Properties

Label 440.2.l.c.309.32
Level $440$
Weight $2$
Character 440.309
Analytic conductor $3.513$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [440,2,Mod(309,440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("440.309"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(440, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 309.32
Character \(\chi\) \(=\) 440.309
Dual form 440.2.l.c.309.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.109317 + 1.40998i) q^{2} +2.58970 q^{3} +(-1.97610 + 0.308271i) q^{4} +(0.464619 + 2.18727i) q^{5} +(0.283099 + 3.65143i) q^{6} +1.54883i q^{7} +(-0.650678 - 2.75257i) q^{8} +3.70654 q^{9} +(-3.03321 + 0.894210i) q^{10} +1.00000i q^{11} +(-5.11750 + 0.798329i) q^{12} -0.752399 q^{13} +(-2.18382 + 0.169314i) q^{14} +(1.20322 + 5.66436i) q^{15} +(3.80994 - 1.21835i) q^{16} -1.76374i q^{17} +(0.405189 + 5.22616i) q^{18} -6.61274i q^{19} +(-1.59240 - 4.17903i) q^{20} +4.01100i q^{21} +(-1.40998 + 0.109317i) q^{22} +4.37442i q^{23} +(-1.68506 - 7.12832i) q^{24} +(-4.56826 + 2.03249i) q^{25} +(-0.0822503 - 1.06087i) q^{26} +1.82973 q^{27} +(-0.477458 - 3.06064i) q^{28} -1.83376i q^{29} +(-7.85511 + 2.31574i) q^{30} +6.97780 q^{31} +(2.13434 + 5.23876i) q^{32} +2.58970i q^{33} +(2.48685 - 0.192808i) q^{34} +(-3.38770 + 0.719615i) q^{35} +(-7.32449 + 1.14262i) q^{36} -4.70395 q^{37} +(9.32385 - 0.722887i) q^{38} -1.94849 q^{39} +(5.71827 - 2.70210i) q^{40} +6.83919 q^{41} +(-5.65543 + 0.438471i) q^{42} +5.43888 q^{43} +(-0.308271 - 1.97610i) q^{44} +(1.72213 + 8.10719i) q^{45} +(-6.16786 + 0.478200i) q^{46} -1.78733i q^{47} +(9.86659 - 3.15515i) q^{48} +4.60113 q^{49} +(-3.36516 - 6.21898i) q^{50} -4.56756i q^{51} +(1.48682 - 0.231943i) q^{52} -3.54061 q^{53} +(0.200021 + 2.57988i) q^{54} +(-2.18727 + 0.464619i) q^{55} +(4.26325 - 1.00779i) q^{56} -17.1250i q^{57} +(2.58556 - 0.200461i) q^{58} +0.926285i q^{59} +(-4.12385 - 10.8224i) q^{60} -11.3104i q^{61} +(0.762794 + 9.83857i) q^{62} +5.74079i q^{63} +(-7.15324 + 3.58207i) q^{64} +(-0.349579 - 1.64570i) q^{65} +(-3.65143 + 0.283099i) q^{66} -10.4970 q^{67} +(0.543710 + 3.48533i) q^{68} +11.3284i q^{69} +(-1.38498 - 4.69793i) q^{70} +10.7739 q^{71} +(-2.41177 - 10.2025i) q^{72} -3.66071i q^{73} +(-0.514223 - 6.63248i) q^{74} +(-11.8304 + 5.26354i) q^{75} +(2.03852 + 13.0674i) q^{76} -1.54883 q^{77} +(-0.213003 - 2.74733i) q^{78} -15.4808 q^{79} +(4.43502 + 7.76728i) q^{80} -6.38118 q^{81} +(0.747642 + 9.64314i) q^{82} -11.5798 q^{83} +(-1.23647 - 7.92613i) q^{84} +(3.85777 - 0.819468i) q^{85} +(0.594564 + 7.66872i) q^{86} -4.74887i q^{87} +(2.75257 - 0.650678i) q^{88} +13.3280 q^{89} +(-11.2427 + 3.31443i) q^{90} -1.16534i q^{91} +(-1.34851 - 8.64430i) q^{92} +18.0704 q^{93} +(2.52010 - 0.195386i) q^{94} +(14.4638 - 3.07241i) q^{95} +(5.52730 + 13.5668i) q^{96} -15.4078i q^{97} +(0.502983 + 6.48752i) q^{98} +3.70654i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{4} - 12 q^{6} + 56 q^{9} - 10 q^{10} - 32 q^{14} - 8 q^{15} + 16 q^{16} + 8 q^{20} - 16 q^{24} + 16 q^{25} - 12 q^{26} + 38 q^{30} + 72 q^{34} - 24 q^{36} - 16 q^{39} + 12 q^{40} - 32 q^{41}+ \cdots - 16 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.109317 + 1.40998i 0.0772990 + 0.997008i
\(3\) 2.58970 1.49516 0.747582 0.664170i \(-0.231215\pi\)
0.747582 + 0.664170i \(0.231215\pi\)
\(4\) −1.97610 + 0.308271i −0.988050 + 0.154135i
\(5\) 0.464619 + 2.18727i 0.207784 + 0.978175i
\(6\) 0.283099 + 3.65143i 0.115575 + 1.49069i
\(7\) 1.54883i 0.585402i 0.956204 + 0.292701i \(0.0945540\pi\)
−0.956204 + 0.292701i \(0.905446\pi\)
\(8\) −0.650678 2.75257i −0.230050 0.973179i
\(9\) 3.70654 1.23551
\(10\) −3.03321 + 0.894210i −0.959187 + 0.282774i
\(11\) 1.00000i 0.301511i
\(12\) −5.11750 + 0.798329i −1.47730 + 0.230458i
\(13\) −0.752399 −0.208678 −0.104339 0.994542i \(-0.533273\pi\)
−0.104339 + 0.994542i \(0.533273\pi\)
\(14\) −2.18382 + 0.169314i −0.583650 + 0.0452510i
\(15\) 1.20322 + 5.66436i 0.310671 + 1.46253i
\(16\) 3.80994 1.21835i 0.952485 0.304587i
\(17\) 1.76374i 0.427770i −0.976859 0.213885i \(-0.931388\pi\)
0.976859 0.213885i \(-0.0686119\pi\)
\(18\) 0.405189 + 5.22616i 0.0955039 + 1.23182i
\(19\) 6.61274i 1.51707i −0.651634 0.758534i \(-0.725916\pi\)
0.651634 0.758534i \(-0.274084\pi\)
\(20\) −1.59240 4.17903i −0.356072 0.934458i
\(21\) 4.01100i 0.875271i
\(22\) −1.40998 + 0.109317i −0.300609 + 0.0233065i
\(23\) 4.37442i 0.912130i 0.889946 + 0.456065i \(0.150742\pi\)
−0.889946 + 0.456065i \(0.849258\pi\)
\(24\) −1.68506 7.12832i −0.343962 1.45506i
\(25\) −4.56826 + 2.03249i −0.913652 + 0.406498i
\(26\) −0.0822503 1.06087i −0.0161306 0.208054i
\(27\) 1.82973 0.352131
\(28\) −0.477458 3.06064i −0.0902312 0.578406i
\(29\) 1.83376i 0.340520i −0.985399 0.170260i \(-0.945539\pi\)
0.985399 0.170260i \(-0.0544607\pi\)
\(30\) −7.85511 + 2.31574i −1.43414 + 0.422794i
\(31\) 6.97780 1.25325 0.626625 0.779321i \(-0.284436\pi\)
0.626625 + 0.779321i \(0.284436\pi\)
\(32\) 2.13434 + 5.23876i 0.377302 + 0.926090i
\(33\) 2.58970i 0.450809i
\(34\) 2.48685 0.192808i 0.426491 0.0330662i
\(35\) −3.38770 + 0.719615i −0.572625 + 0.121637i
\(36\) −7.32449 + 1.14262i −1.22075 + 0.190436i
\(37\) −4.70395 −0.773324 −0.386662 0.922222i \(-0.626372\pi\)
−0.386662 + 0.922222i \(0.626372\pi\)
\(38\) 9.32385 0.722887i 1.51253 0.117268i
\(39\) −1.94849 −0.312008
\(40\) 5.71827 2.70210i 0.904138 0.427240i
\(41\) 6.83919 1.06810 0.534051 0.845452i \(-0.320669\pi\)
0.534051 + 0.845452i \(0.320669\pi\)
\(42\) −5.65543 + 0.438471i −0.872653 + 0.0676576i
\(43\) 5.43888 0.829421 0.414711 0.909953i \(-0.363883\pi\)
0.414711 + 0.909953i \(0.363883\pi\)
\(44\) −0.308271 1.97610i −0.0464736 0.297908i
\(45\) 1.72213 + 8.10719i 0.256720 + 1.20855i
\(46\) −6.16786 + 0.478200i −0.909401 + 0.0705068i
\(47\) 1.78733i 0.260709i −0.991467 0.130354i \(-0.958389\pi\)
0.991467 0.130354i \(-0.0416115\pi\)
\(48\) 9.86659 3.15515i 1.42412 0.455407i
\(49\) 4.60113 0.657305
\(50\) −3.36516 6.21898i −0.475906 0.879496i
\(51\) 4.56756i 0.639587i
\(52\) 1.48682 0.231943i 0.206184 0.0321647i
\(53\) −3.54061 −0.486340 −0.243170 0.969984i \(-0.578187\pi\)
−0.243170 + 0.969984i \(0.578187\pi\)
\(54\) 0.200021 + 2.57988i 0.0272194 + 0.351077i
\(55\) −2.18727 + 0.464619i −0.294931 + 0.0626492i
\(56\) 4.26325 1.00779i 0.569701 0.134671i
\(57\) 17.1250i 2.26826i
\(58\) 2.58556 0.200461i 0.339501 0.0263218i
\(59\) 0.926285i 0.120592i 0.998181 + 0.0602960i \(0.0192045\pi\)
−0.998181 + 0.0602960i \(0.980796\pi\)
\(60\) −4.12385 10.8224i −0.532386 1.39717i
\(61\) 11.3104i 1.44815i −0.689721 0.724075i \(-0.742267\pi\)
0.689721 0.724075i \(-0.257733\pi\)
\(62\) 0.762794 + 9.83857i 0.0968749 + 1.24950i
\(63\) 5.74079i 0.723272i
\(64\) −7.15324 + 3.58207i −0.894154 + 0.447759i
\(65\) −0.349579 1.64570i −0.0433600 0.204124i
\(66\) −3.65143 + 0.283099i −0.449460 + 0.0348471i
\(67\) −10.4970 −1.28241 −0.641206 0.767369i \(-0.721566\pi\)
