52953i 0 3.34712i 0
153.15 0 2.06525 + 2.06525i 0 1.82253 1.29552i 0 −1.52796 1.52796i 0 5.53050i 0
153.16 0 2.06525 + 2.06525i 0 1.82253 1.29552i 0 1.52796 + 1.52796i 0 5.53050i 0
417.1 0 −2.10267 + 2.10267i 0 −2.17481 0.519798i 0 −3.44647 + 3.44647i 0 5.84244i 0
417.2 0 −2.10267 + 2.10267i 0 −2.17481 0.519798i 0 3.44647 3.44647i 0 5.84244i 0
417.3 0 −1.62830 + 1.62830i 0 1.07475 1.96085i 0 −1.24708 + 1.24708i 0 2.30275i 0
417.4 0 −1.62830 + 1.62830i 0 1.07475 1.96085i 0 1.24708 1.24708i 0 2.30275i 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 153.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
11.b odd 2 1 inner
55.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 440.2.v.b 32
4.b odd 2 1 880.2.bd.i 32
5.c odd 4 1 inner 440.2.v.b 32
11.b odd 2 1 inner 440.2.v.b 32
20.e even 4 1 880.2.bd.i 32
44.c even 2 1 880.2.bd.i 32
55.e even 4 1 inner 440.2.v.b 32
220.i odd 4 1 880.2.bd.i 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.v.b 32 1.a even 1 1 trivial
440.2.v.b 32 5.c odd 4 1 inner
440.2.v.b 32 11.b odd 2 1 inner
440.2.v.b 32 55.e even 4 1 inner
880.2.bd.i 32 4.b odd 2 1
880.2.bd.i 32 20.e even 4 1
880.2.bd.i 32 44.c even 2 1
880.2.bd.i 32 220.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{16} + 2 T_{3}^{15} + 2 T_{3}^{14} - 2 T_{3}^{13} + 114 T_{3}^{12} + 226 T_{3}^{11} + 226 T_{3}^{10} + \cdots + 16 \) acting on \(S_{2}^{\mathrm{new}}(440, [\chi])\). Copy content Toggle raw display