Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [440,2,Mod(153,440)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(440, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 0, 3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("440.153");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 440 = 2^{3} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 440.v (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.51341768894\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
153.1 | 0 | −2.10267 | − | 2.10267i | 0 | −2.17481 | + | 0.519798i | 0 | −3.44647 | − | 3.44647i | 0 | 5.84244i | 0 | ||||||||||||
153.2 | 0 | −2.10267 | − | 2.10267i | 0 | −2.17481 | + | 0.519798i | 0 | 3.44647 | + | 3.44647i | 0 | 5.84244i | 0 | ||||||||||||
153.3 | 0 | −1.62830 | − | 1.62830i | 0 | 1.07475 | + | 1.96085i | 0 | −1.24708 | − | 1.24708i | 0 | 2.30275i | 0 | ||||||||||||
153.4 | 0 | −1.62830 | − | 1.62830i | 0 | 1.07475 | + | 1.96085i | 0 | 1.24708 | + | 1.24708i | 0 | 2.30275i | 0 | ||||||||||||
153.5 | 0 | −1.50516 | − | 1.50516i | 0 | 1.52592 | − | 1.63449i | 0 | −1.92066 | − | 1.92066i | 0 | 1.53101i | 0 | ||||||||||||
153.6 | 0 | −1.50516 | − | 1.50516i | 0 | 1.52592 | − | 1.63449i | 0 | 1.92066 | + | 1.92066i | 0 | 1.53101i | 0 | ||||||||||||
153.7 | 0 | −0.185627 | − | 0.185627i | 0 | −2.05027 | + | 0.892416i | 0 | −0.202657 | − | 0.202657i | 0 | − | 2.93108i | 0 | |||||||||||
153.8 | 0 | −0.185627 | − | 0.185627i | 0 | −2.05027 | + | 0.892416i | 0 | 0.202657 | + | 0.202657i | 0 | − | 2.93108i | 0 | |||||||||||
153.9 | 0 | 0.179637 | + | 0.179637i | 0 | 2.16046 | + | 0.576544i | 0 | −1.58807 | − | 1.58807i | 0 | − | 2.93546i | 0 | |||||||||||
153.10 | 0 | 0.179637 | + | 0.179637i | 0 | 2.16046 | + | 0.576544i | 0 | 1.58807 | + | 1.58807i | 0 | − | 2.93546i | 0 | |||||||||||
153.11 | 0 | 0.395428 | + | 0.395428i | 0 | −0.0577165 | − | 2.23532i | 0 | −2.57694 | − | 2.57694i | 0 | − | 2.68727i | 0 | |||||||||||
153.12 | 0 | 0.395428 | + | 0.395428i | 0 | −0.0577165 | − | 2.23532i | 0 | 2.57694 | + | 2.57694i | 0 | − | 2.68727i | 0 | |||||||||||
153.13 | 0 | 1.78145 | + | 1.78145i | 0 | −0.300869 | + | 2.21573i | 0 | −1.52953 | − | 1.52953i | 0 | 3.34712i | 0 | ||||||||||||
153.14 | 0 | 1.78145 | + | 1.78145i | 0 | −0.300869 | + | 2.21573i | 0 | 1.52953 | + | 1.52953i | 0 | 3.34712i | 0 | ||||||||||||
153.15 | 0 | 2.06525 | + | 2.06525i | 0 | 1.82253 | − | 1.29552i | 0 | −1.52796 | − | 1.52796i | 0 | 5.53050i | 0 | ||||||||||||
153.16 | 0 | 2.06525 | + | 2.06525i | 0 | 1.82253 | − | 1.29552i | 0 | 1.52796 | + | 1.52796i | 0 | 5.53050i | 0 | ||||||||||||
417.1 | 0 | −2.10267 | + | 2.10267i | 0 | −2.17481 | − | 0.519798i | 0 | −3.44647 | + | 3.44647i | 0 | − | 5.84244i | 0 | |||||||||||
417.2 | 0 | −2.10267 | + | 2.10267i | 0 | −2.17481 | − | 0.519798i | 0 | 3.44647 | − | 3.44647i | 0 | − | 5.84244i | 0 | |||||||||||
417.3 | 0 | −1.62830 | + | 1.62830i | 0 | 1.07475 | − | 1.96085i | 0 | −1.24708 | + | 1.24708i | 0 | − | 2.30275i | 0 | |||||||||||
417.4 | 0 | −1.62830 | + | 1.62830i | 0 | 1.07475 | − | 1.96085i | 0 | 1.24708 | − | 1.24708i | 0 | − | 2.30275i | 0 | |||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
11.b | odd | 2 | 1 | inner |
55.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 440.2.v.b | ✓ | 32 |
4.b | odd | 2 | 1 | 880.2.bd.i | 32 | ||
5.c | odd | 4 | 1 | inner | 440.2.v.b | ✓ | 32 |
11.b | odd | 2 | 1 | inner | 440.2.v.b | ✓ | 32 |
20.e | even | 4 | 1 | 880.2.bd.i | 32 | ||
44.c | even | 2 | 1 | 880.2.bd.i | 32 | ||
55.e | even | 4 | 1 | inner | 440.2.v.b | ✓ | 32 |
220.i | odd | 4 | 1 | 880.2.bd.i | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
440.2.v.b | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
440.2.v.b | ✓ | 32 | 5.c | odd | 4 | 1 | inner |
440.2.v.b | ✓ | 32 | 11.b | odd | 2 | 1 | inner |
440.2.v.b | ✓ | 32 | 55.e | even | 4 | 1 | inner |
880.2.bd.i | 32 | 4.b | odd | 2 | 1 | ||
880.2.bd.i | 32 | 20.e | even | 4 | 1 | ||
880.2.bd.i | 32 | 44.c | even | 2 | 1 | ||
880.2.bd.i | 32 | 220.i | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{16} + 2 T_{3}^{15} + 2 T_{3}^{14} - 2 T_{3}^{13} + 114 T_{3}^{12} + 226 T_{3}^{11} + 226 T_{3}^{10} + \cdots + 16 \)
acting on \(S_{2}^{\mathrm{new}}(440, [\chi])\).