−0.641206 + 0.767369i \(0.721566\pi\)
\(68\) 0.543710 + 3.48533i 0.0659346 + 0.422658i
\(69\) 11.3284i 1.36378i
\(70\) −1.38498 4.69793i −0.165537 0.561510i
\(71\) 10.7739 1.27863 0.639316 0.768944i \(-0.279218\pi\)
0.639316 + 0.768944i \(0.279218\pi\)
\(72\) −2.41177 10.2025i −0.284229 1.20238i
\(73\) 3.66071i 0.428453i −0.976784 0.214227i \(-0.931277\pi\)
0.976784 0.214227i \(-0.0687231\pi\)
\(74\) −0.514223 6.63248i −0.0597772 0.771010i
\(75\) −11.8304 + 5.26354i −1.36606 + 0.607781i
\(76\) 2.03852 + 13.0674i 0.233834 + 1.49894i
\(77\) −1.54883 −0.176505
\(78\) −0.213003 2.74733i −0.0241179 0.311074i
\(79\) −15.4808 −1.74173 −0.870864 0.491525i \(-0.836440\pi\)
−0.870864 + 0.491525i \(0.836440\pi\)
\(80\) 4.43502 + 7.76728i 0.495850 + 0.868408i
\(81\) −6.38118 −0.709020
\(82\) 0.747642 + 9.64314i 0.0825632 + 1.06491i
\(83\) −11.5798 −1.27105 −0.635524 0.772081i \(-0.719216\pi\)
−0.635524 + 0.772081i \(0.719216\pi\)
\(84\) −1.23647 7.92613i −0.134910 0.864812i
\(85\) 3.85777 0.819468i 0.418434 0.0888838i
\(86\) 0.594564 + 7.66872i 0.0641134 + 0.826940i
\(87\) 4.74887i 0.509133i
\(88\) 2.75257 0.650678i 0.293424 0.0693625i
\(89\) 13.3280 1.41277 0.706385 0.707828i \(-0.250325\pi\)
0.706385 + 0.707828i \(0.250325\pi\)
\(90\) −11.2427 + 3.31443i −1.18509 + 0.349371i
\(91\) 1.16534i 0.122161i
\(92\) −1.34851 8.64430i −0.140592 0.901230i
\(93\) 18.0704 1.87381
\(94\) 2.52010 0.195386i 0.259928 0.0201525i
\(95\) 14.4638 3.07241i 1.48396 0.315222i
\(96\) 5.52730 + 13.5668i 0.564128 + 1.38466i
\(97\) 15.4078i 1.56442i −0.623015 0.782210i \(-0.714092\pi\)
0.623015 0.782210i \(-0.285908\pi\)
\(98\) 0.502983 + 6.48752i 0.0508090 + 0.655338i
\(99\) 3.70654i 0.372521i
\(100\) 8.40078 5.42466i 0.840078 0.542466i
\(101\) 10.6198i 1.05671i −0.849024 0.528355i \(-0.822809\pi\)
0.849024 0.528355i \(-0.177191\pi\)
\(102\) 6.44018 0.499314i 0.637673 0.0494394i
\(103\) 17.7848i 1.75239i 0.481957 + 0.876195i \(0.339926\pi\)
−0.481957 + 0.876195i \(0.660074\pi\)
\(104\) 0.489570 + 2.07103i 0.0480063 + 0.203081i
\(105\) −8.77312 + 1.86359i −0.856168 + 0.181867i
\(106\) −0.387050 4.99220i −0.0375936 0.484885i
\(107\) 20.2954 1.96203 0.981013 0.193940i \(-0.0621268\pi\)
0.981013 + 0.193940i \(0.0621268\pi\)
\(108\) −3.61572 + 0.564051i −0.347923 + 0.0542759i
\(109\) 7.63435i 0.731238i −0.930765 0.365619i \(-0.880857\pi\)
0.930765 0.365619i \(-0.119143\pi\)
\(110\) −0.894210 3.03321i −0.0852596 0.289206i
\(111\) −12.1818 −1.15625
\(112\) 1.88701 + 5.90094i 0.178306 + 0.557586i
\(113\) 10.8737i 1.02291i −0.859311 0.511454i \(-0.829107\pi\)
0.859311 0.511454i \(-0.170893\pi\)
\(114\) 24.1460 1.87206i 2.26148 0.175335i
\(115\) −9.56802 + 2.03244i −0.892223 + 0.189526i
\(116\) 0.565293 + 3.62368i 0.0524862 + 0.336450i
\(117\) −2.78880 −0.257825
\(118\) −1.30605 + 0.101259i −0.120231 + 0.00932164i
\(119\) 2.73173 0.250418
\(120\) 14.8086 6.99763i 1.35183 0.638793i
\(121\) −1.00000 −0.0909091
\(122\) 15.9475 1.23642i 1.44382 0.111941i
\(123\) 17.7114 1.59699
\(124\) −13.7888 + 2.15105i −1.23827 + 0.193170i
\(125\) −6.56809 9.04766i −0.587468 0.809247i
\(126\) −8.09441 + 0.627568i −0.721108 + 0.0559082i
\(127\) 11.7676i 1.04420i 0.852883 + 0.522101i \(0.174852\pi\)
−0.852883 + 0.522101i \(0.825148\pi\)
\(128\) −5.83263 9.69435i −0.515536 0.856868i
\(129\) 14.0851 1.24012
\(130\) 2.28219 0.672803i 0.200161 0.0590088i
\(131\) 5.25004i 0.458698i 0.973344 + 0.229349i \(0.0736597\pi\)
−0.973344 + 0.229349i \(0.926340\pi\)
\(132\) −0.798329 5.11750i −0.0694856 0.445421i
\(133\) 10.2420 0.888094
\(134\) −1.14750 14.8006i −0.0991291 1.27857i
\(135\) 0.850126 + 4.00210i 0.0731672 + 0.344446i
\(136\) −4.85482 + 1.14763i −0.416297 + 0.0984084i
\(137\) 14.0671i 1.20183i 0.799312 + 0.600916i \(0.205197\pi\)
−0.799312 + 0.600916i \(0.794803\pi\)
\(138\) −15.9729 + 1.23839i −1.35970 + 0.105419i
\(139\) 12.2586i 1.03976i 0.854239 + 0.519881i \(0.174024\pi\)
−0.854239 + 0.519881i \(0.825976\pi\)
\(140\) 6.47259 2.46636i 0.547034 0.208445i
\(141\) 4.62864i 0.389802i
\(142\) 1.17778 + 15.1911i 0.0988370 + 1.27481i
\(143\) 0.752399i 0.0629188i
\(144\) 14.1217 4.51585i 1.17681 0.376321i
\(145\) 4.01091 0.851998i 0.333088 0.0707545i
\(146\) 5.16153 0.400179i 0.427171 0.0331190i
\(147\) 11.9155 0.982778
\(148\) 9.29546 1.45009i 0.764082 0.119197i
\(149\) 1.16054i 0.0950754i 0.998869 + 0.0475377i \(0.0151374\pi\)
−0.998869 + 0.0475377i \(0.984863\pi\)
\(150\) −8.71476 16.1053i −0.711557 1.31499i
\(151\) −14.6795 −1.19460 −0.597301 0.802017i \(-0.703760\pi\)
−0.597301 + 0.802017i \(0.703760\pi\)
\(152\) −18.2020 + 4.30277i −1.47638 + 0.349001i
\(153\) 6.53738i 0.528516i
\(154\) −0.169314 2.18382i −0.0136437 0.175977i
\(155\) 3.24202 + 15.2623i 0.260405 + 1.22590i
\(156\) 3.85041 0.600662i 0.308279 0.0480915i
\(157\) 4.01441 0.320385 0.160193 0.987086i \(-0.448788\pi\)
0.160193 + 0.987086i \(0.448788\pi\)
\(158\) −1.69232 21.8277i −0.134634 1.73652i
\(159\) −9.16912 −0.727158
\(160\) −10.4669 + 7.10240i −0.827481 + 0.561494i
\(161\) −6.77523 −0.533963
\(162\) −0.697573 8.99735i −0.0548065 0.706899i
\(163\) −7.46616 −0.584795 −0.292397 0.956297i \(-0.594453\pi\)
−0.292397 + 0.956297i \(0.594453\pi\)
\(164\) −13.5149 + 2.10832i −1.05534 + 0.164632i
\(165\) −5.66436 + 1.20322i −0.440970 + 0.0936708i
\(166\) −1.26587 16.3273i −0.0982507 1.26724i
\(167\) 15.1107i 1.16930i −0.811285 0.584651i \(-0.801231\pi\)
0.811285 0.584651i \(-0.198769\pi\)
\(168\) 11.0405 2.60987i 0.851796 0.201356i
\(169\) −12.4339 −0.956453
\(170\) 1.57716 + 5.34981i 0.120962 + 0.410312i
\(171\) 24.5104i 1.87436i
\(172\) −10.7478 + 1.67665i −0.819510 + 0.127843i
\(173\) −2.86596 −0.217895 −0.108948 0.994047i \(-0.534748\pi\)
−0.108948 + 0.994047i \(0.534748\pi\)
\(174\) 6.69583 0.519134i 0.507609 0.0393554i
\(175\) −3.14798 7.07545i −0.237965 0.534853i
\(176\) 1.21835 + 3.80994i 0.0918364 + 0.287185i
\(177\) 2.39880i 0.180305i
\(178\) 1.45699 + 18.7923i 0.109206 + 1.40854i
\(179\) 19.8650i 1.48478i 0.669969 + 0.742389i \(0.266307\pi\)
−0.669969 + 0.742389i \(0.733693\pi\)
\(180\) −5.90231 15.4897i −0.439932 1.15454i
\(181\) 14.9306i 1.10979i −0.831922 0.554893i \(-0.812759\pi\)
0.831922 0.554893i \(-0.187241\pi\)
\(182\) 1.64310 0.127391i 0.121795 0.00944289i
\(183\) 29.2906i 2.16522i
\(184\) 12.0409 2.84634i 0.887666 0.209835i
\(185\) −2.18554 10.2888i −0.160684 0.756446i
\(186\) 1.97541 + 25.4789i 0.144844 + 1.86821i
\(187\) 1.76374 0.128978
\(188\) 0.550981 + 3.53194i 0.0401844 + 0.257593i
\(189\) 2.83393i 0.206138i
\(190\) 5.91319 + 20.0579i 0.428988 + 1.45515i
\(191\) 6.07662 0.439689 0.219844 0.975535i \(-0.429445\pi\)
0.219844 + 0.975535i \(0.429445\pi\)
\(192\) −18.5247 + 9.27648i −1.33691 + 0.669472i
\(193\) 18.0035i 1.29592i 0.761674 + 0.647961i \(0.224378\pi\)
−0.761674 + 0.647961i \(0.775622\pi\)
\(194\) 21.7247 1.68433i 1.55974 0.120928i
