Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [440,2,Mod(131,440)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(440, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("440.131");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 440 = 2^{3} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 440.p (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.51341768894\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
131.1 | −1.41231 | − | 0.0734309i | 2.21821 | 1.98922 | + | 0.207414i | − | 1.00000i | −3.13279 | − | 0.162885i | 2.12688 | −2.79415 | − | 0.439002i | 1.92044 | −0.0734309 | + | 1.41231i | |||||||
131.2 | −1.41231 | + | 0.0734309i | 2.21821 | 1.98922 | − | 0.207414i | 1.00000i | −3.13279 | + | 0.162885i | 2.12688 | −2.79415 | + | 0.439002i | 1.92044 | −0.0734309 | − | 1.41231i | ||||||||
131.3 | −1.40209 | − | 0.184781i | −1.29072 | 1.93171 | + | 0.518159i | 1.00000i | 1.80970 | + | 0.238500i | −1.50456 | −2.61269 | − | 1.08345i | −1.33405 | 0.184781 | − | 1.40209i | ||||||||
131.4 | −1.40209 | + | 0.184781i | −1.29072 | 1.93171 | − | 0.518159i | − | 1.00000i | 1.80970 | − | 0.238500i | −1.50456 | −2.61269 | + | 1.08345i | −1.33405 | 0.184781 | + | 1.40209i | |||||||
131.5 | −1.31268 | − | 0.526174i | −1.79872 | 1.44628 | + | 1.38140i | 1.00000i | 2.36115 | + | 0.946439i | 4.67916 | −1.17165 | − | 2.57434i | 0.235384 | 0.526174 | − | 1.31268i | ||||||||
131.6 | −1.31268 | + | 0.526174i | −1.79872 | 1.44628 | − | 1.38140i | − | 1.00000i | 2.36115 | − | 0.946439i | 4.67916 | −1.17165 | + | 2.57434i | 0.235384 | 0.526174 | + | 1.31268i | |||||||
131.7 | −1.30050 | − | 0.555606i | −3.23763 | 1.38260 | + | 1.44513i | − | 1.00000i | 4.21054 | + | 1.79885i | −1.25292 | −0.995156 | − | 2.64758i | 7.48225 | −0.555606 | + | 1.30050i | |||||||
131.8 | −1.30050 | + | 0.555606i | −3.23763 | 1.38260 | − | 1.44513i | 1.00000i | 4.21054 | − | 1.79885i | −1.25292 | −0.995156 | + | 2.64758i | 7.48225 | −0.555606 | − | 1.30050i | ||||||||
131.9 | −1.29763 | − | 0.562281i | 1.04788 | 1.36768 | + | 1.45926i | − | 1.00000i | −1.35976 | − | 0.589201i | −2.10014 | −0.954227 | − | 2.66260i | −1.90195 | −0.562281 | + | 1.29763i | |||||||
131.10 | −1.29763 | + | 0.562281i | 1.04788 | 1.36768 | − | 1.45926i | 1.00000i | −1.35976 | + | 0.589201i | −2.10014 | −0.954227 | + | 2.66260i | −1.90195 | −0.562281 | − | 1.29763i | ||||||||
131.11 | −1.14906 | − | 0.824415i | 1.21401 | 0.640680 | + | 1.89461i | 1.00000i | −1.39497 | − | 1.00084i | −4.53805 | 0.825760 | − | 2.70520i | −1.52619 | 0.824415 | − | 1.14906i | ||||||||
131.12 | −1.14906 | + | 0.824415i | 1.21401 | 0.640680 | − | 1.89461i | − | 1.00000i | −1.39497 | + | 1.00084i | −4.53805 | 0.825760 | + | 2.70520i | −1.52619 | 0.824415 | + | 1.14906i | |||||||
131.13 | −0.913040 | − | 1.07998i | 3.16023 | −0.332715 | + | 1.97213i | 1.00000i | −2.88542 | − | 3.41299i | 3.07151 | 2.43364 | − | 1.44131i | 6.98705 | 1.07998 | − | 0.913040i | ||||||||
131.14 | −0.913040 | + | 1.07998i | 3.16023 | −0.332715 | − | 1.97213i | − | 1.00000i | −2.88542 | + | 3.41299i | 3.07151 | 2.43364 | + | 1.44131i | 6.98705 | 1.07998 | + | 0.913040i | |||||||
131.15 | −0.719724 | − | 1.21737i | −0.178950 | −0.963995 | + | 1.75235i | 1.00000i | 0.128795 | + | 0.217849i | −0.405414 | 2.82707 | − | 0.0876636i | −2.96798 | 1.21737 | − | 0.719724i | ||||||||
131.16 | −0.719724 | + | 1.21737i | −0.178950 | −0.963995 | − | 1.75235i | − | 1.00000i | 0.128795 | − | 0.217849i | −0.405414 | 2.82707 | + | 0.0876636i | −2.96798 | 1.21737 | + | 0.719724i | |||||||
131.17 | −0.697721 | − | 1.23012i | 2.53719 | −1.02637 | + | 1.71656i | − | 1.00000i | −1.77025 | − | 3.12103i | −0.924276 | 2.82768 | + | 0.0648795i | 3.43732 | −1.23012 | + | 0.697721i | |||||||
131.18 | −0.697721 | + | 1.23012i | 2.53719 | −1.02637 | − | 1.71656i | 1.00000i | −1.77025 | + | 3.12103i | −0.924276 | 2.82768 | − | 0.0648795i | 3.43732 | −1.23012 | − | 0.697721i | ||||||||
131.19 | −0.458142 | − | 1.33795i | −1.38393 | −1.58021 | + | 1.22594i | − | 1.00000i | 0.634037 | + | 1.85163i | −1.48233 | 2.36421 | + | 1.55258i | −1.08474 | −1.33795 | + | 0.458142i | |||||||
131.20 | −0.458142 | + | 1.33795i | −1.38393 | −1.58021 | − | 1.22594i | 1.00000i | 0.634037 | − | 1.85163i | −1.48233 | 2.36421 | − | 1.55258i | −1.08474 | −1.33795 | − | 0.458142i | ||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
88.g | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 440.2.p.a | ✓ | 48 |
4.b | odd | 2 | 1 | 1760.2.p.a | 48 | ||
8.b | even | 2 | 1 | 1760.2.p.a | 48 | ||
8.d | odd | 2 | 1 | inner | 440.2.p.a | ✓ | 48 |
11.b | odd | 2 | 1 | inner | 440.2.p.a | ✓ | 48 |
44.c | even | 2 | 1 | 1760.2.p.a | 48 | ||
88.b | odd | 2 | 1 | 1760.2.p.a | 48 | ||
88.g | even | 2 | 1 | inner | 440.2.p.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
440.2.p.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
440.2.p.a | ✓ | 48 | 8.d | odd | 2 | 1 | inner |
440.2.p.a | ✓ | 48 | 11.b | odd | 2 | 1 | inner |
440.2.p.a | ✓ | 48 | 88.g | even | 2 | 1 | inner |
1760.2.p.a | 48 | 4.b | odd | 2 | 1 | ||
1760.2.p.a | 48 | 8.b | even | 2 | 1 | ||
1760.2.p.a | 48 | 44.c | even | 2 | 1 | ||
1760.2.p.a | 48 | 88.b | odd | 2 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(440, [\chi])\).