\(195\) −0.905305 4.26186i −0.0648302 0.305198i
\(196\) −9.09230 + 1.41840i −0.649450 + 0.101314i
\(197\) −15.9200 −1.13425 −0.567127 0.823630i \(-0.691945\pi\)
−0.567127 + 0.823630i \(0.691945\pi\)
\(198\) −5.22616 + 0.405189i −0.371407 + 0.0287955i
\(199\) −20.3525 −1.44275 −0.721375 0.692545i \(-0.756489\pi\)
−0.721375 + 0.692545i \(0.756489\pi\)
\(200\) 8.56703 + 11.2519i 0.605780 + 0.795632i
\(201\) −27.1840 −1.91741
\(202\) 14.9737 1.16093i 1.05355 0.0816826i
\(203\) 2.84017 0.199341
\(204\) 1.40805 + 9.02596i 0.0985830 + 0.631943i
\(205\) 3.17762 + 14.9591i 0.221935 + 1.04479i
\(206\) −25.0763 + 1.94419i −1.74715 + 0.135458i
\(207\) 16.2140i 1.12695i
\(208\) −2.86660 + 0.916684i −0.198763 + 0.0635606i
\(209\) 6.61274 0.457413
\(210\) −3.58668 12.1662i −0.247504 0.839549i
\(211\) 0.768643i 0.0529156i 0.999650 + 0.0264578i \(0.00842276\pi\)
−0.999650 + 0.0264578i \(0.991577\pi\)
\(212\) 6.99660 1.09147i 0.480529 0.0749623i
\(213\) 27.9013 1.91176
\(214\) 2.21863 + 28.6161i 0.151663 + 1.95616i
\(215\) 2.52701 + 11.8963i 0.172340 + 0.811319i
\(216\) −1.19056 5.03644i −0.0810076 0.342686i
\(217\) 10.8074i 0.733655i
\(218\) 10.7643 0.834566i 0.729050 0.0565239i
\(219\) 9.48013i 0.640608i
\(220\) 4.17903 1.59240i 0.281750 0.107360i
\(221\) 1.32704i 0.0892663i
\(222\) −1.33168 17.1761i −0.0893766 1.15279i
\(223\) 10.2018i 0.683166i 0.939852 + 0.341583i \(0.110963\pi\)
−0.939852 + 0.341583i \(0.889037\pi\)
\(224\) −8.11393 + 3.30573i −0.542135 + 0.220873i
\(225\) −16.9324 + 7.53351i −1.12883 + 0.502234i
\(226\) 15.3317 1.18868i 1.01985 0.0790697i
\(227\) −6.99282 −0.464130 −0.232065 0.972700i \(-0.574548\pi\)
−0.232065 + 0.972700i \(0.574548\pi\)
\(228\) 5.27914 + 33.8407i 0.349620 + 2.24116i
\(229\) 10.2738i 0.678911i 0.940622 + 0.339456i \(0.110243\pi\)
−0.940622 + 0.339456i \(0.889757\pi\)
\(230\) −3.91166 13.2686i −0.257927 0.874903i
\(231\) −4.01100 −0.263904
\(232\) −5.04753 + 1.19318i −0.331387 + 0.0783364i
\(233\) 5.62763i 0.368678i 0.982863 + 0.184339i \(0.0590145\pi\)
−0.982863 + 0.184339i \(0.940986\pi\)
\(234\) −0.304864 3.93216i −0.0199296 0.257053i
\(235\) 3.90936 0.830426i 0.255018 0.0541710i
\(236\) −0.285547 1.83043i −0.0185875 0.119151i
\(237\) −40.0906 −2.60417
\(238\) 0.298626 + 3.85170i 0.0193570 + 0.249668i
\(239\) −21.0356 −1.36068 −0.680340 0.732897i \(-0.738168\pi\)
−0.680340 + 0.732897i \(0.738168\pi\)
\(240\) 11.4854 + 20.1149i 0.741377 + 1.29841i
\(241\) 0.611895 0.0394156 0.0197078 0.999806i \(-0.493726\pi\)
0.0197078 + 0.999806i \(0.493726\pi\)
\(242\) −0.109317 1.40998i −0.00702718 0.0906371i
\(243\) −22.0145 −1.41223
\(244\) 3.48667 + 22.3505i 0.223211 + 1.43084i
\(245\) 2.13777 + 10.0639i 0.136577 + 0.642959i
\(246\) 1.93617 + 24.9728i 0.123446 + 1.59221i
\(247\) 4.97543i 0.316579i
\(248\) −4.54030 19.2068i −0.288309 1.21964i
\(249\) −29.9882 −1.90042
\(250\) 12.0390 10.2500i 0.761415 0.648265i
\(251\) 6.66790i 0.420874i −0.977607 0.210437i \(-0.932511\pi\)
0.977607 0.210437i \(-0.0674887\pi\)
\(252\) −1.76972 11.3444i −0.111482 0.714629i
\(253\) −4.37442 −0.275018
\(254\) −16.5921 + 1.28640i −1.04108 + 0.0807158i
\(255\) 9.99047 2.12218i 0.625628 0.132896i
\(256\) 13.0313 9.28366i 0.814454 0.580229i
\(257\) 15.4947i 0.966534i 0.875473 + 0.483267i \(0.160550\pi\)
−0.875473 + 0.483267i \(0.839450\pi\)
\(258\) 1.53974 + 19.8597i 0.0958601 + 1.23641i
\(259\) 7.28560i 0.452705i
\(260\) 1.19812 + 3.14430i 0.0743045 + 0.195001i
\(261\) 6.79689i 0.420717i
\(262\) −7.40246 + 0.573920i −0.457325 + 0.0354569i
\(263\) 4.96822i 0.306354i −0.988199 0.153177i \(-0.951050\pi\)
0.988199 0.153177i \(-0.0489504\pi\)
\(264\) 7.12832 1.68506i 0.438718 0.103708i
\(265\) −1.64504 7.74426i −0.101054 0.475726i
\(266\) 1.11963 + 14.4410i 0.0686488 + 0.885437i
\(267\) 34.5156 2.11232
\(268\) 20.7431 3.23592i 1.26709 0.197665i
\(269\) 21.2890i 1.29801i −0.760783 0.649006i \(-0.775185\pi\)
0.760783 0.649006i \(-0.224815\pi\)
\(270\) −5.54995 + 1.63616i −0.337759 + 0.0995735i
\(271\) 13.5211 0.821346 0.410673 0.911783i \(-0.365294\pi\)
0.410673 + 0.911783i \(0.365294\pi\)
\(272\) −2.14885 6.71975i −0.130293 0.407445i
\(273\) 3.01787i 0.182650i
\(274\) −19.8343 + 1.53777i −1.19824 + 0.0929004i
\(275\) −2.03249 4.56826i −0.122564 0.275476i
\(276\) −3.49223 22.3861i −0.210207 1.34749i
\(277\) −31.6174 −1.89971 −0.949853 0.312696i \(-0.898768\pi\)
−0.949853 + 0.312696i \(0.898768\pi\)
\(278\) −17.2844 + 1.34008i −1.03665 + 0.0803726i
\(279\) 25.8635 1.54841
\(280\) 4.18509 + 8.85662i 0.250107 + 0.529284i
\(281\) −4.69073 −0.279825 −0.139913 0.990164i \(-0.544682\pi\)
−0.139913 + 0.990164i \(0.544682\pi\)
\(282\) 6.52630 0.505990i 0.388636 0.0301313i
\(283\) −15.8360 −0.941354 −0.470677 0.882306i \(-0.655990\pi\)
−0.470677 + 0.882306i \(0.655990\pi\)
\(284\) −21.2904 + 3.32129i −1.26335 + 0.197083i
\(285\) 37.4570 7.95661i 2.21876 0.471309i
\(286\) 1.06087 0.0822503i 0.0627305 0.00486356i
\(287\) 10.5927i 0.625269i
\(288\) 7.91102 + 19.4177i 0.466161 + 1.14420i
\(289\) 13.8892 0.817012
\(290\) 1.63976 + 5.56217i 0.0962902 + 0.326622i
\(291\) 39.9014i 2.33906i
\(292\) 1.12849 + 7.23392i 0.0660398 + 0.423333i
\(293\) −18.9901 −1.10942 −0.554708 0.832045i \(-0.687170\pi\)
−0.554708 + 0.832045i \(0.687170\pi\)
\(294\) 1.30258 + 16.8007i 0.0759677 + 0.979837i
\(295\) −2.02603 + 0.430370i −0.117960 + 0.0250571i
\(296\) 3.06076 + 12.9479i 0.177903 + 0.752583i
\(297\) 1.82973i 0.106171i
\(298\) −1.63635 + 0.126867i −0.0947910 + 0.00734924i
\(299\) 3.29131i 0.190342i
\(300\) 21.7555 14.0482i 1.25605 0.811076i
\(301\) 8.42389i 0.485545i
\(302\) −1.60473 20.6979i −0.0923416 1.19103i
\(303\) 27.5021i 1.57995i
\(304\) −8.05662 25.1941i −0.462079 1.44498i
\(305\) 24.7389 5.25503i 1.41654 0.300902i
\(306\) 9.21759 0.714649i 0.526935 0.0408538i
\(307\) −17.6155 −1.00537 −0.502684 0.864470i \(-0.667654\pi\)
−0.502684 + 0.864470i \(0.667654\pi\)
\(308\) 3.06064 0.477458i 0.174396 0.0272057i
\(309\) 46.0573i 2.62011i
\(310\) −21.1652 + 6.23962i −1.20210 + 0.354387i
\(311\) 18.1360 1.02840 0.514198 0.857672i \(-0.328090\pi\)
0.514198 + 0.857672i \(0.328090\pi\)
\(312\) 1.26784 + 5.36334i 0.0717772 + 0.303639i
\(313\) 4.48441i 0.253474i −0.991936 0.126737i \(-0.959550\pi\)
0.991936 0.126737i \(-0.0404504\pi\)
\(314\) 0.438845 + 5.66025i 0.0247654 + 0.319426i
\(315\) −12.5566 + 2.66728i −0.707486 + 0.150284i
\(316\) 30.5916 4.77228i 1.72091 0.268462i
\(317\) 20.5612 1.15483 0.577416 0.816450i \(-0.304061\pi\)
0.577416 + 0.816450i \(0.304061\pi\)
\(318\) −1.00234 12.9283i −0.0562086 0.724983i
\(319\) 1.83376 0.102671
\(320\) −11.1585 13.9817i −0.623777 0.781602i
\(321\) 52.5589 2.93355
\(322\) −0.740650 9.55295i −0.0412748 0.532365i
\(323\) −11.6632 −0.648957
\(324\) 12.6098 1.96713i 0.700547 0.109285i
\(325\) 3.43715 1.52924i 0.190659 0.0848272i
\(326\) −0.816180 10.5272i −0.0452040 0.583045i
\(327\) 19.7707i 1.09332i
\(328\) −4.45011 18.8253i −0.245716 1.03945i
\(329\) 2.76826 0.152619
\(330\) −2.31574 7.85511i −0.127477 0.432410i
\(331\) 5.32820i 0.292864i −0.989221 0.146432i \(-0.953221\pi\)
0.989221 0.146432i \(-0.0467790\pi\)
\(332\) 22.8828 3.56971i 1.25586 0.195913i
\(333\) −17.4354 −0.955452
\(334\) 21.3058 1.65186i 1.16580 0.0903859i
\(335\) −4.87710 22.9597i −0.266465 1.25442i
\(336\) 4.88679 + 15.2817i 0.266596 + 0.833682i
\(337\) 9.99173i 0.544284i 0.962257 + 0.272142i \(0.0877321\pi\)
−0.962257 + 0.272142i \(0.912268\pi\)
\(338\) −1.35924 17.5316i −0.0739329 0.953592i
\(339\) 28.1595i 1.52941i
\(340\) −7.37072 + 2.80859i −0.399734 + 0.152317i
\(341\) 6.97780i 0.377869i
\(342\) 34.5592 2.67941i 1.86875 0.144886i
\(343\) 17.9682i 0.970189i
\(344\) −3.53896 14.9709i −0.190808 0.807175i
\(345\) −24.7783 + 5.26341i −1.33402 + 0.283372i
\(346\) −0.313299 4.04096i −0.0168431 0.217243i
\(347\) 14.2821 0.766705 0.383352 0.923602i \(-0.374769\pi\)
0.383352 + 0.923602i \(0.374769\pi\)
\(348\) 1.46394 + 9.38425i 0.0784754 + 0.503048i
\(349\) 1.05785i 0.0566253i −0.999599 0.0283126i \(-0.990987\pi\)
0.999599 0.0283126i \(-0.00901340\pi\)
\(350\) 9.63212 5.21206i 0.514859 0.278596i
\(351\) −1.37668 −0.0734820
\(352\) −5.23876 + 2.13434i −0.279227 + 0.113761i
\(353\) 27.3191i 1.45405i 0.686612 + 0.727024i \(0.259097\pi\)
−0.686612 + 0.727024i \(0.740903\pi\)
\(354\) −3.38226 + 0.262230i −0.179765 + 0.0139374i
\(355\) 5.00578 + 23.5655i 0.265679 + 1.25073i
\(356\) −26.3375 + 4.10865i −1.39589 + 0.217758i
\(357\) 7.07437 0.374415
\(358\) −28.0093 + 2.17159i −1.48034 + 0.114772i
\(359\) −2.40783 −0.127081 −0.0635403 0.997979i \(-0.520239\pi\)
−0.0635403 + 0.997979i \(0.520239\pi\)
\(360\) 21.1950 10.0154i 1.11708 0.527860i
\(361\) −24.7284 −1.30149
\(362\) 21.0519 1.63218i 1.10647 0.0857853i
\(363\) −2.58970 −0.135924
\(364\) 0.359239 + 2.30282i 0.0188293 + 0.120701i
\(365\) 8.00694 1.70083i 0.419102 0.0890257i
\(366\) 41.2992 3.20196i 2.15874 0.167369i
\(367\) 9.49487i 0.495628i 0.968808 + 0.247814i \(0.0797122\pi\)
−0.968808 + 0.247814i \(0.920288\pi\)
\(368\) 5.32957 + 16.6663i 0.277823 + 0.868790i
\(369\) 25.3497 1.31965
\(370\) 14.2681 4.20632i 0.741762 0.218676i
\(371\) 5.48380i 0.284705i
\(372\) −35.7089 + 5.57058i −1.85142 + 0.288821i
\(373\) 29.3152 1.51788 0.758942 0.651158i \(-0.225716\pi\)
0.758942 + 0.651158i \(0.225716\pi\)
\(374\) 0.192808 + 2.48685i 0.00996984 + 0.128592i
\(375\) −17.0094 23.4307i −0.878361 1.20996i
\(376\) −4.91974 + 1.16298i −0.253716 + 0.0599759i
\(377\) 1.37972i 0.0710590i
\(378\) −3.99579 + 0.309798i −0.205521 + 0.0159343i
\(379\) 28.3027i 1.45381i 0.686738 + 0.726905i \(0.259042\pi\)
−0.686738 + 0.726905i \(0.740958\pi\)
\(380\) −27.6348 + 10.5302i −1.41764 + 0.540186i
\(381\) 30.4745i 1.56125i
\(382\) 0.664280 + 8.56792i 0.0339875 + 0.438373i
\(383\) 33.1005i 1.69136i −0.533694 0.845678i \(-0.679197\pi\)
0.533694 0.845678i \(-0.320803\pi\)
\(384\) −15.1047 25.1055i −0.770811 1.28116i
\(385\) −0.719615 3.38770i −0.0366750 0.172653i
\(386\) −25.3846 + 1.96810i −1.29204 + 0.100173i
\(387\) 20.1594 1.02476
\(388\) 4.74976 + 30.4472i 0.241133 + 1.54572i
\(389\) 13.3751i 0.678142i 0.940761 + 0.339071i \(0.110113\pi\)
−0.940761 + 0.339071i \(0.889887\pi\)
\(390\) 5.91018 1.74236i 0.299274 0.0882277i
\(391\) 7.71536 0.390182
\(392\) −2.99386 12.6649i −0.151213 0.639675i
\(393\) 13.5960i 0.685828i
\(394\) −1.74033 22.4469i −0.0876767 1.13086i
\(395\) −7.19268 33.8606i −0.361903 1.70371i
\(396\) −1.14262 7.32449i −0.0574187 0.368070i
\(397\) −14.9090 −0.748260 −0.374130 0.927376i \(-0.622059\pi\)
−0.374130 + 0.927376i \(0.622059\pi\)
\(398\) −2.22488 28.6966i −0.111523 1.43843i
\(399\) 26.5237 1.32785
\(400\) −14.9285 + 13.3094i −0.746425 + 0.665469i
\(401\) 23.1315 1.15513 0.577567 0.816343i \(-0.304002\pi\)
0.577567 + 0.816343i \(0.304002\pi\)
\(402\) −2.97169 38.3290i −0.148214 1.91168i
\(403\) −5.25009 −0.261526
\(404\) 3.27378 + 20.9858i 0.162876 + 1.04408i
\(405\) −2.96482 13.9573i −0.147323 0.693546i
\(406\) 0.310480 + 4.00459i 0.0154089 + 0.198744i
\(407\) 4.70395i 0.233166i
\(408\) −12.5725 + 2.97201i −0.622432 + 0.147137i
\(409\) −20.2052 −0.999084 −0.499542 0.866290i \(-0.666498\pi\)
−0.499542 + 0.866290i \(0.666498\pi\)
\(410\) −20.7447 + 6.11568i −1.02451 + 0.302032i
\(411\) 36.4295i 1.79693i
\(412\) −5.48254 35.1446i −0.270105 1.73145i
\(413\) −1.43466 −0.0705948
\(414\) −22.8614 + 1.77247i −1.12358 + 0.0871120i
\(415\) −5.38019 25.3281i −0.264103 1.24331i
\(416\) −1.60588 3.94164i −0.0787346 0.193255i
\(417\) 31.7461i 1.55461i
\(418\) 0.722887 + 9.32385i 0.0353576 + 0.456044i
\(419\) 19.8225i 0.968392i 0.874959 + 0.484196i \(0.160888\pi\)
−0.874959 + 0.484196i \(0.839112\pi\)
\(420\) 16.7621 6.38713i 0.817905 0.311660i
\(421\) 24.7519i 1.20633i −0.797615 0.603167i \(-0.793905\pi\)
0.797615 0.603167i \(-0.206095\pi\)
\(422\) −1.08377 + 0.0840260i −0.0527573 + 0.00409032i
\(423\) 6.62480i 0.322109i
\(424\) 2.30380 + 9.74577i 0.111882 + 0.473296i
\(425\) 3.58479 + 8.05723i 0.173888 + 0.390833i
\(426\) 3.05009 + 39.3403i 0.147777 + 1.90604i
\(427\) 17.5179 0.847750
\(428\) −40.1057 + 6.25647i −1.93858 + 0.302418i
\(429\) 1.94849i 0.0940739i
\(430\) −16.4973 + 4.86350i −0.795570 + 0.234539i
\(431\) 6.75553 0.325403 0.162701 0.986675i \(-0.447979\pi\)
0.162701 + 0.986675i \(0.447979\pi\)
\(432\) 6.97114 2.22924i 0.335399 0.107254i
\(433\) 33.0102i 1.58637i −0.608981 0.793185i \(-0.708421\pi\)
0.608981 0.793185i \(-0.291579\pi\)
\(434\) −15.2382 + 1.18144i −0.731459 + 0.0567108i
\(435\) 10.3870 2.20642i 0.498021 0.105790i
\(436\) 2.35345 + 15.0862i 0.112710 + 0.722499i
\(437\) 28.9269 1.38376
\(438\) 13.3668 1.03634i 0.638691 0.0495183i
\(439\) 10.0670 0.480474 0.240237 0.970714i \(-0.422775\pi\)
0.240237 + 0.970714i \(0.422775\pi\)
\(440\) 2.70210 + 5.71827i 0.128818 + 0.272608i
\(441\) 17.0543 0.812109
\(442\) −1.87110 + 0.145068i −0.0889992 + 0.00690020i
\(443\) 19.9625 0.948447 0.474223 0.880405i \(-0.342729\pi\)
0.474223 + 0.880405i \(0.342729\pi\)
\(444\) 24.0725 3.75529i 1.14243 0.178218i
\(445\) 6.19246 + 29.1520i 0.293551 + 1.38194i
\(446\) −14.3844 + 1.11524i −0.681122 + 0.0528080i
\(447\) 3.00546i 0.142153i
\(448\) −5.54801 11.0791i −0.262119 0.523440i
\(449\) −29.3840 −1.38672 −0.693358 0.720593i \(-0.743870\pi\)
−0.693358 + 0.720593i \(0.743870\pi\)
\(450\) −12.4731 23.0509i −0.587988 1.08663i
\(451\) 6.83919i 0.322045i
\(452\) 3.35203 + 21.4874i 0.157666 + 1.01068i
\(453\) −38.0156 −1.78613
\(454\) −0.764436 9.85975i −0.0358768 0.462741i
\(455\) 2.54890 0.541438i 0.119494 0.0253830i
\(456\) −47.1377 + 11.1429i −2.20743 + 0.521813i
\(457\) 32.0849i 1.50087i −0.660946 0.750434i \(-0.729845\pi\)
0.660946 0.750434i \(-0.270155\pi\)
\(458\) −14.4859 + 1.12310i −0.676880 + 0.0524792i
\(459\) 3.22717i 0.150631i
\(460\) 18.2808 6.96585i 0.852348 0.324784i
\(461\) 12.3766i 0.576438i 0.957565 + 0.288219i \(0.0930631\pi\)
−0.957565 + 0.288219i \(0.906937\pi\)
\(462\) −0.438471 5.65543i −0.0203995 0.263115i
\(463\) 3.33673i 0.155071i −0.996990 0.0775355i \(-0.975295\pi\)
0.996990 0.0775355i \(-0.0247051\pi\)
\(464\) −2.23415 6.98649i −0.103718 0.324340i
\(465\) 8.39585 + 39.5247i 0.389348 + 1.83292i
\(466\) −7.93485 + 0.615197i −0.367575 + 0.0284985i
\(467\) 26.7818 1.23931 0.619657 0.784872i \(-0.287272\pi\)
0.619657 + 0.784872i \(0.287272\pi\)
\(468\) 5.51094 0.859705i 0.254743 0.0397399i
\(469\) 16.2580i 0.750726i
\(470\) 1.59825 + 5.42135i 0.0737216 + 0.250068i
\(471\) 10.3961 0.479028
\(472\) 2.54966 0.602714i 0.117358 0.0277421i
\(473\) 5.43888i 0.250080i
\(474\) −4.38260 56.5271i −0.201299 2.59637i
\(475\) 13.4403 + 30.2087i 0.616685 + 1.38607i
\(476\) −5.39818 + 0.842114i −0.247425 + 0.0385982i
\(477\) −13.1234 −0.600880
\(478\) −2.29955 29.6598i −0.105179 1.35661i
\(479\) 38.3804 1.75365 0.876823 0.480814i \(-0.159659\pi\)
0.876823 + 0.480814i \(0.159659\pi\)
\(480\) −27.1061 + 18.3931i −1.23722 + 0.839525i
\(481\) 3.53925 0.161376
\(482\) 0.0668907 + 0.862762i 0.00304679 + 0.0392977i
\(483\) −17.5458 −0.798362
\(484\) 1.97610 0.308271i 0.0898227 0.0140123i
\(485\) 33.7008 7.15873i 1.53028 0.325061i
\(486\) −2.40657 31.0401i −0.109164 1.40801i
\(487\) 2.85907i 0.129557i −0.997900 0.0647784i \(-0.979366\pi\)
0.997900 0.0647784i \(-0.0206341\pi\)
\(488\) −31.1326 + 7.35944i −1.40931 + 0.333146i
\(489\) −19.3351 −0.874364
\(490\) −13.9562 + 4.11438i −0.630478 + 0.185869i
\(491\) 29.6825i 1.33955i 0.742564 + 0.669775i \(0.233610\pi\)
−0.742564 + 0.669775i \(0.766390\pi\)
\(492\) −34.9996 + 5.45992i −1.57790 + 0.246152i
\(493\) −3.23427 −0.145664
\(494\) −7.01526 + 0.543900i −0.315631 + 0.0244712i
\(495\) −8.10719 + 1.72213i −0.364391 + 0.0774039i
\(496\) 26.5850 8.50138i 1.19370 0.381723i
\(497\) 16.6870i 0.748514i
\(498\) −3.27823 42.2828i −0.146901 1.89474i
\(499\) 21.6697i 0.970067i −0.874495 0.485034i \(-0.838807\pi\)
0.874495 0.485034i \(-0.161193\pi\)
\(500\) 15.7683 + 15.8543i 0.705182 + 0.709027i
\(501\) 39.1322i 1.74830i
\(502\) 9.40162 0.728917i 0.419615 0.0325331i
\(503\) 33.9437i 1.51347i 0.653719 + 0.756737i \(0.273208\pi\)
−0.653719 + 0.756737i \(0.726792\pi\)
\(504\) 15.8019 3.73541i 0.703873 0.166388i
\(505\) 23.2283 4.93416i 1.03365 0.219567i
\(506\) −0.478200 6.16786i −0.0212586 0.274195i
\(507\) −32.2000 −1.43005
\(508\) −3.62760 23.2539i −0.160949 1.03172i
\(509\) 16.5567i 0.733862i −0.930248 0.366931i \(-0.880408\pi\)
0.930248 0.366931i \(-0.119592\pi\)
\(510\) 4.08436 + 13.8544i 0.180859 + 0.613483i
\(511\) 5.66981 0.250817
\(512\) 14.5143 + 17.3590i 0.641449 + 0.767166i
\(513\) 12.0995i 0.534206i
\(514\) −21.8473 + 1.69384i −0.963642 + 0.0747121i
\(515\) −38.9001 + 8.26316i −1.71414 + 0.364118i
\(516\) −27.8335 + 4.34201i −1.22530 + 0.191146i
\(517\) 1.78733 0.0786066
\(518\) 10.2726 0.796442i 0.451351 0.0349937i
\(519\) −7.42198 −0.325789
\(520\) −4.30243 + 2.03306i −0.188674 + 0.0891555i
\(521\) −0.518083 −0.0226976 −0.0113488 0.999936i \(-0.503613\pi\)
−0.0113488 + 0.999936i \(0.503613\pi\)
\(522\) 9.58349 0.743017i 0.419458 0.0325210i
\(523\) 21.8661 0.956136 0.478068 0.878323i \(-0.341337\pi\)
0.478068 + 0.878323i \(0.341337\pi\)
\(524\) −1.61843 10.3746i −0.0707016 0.453216i
\(525\) −8.15231 18.3233i −0.355796 0.799693i
\(526\) 7.00510 0.543113i 0.305437 0.0236808i
\(527\) 12.3070i 0.536103i
\(528\) 3.15515 + 9.86659i 0.137310 + 0.429388i
\(529\) 3.86442 0.168018
\(530\) 10.7394 3.16605i 0.466491 0.137525i
\(531\) 3.43331i 0.148993i
\(532\) −20.2392 + 3.15731i −0.877481 + 0.136887i
\(533\) −5.14580 −0.222890
\(534\) 3.77315 + 48.6664i 0.163280 + 2.10600i
\(535\) 9.42961 + 44.3913i 0.407678 + 1.91920i
\(536\) 6.83016 + 28.8937i 0.295018 + 1.24802i
\(537\) 51.4443i 2.21999i
\(538\) 30.0171 2.32725i 1.29413 0.100335i
\(539\) 4.60113i 0.198185i
\(540\) −2.91366 7.64647i −0.125384 0.329052i
\(541\) 18.8723i 0.811385i 0.914010 + 0.405693i \(0.132970\pi\)
−0.914010 + 0.405693i \(0.867030\pi\)
\(542\) 1.47809 + 19.0645i 0.0634892 + 0.818888i
\(543\) 38.6659i 1.65931i
\(544\) 9.23982 3.76443i 0.396154 0.161399i
\(545\) 16.6983 3.54706i 0.715278 0.151939i
\(546\) 4.25515 0.329906i 0.182103 0.0141187i
\(547\) 38.1754 1.63226 0.816131 0.577867i \(-0.196115\pi\)
0.816131 + 0.577867i \(0.196115\pi\)
\(548\) −4.33647 27.7979i −0.185245 1.18747i
\(549\) 41.9225i 1.78921i
\(550\) 6.21898 3.36516i 0.265178 0.143491i
\(551\) −12.1262 −0.516592
\(552\) 31.1823 7.37117i 1.32721 0.313738i
\(553\) 23.9771i 1.01961i
\(554\) −3.45633 44.5800i −0.146845 1.89402i
\(555\) −5.65990 26.6448i −0.240249 1.13101i
\(556\) −3.77898 24.2243i −0.160264 1.02734i
\(557\) 3.49753 0.148195 0.0740976 0.997251i \(-0.476392\pi\)
0.0740976 + 0.997251i \(0.476392\pi\)
\(558\) 2.82733 + 36.4671i 0.119690 + 1.54377i
\(559\) −4.09221 −0.173082
\(560\) −12.0302 + 6.86908i −0.508368 + 0.290272i
\(561\) 4.56756 0.192843
\(562\) −0.512778 6.61384i −0.0216302 0.278988i
\(563\) 20.3136 0.856118 0.428059 0.903751i \(-0.359198\pi\)
0.428059 + 0.903751i \(0.359198\pi\)
\(564\) 1.42687 + 9.14665i 0.0600823 + 0.385144i
\(565\) 23.7836 5.05211i 1.00058 0.212544i
\(566\) −1.73115 22.3285i −0.0727657 0.938537i
\(567\) 9.88335i 0.415062i
\(568\) −7.01037 29.6560i −0.294149 1.24434i
\(569\) −5.37387 −0.225284 −0.112642 0.993636i \(-0.535931\pi\)
−0.112642 + 0.993636i \(0.535931\pi\)
\(570\) 15.3134 + 51.9438i 0.641406 + 2.17569i
\(571\) 24.1644i 1.01125i −0.862754 0.505624i \(-0.831262\pi\)
0.862754 0.505624i \(-0.168738\pi\)
\(572\) 0.231943 + 1.48682i 0.00969802 + 0.0621669i
\(573\) 15.7366 0.657406
\(574\) −14.9356 + 1.15797i −0.623398 + 0.0483327i
\(575\) −8.89097 19.9835i −0.370779 0.833369i
\(576\) −26.5138 + 13.2771i −1.10474 + 0.553212i
\(577\) 31.7096i 1.32009i −0.751227 0.660044i \(-0.770538\pi\)
0.751227 0.660044i \(-0.229462\pi\)
\(578\) 1.51833 + 19.5835i 0.0631542 + 0.814568i
\(579\) 46.6237i 1.93761i
\(580\) −7.66331 + 2.92008i −0.318202 + 0.121250i
\(581\) 17.9351i 0.744074i
\(582\) 56.2603 4.36192i 2.33206 0.180807i
\(583\) 3.54061i 0.146637i
\(584\) −10.0763 + 2.38194i −0.416962 + 0.0985655i
\(585\) −1.29573 6.09984i −0.0535718 0.252197i
\(586\) −2.07595 26.7757i −0.0857567 1.10610i
\(587\) −16.2715 −0.671597 −0.335799 0.941934i \(-0.609006\pi\)
−0.335799 + 0.941934i \(0.609006\pi\)
\(588\) −23.5463 + 3.67322i −0.971033 + 0.151481i
\(589\) 46.1424i 1.90126i
\(590\) −0.828294 2.80962i −0.0341003 0.115670i
\(591\) −41.2280 −1.69589
\(592\) −17.9217 + 5.73104i −0.736579 + 0.235544i
\(593\) 18.7864i 0.771464i 0.922611 + 0.385732i \(0.126051\pi\)
−0.922611 + 0.385732i \(0.873949\pi\)
\(594\) −2.57988 + 0.200021i −0.105854 + 0.00820695i
\(595\) 1.26922 + 5.97503i 0.0520328 + 0.244952i
\(596\) −0.357762 2.29335i −0.0146545 0.0939393i
\(597\) −52.7068 −2.15715
\(598\) 4.64069 0.359798i 0.189772 0.0147132i
\(599\) 6.60744 0.269973 0.134986 0.990847i \(-0.456901\pi\)
0.134986 + 0.990847i \(0.456901\pi\)
\(600\) 22.1860 + 29.1391i 0.905741 + 1.18960i
\(601\) −3.09256 −0.126148 −0.0630742 0.998009i \(-0.520090\pi\)
−0.0630742 + 0.998009i \(0.520090\pi\)
\(602\) −11.8775 + 0.920877i −0.484092 + 0.0375321i
\(603\) −38.9075 −1.58444
\(604\) 29.0082 4.52527i 1.18033 0.184131i
\(605\) −0.464619 2.18727i −0.0188895 0.0889250i
\(606\) 38.7775 3.00645i 1.57523 0.122129i
\(607\) 20.8656i 0.846907i 0.905918 + 0.423453i \(0.139182\pi\)
−0.905918 + 0.423453i \(0.860818\pi\)
\(608\) 34.6426 14.1138i 1.40494 0.572392i
\(609\) 7.35519 0.298047
\(610\) 10.1139 + 34.3069i 0.409499 + 1.38905i
\(611\) 1.34478i 0.0544041i
\(612\) 2.01528 + 12.9185i 0.0814631 + 0.522200i
\(613\) −16.7190 −0.675273 −0.337636 0.941277i \(-0.609627\pi\)
−0.337636 + 0.941277i \(0.609627\pi\)
\(614\) −1.92568 24.8375i −0.0777139 1.00236i
\(615\) 8.22908 + 38.7396i 0.331828 + 1.56213i
\(616\) 1.00779 + 4.26325i 0.0406050 + 0.171771i
\(617\) 26.7533i 1.07705i −0.842610 0.538524i \(-0.818982\pi\)
0.842610 0.538524i \(-0.181018\pi\)
\(618\) −64.9400 + 5.03486i −2.61227 + 0.202532i
\(619\) 32.4786i 1.30542i −0.757606 0.652712i \(-0.773631\pi\)
0.757606 0.652712i \(-0.226369\pi\)
\(620\) −11.1115 29.1604i −0.446247 1.17111i
\(621\) 8.00400i 0.321189i
\(622\) 1.98257 + 25.5714i 0.0794940 + 1.02532i
\(623\) 20.6428i 0.827038i
\(624\) −7.42362 + 2.37394i −0.297183 + 0.0950335i
\(625\) 16.7380 18.5699i 0.669519 0.742795i
\(626\) 6.32293 0.490223i 0.252715 0.0195933i
\(627\) 17.1250 0.683907
\(628\) −7.93288 + 1.23753i −0.316556 + 0.0493827i
\(629\) 8.29655i 0.330805i
\(630\) −5.13348 17.4131i −0.204523 0.693753i
\(631\) −8.43395 −0.335750 −0.167875 0.985808i \(-0.553691\pi\)
−0.167875 + 0.985808i \(0.553691\pi\)
\(632\) 10.0730 + 42.6119i 0.400684 + 1.69501i
\(633\) 1.99055i 0.0791175i
\(634\) 2.24770 + 28.9909i 0.0892674 + 1.15138i
\(635\) −25.7388 + 5.46744i −1.02141 + 0.216969i
\(636\) 18.1191 2.82657i 0.718469 0.112081i
\(637\) −3.46189 −0.137165
\(638\) 0.200461 + 2.58556i 0.00793633 + 0.102363i
\(639\) 39.9341 1.57977
\(640\) 18.4942 17.2617i 0.731046 0.682328i
\(641\) −4.06790 −0.160672 −0.0803362 0.996768i \(-0.525599\pi\)
−0.0803362 + 0.996768i \(0.525599\pi\)
\(642\) 5.74559 + 74.1071i 0.226761 + 2.92477i
\(643\) −34.3340 −1.35400 −0.677001 0.735982i \(-0.736721\pi\)
−0.677001 + 0.735982i \(0.736721\pi\)
\(644\) 13.3885 2.08861i 0.527582 0.0823026i
\(645\) 6.54419 + 30.8078i 0.257677 + 1.21305i
\(646\) −1.27499 16.4449i −0.0501637 0.647015i
\(647\) 4.00464i 0.157439i −0.996897 0.0787194i \(-0.974917\pi\)
0.996897 0.0787194i \(-0.0250831\pi\)
\(648\) 4.15210 + 17.5646i 0.163110 + 0.690003i
\(649\) −0.926285 −0.0363599
\(650\) 2.53195 + 4.67915i 0.0993112 + 0.183532i
\(651\) 27.9879i 1.09693i
\(652\) 14.7539 2.30160i 0.577806 0.0901376i
\(653\) −25.8236 −1.01056 −0.505278 0.862957i \(-0.668610\pi\)
−0.505278 + 0.862957i \(0.668610\pi\)
\(654\) 27.8763 2.16127i 1.09005 0.0845125i
\(655\) −11.4832 + 2.43927i −0.448687 + 0.0953100i
\(656\) 26.0569 8.33251i 1.01735 0.325330i
\(657\) 13.5686i 0.529360i
\(658\) 0.302619 + 3.90320i 0.0117973 + 0.152163i
\(659\) 4.97128i 0.193653i 0.995301 + 0.0968267i \(0.0308693\pi\)
−0.995301 + 0.0968267i \(0.969131\pi\)
\(660\) 10.8224 4.12385i 0.421262 0.160520i
\(661\) 5.71995i 0.222480i 0.993794 + 0.111240i \(0.0354822\pi\)
−0.993794 + 0.111240i \(0.964518\pi\)
\(662\) 7.51267 0.582464i 0.291988 0.0226381i
\(663\) 3.43663i 0.133468i
\(664\) 7.53472 + 31.8741i 0.292404 + 1.23696i
\(665\) 4.75863 + 22.4020i 0.184532 + 0.868711i
\(666\) −1.90599 24.5836i −0.0738555 0.952593i
\(667\) 8.02162 0.310598
\(668\) 4.65819 + 29.8603i 0.180231 + 1.15533i
\(669\) 26.4197i 1.02144i
\(670\) 31.8396 9.38652i 1.23007 0.362633i
\(671\) 11.3104 0.436634
\(672\) −21.0126 + 8.56084i −0.810580 + 0.330241i
\(673\) 38.8958i 1.49932i 0.661821 + 0.749662i \(0.269784\pi\)
−0.661821 + 0.749662i \(0.730216\pi\)
\(674\) −14.0882 + 1.09227i −0.542656 + 0.0420726i
\(675\) −8.35866 + 3.71890i −0.321725 + 0.143141i
\(676\) 24.5706 3.83301i 0.945024 0.147423i
\(677\) 10.2416 0.393617 0.196809 0.980442i \(-0.436942\pi\)
0.196809 + 0.980442i \(0.436942\pi\)
\(678\) 39.7044 3.07832i 1.52484 0.118222i
\(679\) 23.8640 0.915814
\(680\) −4.76581 10.0856i −0.182760 0.386764i
\(681\) −18.1093 −0.693950
\(682\) −9.83857 + 0.762794i −0.376738 + 0.0292089i
\(683\) −12.9929 −0.497161 −0.248581 0.968611i \(-0.579964\pi\)
−0.248581 + 0.968611i \(0.579964\pi\)
\(684\) 7.55584 + 48.4350i 0.288905 + 1.85196i
\(685\) −30.7684 + 6.53583i −1.17560 + 0.249721i
\(686\) −25.3348 + 1.96423i −0.967286 + 0.0749947i
\(687\) 26.6060i 1.01508i
\(688\) 20.7218 6.62645i 0.790011 0.252631i
\(689\) 2.66395 0.101489
\(690\) −10.1300 34.3616i −0.385643 1.30812i
\(691\) 37.5343i 1.42787i 0.700211 + 0.713936i \(0.253089\pi\)
−0.700211 + 0.713936i \(0.746911\pi\)
\(692\) 5.66343 0.883493i 0.215291 0.0335854i
\(693\) −5.74079 −0.218075
\(694\) 1.56128 + 20.1375i 0.0592655 + 0.764411i
\(695\) −26.8129 + 5.69559i −1.01707 + 0.216046i
\(696\) −13.0716 + 3.08999i −0.495477 + 0.117126i
\(697\) 12.0626i 0.456903i
\(698\) 1.49155 0.115641i 0.0564559 0.00437708i
\(699\) 14.5739i 0.551234i
\(700\) 8.40187 + 13.0114i 0.317561 + 0.491783i
\(701\) 4.51250i 0.170435i 0.996362 + 0.0852175i \(0.0271585\pi\)
−0.996362 + 0.0852175i \(0.972841\pi\)
\(702\) −0.150495 1.94110i −0.00568009 0.0732621i
\(703\) 31.1060i 1.17318i
\(704\) −3.58207 7.15324i −0.135004 0.269598i
\(705\) 10.1241 2.15055i 0.381294 0.0809946i
\(706\) −38.5194 + 2.98645i −1.44970 + 0.112396i
\(707\) 16.4482 0.618600
\(708\) −0.739480 4.74027i −0.0277914 0.178150i
\(709\) 5.59809i 0.210241i −0.994459 0.105120i \(-0.966477\pi\)
0.994459 0.105120i \(-0.0335228\pi\)
\(710\) −32.6797 + 9.63418i −1.22645 + 0.361564i
\(711\) −57.3802 −2.15193
\(712\) −8.67227 36.6863i −0.325007 1.37488i
\(713\) 30.5238i 1.14313i
\(714\) 0.773351 + 9.97473i 0.0289419 + 0.373295i
\(715\) 1.64570 0.349579i 0.0615456 0.0130735i
\(716\) −6.12379 39.2552i −0.228857 1.46703i
\(717\) −54.4759 −2.03444
\(718\) −0.263218 3.39500i −0.00982320 0.126700i
\(719\) 34.8322 1.29902 0.649511 0.760352i \(-0.274974\pi\)
0.649511 + 0.760352i \(0.274974\pi\)
\(720\) 16.4386 + 28.7897i 0.612630 + 1.07293i
\(721\) −27.5456 −1.02585
\(722\) −2.70324 34.8666i −0.100604 1.29760i
\(723\) 1.58462 0.0589328
\(724\) 4.60268 + 29.5044i 0.171057 + 1.09652i
\(725\) 3.72709 + 8.37707i 0.138421 + 0.311116i
\(726\) −0.283099 3.65143i −0.0105068 0.135517i
\(727\) 35.2337i 1.30674i −0.757037 0.653372i \(-0.773354\pi\)
0.757037 0.653372i \(-0.226646\pi\)
\(728\) −3.20767 + 0.758260i −0.118884 + 0.0281030i
\(729\) −37.8674 −1.40250
\(730\) 3.27344 + 11.1037i 0.121156 + 0.410967i
\(731\) 9.59278i 0.354802i
\(732\) 9.02943 + 57.8811i 0.333737 + 2.13935i
\(733\) 51.6490 1.90770 0.953849 0.300286i \(-0.0970823\pi\)
0.953849 + 0.300286i \(0.0970823\pi\)
\(734\) −13.3876 + 1.03795i −0.494145 + 0.0383115i
\(735\) 5.53619 + 26.0625i 0.204205 + 0.961328i
\(736\) −22.9165 + 9.33651i −0.844715 + 0.344148i
\(737\) 10.4970i 0.386662i
\(738\) 2.77116 + 35.7427i 0.102008 + 1.31571i
\(739\) 47.9400i 1.76350i −0.471717 0.881750i \(-0.656366\pi\)
0.471717 0.881750i \(-0.343634\pi\)
\(740\) 7.49058 + 19.6579i 0.275359 + 0.722639i
\(741\) 12.8849i 0.473337i
\(742\) 7.73206 0.599474i 0.283853 0.0220074i
\(743\) 3.53913i 0.129838i −0.997891 0.0649191i \(-0.979321\pi\)
0.997891 0.0649191i \(-0.0206789\pi\)
\(744\) −11.7580 49.7399i −0.431070 1.82355i
\(745\) −2.53842 + 0.539211i −0.0930004 + 0.0197551i
\(746\) 3.20466 + 41.3339i 0.117331 + 1.51334i
\(747\) −42.9210 −1.57040
\(748\) −3.48533 + 0.543710i −0.127436 + 0.0198800i
\(749\) 31.4340i 1.14857i
\(750\) 31.1775 26.5443i 1.13844 0.969261i
\(751\) −17.9370 −0.654530 −0.327265 0.944933i \(-0.606127\pi\)
−0.327265 + 0.944933i \(0.606127\pi\)
\(752\) −2.17759 6.80961i −0.0794084 0.248321i
\(753\) 17.2679i 0.629275i
\(754\) −1.94538 + 0.150827i −0.0708464 + 0.00549279i
\(755\) −6.82039 32.1080i −0.248219 1.16853i
\(756\) −0.873618 5.60013i −0.0317732 0.203675i
\(757\) 47.2219 1.71631 0.858154 0.513392i \(-0.171611\pi\)
0.858154 + 0.513392i \(0.171611\pi\)
\(758\) −39.9062 + 3.09397i −1.44946 + 0.112378i
\(759\) −11.3284 −0.411196
\(760\) −17.8683 37.8135i −0.648151 1.37164i
\(761\) −31.3600 −1.13680 −0.568400 0.822752i \(-0.692437\pi\)
−0.568400 + 0.822752i \(0.692437\pi\)
\(762\) −42.9684 + 3.33139i −1.55658 + 0.120683i
\(763\) 11.8243 0.428068
\(764\) −12.0080 + 1.87324i −0.434434 + 0.0677716i
\(765\) 14.2990 3.03739i 0.516981 0.109817i
\(766\) 46.6711 3.61845i 1.68629 0.130740i
\(767\) 0.696936i 0.0251649i
\(768\) 33.7470 24.0419i 1.21774 0.867537i
\(769\) 4.96828 0.179161 0.0895804 0.995980i \(-0.471447\pi\)
0.0895804 + 0.995980i \(0.471447\pi\)
\(770\) 4.69793 1.38498i 0.169302 0.0499111i
\(771\) 40.1266i 1.44513i
\(772\) −5.54996 35.5767i −0.199747 1.28043i
\(773\) −1.93429 −0.0695716 −0.0347858 0.999395i \(-0.511075\pi\)
−0.0347858 + 0.999395i \(0.511075\pi\)
\(774\) 2.20377 + 28.4244i 0.0792130 + 1.02170i
\(775\) −31.8764 + 14.1823i −1.14503 + 0.509443i
\(776\) −42.4108 + 10.0255i −1.52246 + 0.359894i
\(777\) 18.8675i 0.676868i
\(778\) −18.8586 + 1.46212i −0.676113 + 0.0524197i
\(779\) 45.2258i 1.62038i
\(780\) 3.10278 + 8.14278i 0.111097 + 0.291558i
\(781\) 10.7739i 0.385522i
\(782\) 0.843422 + 10.8785i 0.0301607 + 0.389015i
\(783\) 3.35527i 0.119908i
\(784\) 17.5300 5.60578i 0.626073 0.200206i
\(785\) 1.86517 + 8.78059i 0.0665709 + 0.313393i
\(786\) −19.1701 + 1.48628i −0.683776 + 0.0530138i
\(787\) −2.37036 −0.0844940 −0.0422470 0.999107i \(-0.513452\pi\)
−0.0422470 + 0.999107i \(0.513452\pi\)
\(788\) 31.4595 4.90768i 1.12070 0.174829i
\(789\) 12.8662i 0.458049i
\(790\) 46.9566 13.8431i 1.67064 0.492516i
\(791\) 16.8414 0.598812
\(792\) 10.2025 2.41177i 0.362530 0.0856983i
\(793\) 8.50995i 0.302197i
\(794\) −1.62981 21.0214i −0.0578398 0.746021i
\(795\) −4.26015 20.0553i −0.151092 0.711288i
\(796\) 40.2185 6.27408i 1.42551 0.222379i
\(797\) 42.0252 1.48861 0.744304 0.667841i \(-0.232781\pi\)
0.744304 + 0.667841i \(0.232781\pi\)
\(798\) 2.89950 + 37.3979i 0.102641 + 1.32387i
\(799\) −3.15239 −0.111523
\(800\) −20.3979 19.5940i −0.721176 0.692752i
\(801\) 49.4009 1.74550
\(802\) 2.52868 + 32.6151i 0.0892907 + 1.15168i
\(803\) 3.66071 0.129184
\(804\) 53.7184 8.38005i 1.89450 0.295542i
\(805\) −3.14790 14.8192i −0.110949 0.522309i
\(806\) −0.573926 7.40253i −0.0202157 0.260743i
\(807\) 55.1321i 1.94074i
\(808\) −29.2317 + 6.91007i −1.02837 + 0.243096i
\(809\) −6.12119 −0.215210 −0.107605 0.994194i \(-0.534318\pi\)
−0.107605 + 0.994194i \(0.534318\pi\)
\(810\) 19.3555 5.70612i 0.680082 0.200493i
\(811\) 5.62535i 0.197533i −0.995111 0.0987663i \(-0.968510\pi\)
0.995111 0.0987663i \(-0.0314896\pi\)
\(812\) −5.61246 + 0.875542i −0.196959 + 0.0307255i
\(813\) 35.0155 1.22805
\(814\) 6.63248 0.514223i 0.232468 0.0180235i
\(815\) −3.46892 16.3305i −0.121511 0.572031i
\(816\) −5.56488 17.4021i −0.194810 0.609196i
\(817\) 35.9659i 1.25829i
\(818\) −2.20878 28.4890i −0.0772282 0.996094i
\(819\) 4.31937i 0.150931i
\(820\) −10.8908 28.5812i −0.380322 0.998097i
\(821\) 21.9742i 0.766906i 0.923560 + 0.383453i \(0.125265\pi\)
−0.923560 + 0.383453i \(0.874735\pi\)
\(822\) −51.3649 + 3.98237i −1.79156 + 0.138901i
\(823\) 14.3155i 0.499007i 0.968374 + 0.249504i \(0.0802675\pi\)
−0.968374 + 0.249504i \(0.919733\pi\)
\(824\) 48.9539 11.5722i 1.70539 0.403136i
\(825\) −5.26354 11.8304i −0.183253 0.411882i
\(826\) −0.156833 2.02284i −0.00545691 0.0703836i
\(827\) 11.4716 0.398906 0.199453 0.979907i \(-0.436083\pi\)
0.199453 + 0.979907i \(0.436083\pi\)
\(828\) −4.99830 32.0404i −0.173703 1.11348i
\(829\) 40.0081i 1.38954i 0.719233 + 0.694769i \(0.244493\pi\)
−0.719233 + 0.694769i \(0.755507\pi\)
\(830\) 35.1240 10.3548i 1.21917 0.359419i
\(831\) −81.8796 −2.84037
\(832\) 5.38209 2.69515i 0.186590 0.0934374i
\(833\) 8.11521i 0.281175i
\(834\) −44.7615 + 3.47040i −1.54996 + 0.120170i
\(835\) 33.0511 7.02072i 1.14378 0.242962i
\(836\) −13.0674 + 2.03852i −0.451947 + 0.0705036i
\(837\) 12.7675 0.441308
\(838\) −27.9494 + 2.16694i −0.965495 + 0.0748558i
\(839\) −38.0131 −1.31236 −0.656179 0.754606i \(-0.727828\pi\)
−0.656179 + 0.754606i \(0.727828\pi\)
\(840\) 10.8381 + 22.9360i 0.373951 + 0.791367i
\(841\) 25.6373 0.884046
\(842\) 34.8997 2.70581i 1.20272 0.0932484i
\(843\) −12.1476 −0.418385
\(844\) −0.236950 1.51892i −0.00815617 0.0522832i
\(845\) −5.77702 27.1962i −0.198736 0.935579i
\(846\) 9.34085 0.724205i 0.321145 0.0248987i
\(847\) 1.54883i 0.0532184i
\(848\) −13.4895 + 4.31370i −0.463232 + 0.148133i
\(849\) −41.0105 −1.40748
\(850\) −10.9687 + 5.93528i −0.376222 + 0.203579i
\(851\) 20.5771i 0.705372i
\(852\) −55.1357 + 8.60115i −1.88892 + 0.294671i
\(853\) 2.21069 0.0756926 0.0378463 0.999284i \(-0.487950\pi\)
0.0378463 + 0.999284i \(0.487950\pi\)
\(854\) 1.91501 + 24.6999i 0.0655302 + 0.845213i
\(855\) 53.6107 11.3880i 1.83345 0.389461i
\(856\) −13.2058 55.8643i −0.451363 1.90940i
\(857\) 19.9678i 0.682088i −0.940047 0.341044i \(-0.889219\pi\)
0.940047 0.341044i \(-0.110781\pi\)
\(858\) 2.74733 0.213003i 0.0937924 0.00727182i
\(859\) 31.0521i 1.05948i −0.848159 0.529741i \(-0.822289\pi\)
0.848159 0.529741i \(-0.177711\pi\)
\(860\) −8.66089 22.7292i −0.295334 0.775060i
\(861\) 27.4320i 0.934879i
\(862\) 0.738497 + 9.52518i 0.0251533 + 0.324429i
\(863\) 24.6441i 0.838895i 0.907779 + 0.419448i \(0.137776\pi\)
−0.907779 + 0.419448i \(0.862224\pi\)
\(864\) 3.90526 + 9.58549i 0.132860 + 0.326105i
\(865\) −1.33158 6.26862i −0.0452751 0.213140i
\(866\) 46.5438 3.60859i 1.58162 0.122625i
\(867\) 35.9689 1.22157
\(868\) −3.33161 21.3565i −0.113082 0.724887i
\(869\) 15.4808i 0.525151i
\(870\) 4.24649 + 14.4044i 0.143970 + 0.488353i
\(871\) 7.89793 0.267611
\(872\) −21.0140 + 4.96750i −0.711625 + 0.168221i
\(873\) 57.1094i 1.93286i
\(874\) 3.16222 + 40.7865i 0.106964 + 1.37962i
\(875\) 14.0133 10.1728i 0.473735 0.343905i
\(876\) 2.92245 + 18.7337i 0.0987404 + 0.632952i
\(877\) −13.9482 −0.470998 −0.235499 0.971875i \(-0.575673\pi\)
−0.235499 + 0.971875i \(0.575673\pi\)
\(878\) 1.10050 + 14.1944i 0.0371402 + 0.479036i
\(879\) −49.1787 −1.65876
\(880\) −7.76728 + 4.43502i −0.261835 + 0.149504i
\(881\) −19.9312 −0.671498 −0.335749 0.941952i \(-0.608989\pi\)
−0.335749 + 0.941952i \(0.608989\pi\)
\(882\) 1.86433 + 24.0462i 0.0627752 + 0.809679i
\(883\) 7.71883 0.259759 0.129880 0.991530i \(-0.458541\pi\)
0.129880 + 0.991530i \(0.458541\pi\)
\(884\) −0.409087 2.62236i −0.0137591 0.0881995i
\(885\) −5.24681 + 1.11453i −0.176370 + 0.0374644i
\(886\) 2.18225 + 28.1468i 0.0733140 + 0.945609i
\(887\) 7.61395i 0.255652i 0.991797 + 0.127826i \(0.0407998\pi\)
−0.991797 + 0.127826i \(0.959200\pi\)
\(888\) 7.92643 + 33.5312i 0.265994 + 1.12523i
\(889\) −18.2259 −0.611278
\(890\) −40.4268 + 11.9181i −1.35511 + 0.399495i
\(891\) 6.38118i 0.213778i
\(892\) −3.14493 20.1598i −0.105300 0.675002i
\(893\) −11.8191 −0.395512
\(894\) −4.23764 + 0.328549i −0.141728 + 0.0109883i
\(895\) −43.4500 + 9.22965i −1.45237 + 0.308513i
\(896\) 15.0149 9.03373i 0.501612 0.301796i
\(897\) 8.52351i 0.284592i
\(898\) −3.21218 41.4309i −0.107192 1.38257i
\(899\) 12.7956i 0.426756i
\(900\) 31.1378 20.1067i 1.03793 0.670224i
\(901\) 6.24473i 0.208042i
\(902\) −9.64314 + 0.747642i −0.321081 + 0.0248938i
\(903\) 21.8153i 0.725969i
\(904\) −29.9304 + 7.07525i −0.995472 + 0.235319i
\(905\) 32.6573 6.93706i 1.08556 0.230596i
\(906\) −4.15576 53.6013i −0.138066 1.78078i
\(907\) −22.8369 −0.758288 −0.379144 0.925338i \(-0.623782\pi\)
−0.379144 + 0.925338i \(0.623782\pi\)
\(908\) 13.8185 2.15568i 0.458583 0.0715388i
\(909\) 39.3627i 1.30558i
\(910\) 1.04206 + 3.53472i 0.0345438 + 0.117175i
\(911\) 19.0991 0.632782 0.316391 0.948629i \(-0.397529\pi\)
0.316391 + 0.948629i \(0.397529\pi\)
\(912\) −20.8642 65.2453i −0.690884 2.16049i
\(913\) 11.5798i 0.383235i
\(914\) 45.2391 3.50743i 1.49638 0.116016i
\(915\) 64.0662 13.6090i 2.11796 0.449898i
\(916\) −3.16711 20.3020i −0.104644 0.670798i
\(917\) −8.13140 −0.268523
\(918\) 4.55025 0.352785i 0.150181 0.0116436i
\(919\) 21.0557 0.694562 0.347281 0.937761i \(-0.387105\pi\)
0.347281 + 0.937761i \(0.387105\pi\)
\(920\) 11.8201 + 25.0142i 0.389698 + 0.824692i
\(921\) −45.6188 −1.50319
\(922\) −17.4508 + 1.35298i −0.574713 + 0.0445581i
\(923\) −8.10631 −0.266823
\(924\) 7.92613 1.23647i 0.260751 0.0406770i
\(925\) 21.4888 9.56072i 0.706549 0.314355i
\(926\) 4.70473 0.364762i 0.154607 0.0119868i
\(927\) 65.9201i 2.16510i
\(928\) 9.60660 3.91386i 0.315352 0.128479i
\(929\) 7.40557 0.242969 0.121484 0.992593i \(-0.461235\pi\)
0.121484 + 0.992593i \(0.461235\pi\)
\(930\) −54.8114 + 16.1587i −1.79734 + 0.529866i
\(931\) 30.4261i 0.997176i
\(932\) −1.73483 11.1208i −0.0568264 0.364272i
\(933\) 46.9667 1.53762
\(934\) 2.92772 + 37.7619i 0.0957978 + 1.23561i
\(935\) 0.819468 + 3.85777i 0.0267995 + 0.126163i
\(936\) 1.81461 + 7.67635i 0.0593124 + 0.250909i
\(937\) 16.6571i 0.544164i −0.962274 0.272082i \(-0.912288\pi\)
0.962274 0.272082i \(-0.0877123\pi\)
\(938\) 22.9235 1.77728i 0.748480 0.0580304i
\(939\) 11.6133i 0.378985i
\(940\) −7.46929 + 2.84615i −0.243621 + 0.0928311i
\(941\) 35.0071i 1.14120i 0.821229 + 0.570599i \(0.193289\pi\)
−0.821229 + 0.570599i \(0.806711\pi\)
\(942\) 1.13648 + 14.6583i 0.0370284 + 0.477595i
\(943\) 29.9175i 0.974249i
\(944\) 1.12854 + 3.52909i 0.0367308 + 0.114862i
\(945\) −6.19856 + 1.31670i −0.201639 + 0.0428322i
\(946\) −7.66872 + 0.594564i −0.249332 + 0.0193309i
\(947\) −24.5232 −0.796897 −0.398449 0.917191i \(-0.630451\pi\)
−0.398449 + 0.917191i \(0.630451\pi\)
\(948\) 79.2231 12.3588i 2.57305 0.401394i
\(949\) 2.75431i 0.0894088i
\(950\) −41.1245 + 22.2530i −1.33425 + 0.721982i
\(951\) 53.2473 1.72666
\(952\) −1.77748 7.51928i −0.0576084 0.243701i
\(953\) 7.01392i 0.227203i 0.993526 + 0.113601i \(0.0362387\pi\)
−0.993526 + 0.113601i \(0.963761\pi\)
\(954\) −1.43462 18.5038i −0.0464474 0.599082i
\(955\) 2.82331 + 13.2912i 0.0913603 + 0.430092i
\(956\) 41.5684 6.48466i 1.34442 0.209729i
\(957\) 4.74887 0.153509
\(958\) 4.19564 + 54.1157i 0.135555 + 1.74840i
\(959\) −21.7875 −0.703554
\(960\) −28.8971 36.2085i −0.932649 1.16862i
\(961\) 17.6897 0.570634
\(962\) 0.386901 + 4.99027i 0.0124742 + 0.160893i
\(963\) 75.2256 2.42411
\(964\) −1.20917 + 0.188630i −0.0389446 + 0.00607535i
\(965\) −39.3785 + 8.36478i −1.26764 + 0.269272i
\(966\) −1.91806 24.7393i −0.0617126 0.795973i
\(967\) 37.5937i 1.20893i −0.796631 0.604466i \(-0.793386\pi\)
0.796631 0.604466i \(-0.206614\pi\)
\(968\) 0.650678 + 2.75257i 0.0209136 + 0.0884708i
\(969\) −30.2041 −0.970296
\(970\) 13.7778 + 46.7350i 0.442378 + 1.50057i
\(971\) 13.8756i 0.445290i 0.974900 + 0.222645i \(0.0714691\pi\)
−0.974900 + 0.222645i \(0.928531\pi\)
\(972\) 43.5029 6.78643i 1.39536 0.217675i
\(973\) −18.9865 −0.608679
\(974\) 4.03124 0.312546i 0.129169 0.0100146i
\(975\) 8.90120 3.96028i 0.285066 0.126831i
\(976\) −13.7800 43.0920i −0.441088 1.37934i
\(977\) 11.8798i 0.380067i −0.981778 0.190034i \(-0.939140\pi\)
0.981778 0.190034i \(-0.0608597\pi\)
\(978\) −2.11366 27.2622i −0.0675874 0.871748i
\(979\) 13.3280i 0.425966i
\(980\) −7.32686 19.2282i −0.234048 0.614224i
\(981\) 28.2970i 0.903454i
\(982\) −41.8517 + 3.24481i −1.33554 + 0.103546i
\(983\) 25.7447i 0.821128i −0.911832 0.410564i \(-0.865332\pi\)
0.911832 0.410564i \(-0.134668\pi\)
\(984\) −11.5245 48.7519i −0.367386 1.55415i
\(985\) −7.39674 34.8213i −0.235680 1.10950i
\(986\) −0.353562 4.56027i −0.0112597 0.145228i
\(987\) 7.16897 0.228191
\(988\) −1.53378 9.83193i −0.0487960 0.312796i
\(989\) 23.7920i 0.756540i
\(990\) −3.31443 11.2427i −0.105339 0.357317i
\(991\) 37.3420 1.18621 0.593104 0.805126i \(-0.297902\pi\)
0.593104 + 0.805126i \(0.297902\pi\)
\(992\) 14.8930 + 36.5550i 0.472853 + 1.16062i
\(993\) 13.7984i 0.437880i
\(994\) −23.5284 + 1.82418i −0.746274 + 0.0578594i
\(995\) −9.45615 44.5163i −0.299780 1.41126i
\(996\) 59.2596 9.24448i 1.87771 0.292923i
\(997\) −52.9198 −1.67599 −0.837994 0.545679i \(-0.816272\pi\)
−0.837994 + 0.545679i \(0.816272\pi\)
\(998\) 30.5538 2.36887i 0.967165 0.0749852i
\(999\) −8.60693 −0.272311
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.l.c.309.32 yes 56
4.3 odd 2 1760.2.l.c.529.8 56
5.4 even 2 inner 440.2.l.c.309.25 56
8.3 odd 2 1760.2.l.c.529.50 56
8.5 even 2 inner 440.2.l.c.309.26 yes 56
20.19 odd 2 1760.2.l.c.529.49 56
40.19 odd 2 1760.2.l.c.529.7 56
40.29 even 2 inner 440.2.l.c.309.31 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.l.c.309.25 56 5.4 even 2 inner
440.2.l.c.309.26 yes 56 8.5 even 2 inner
440.2.l.c.309.31 yes 56 40.29 even 2 inner
440.2.l.c.309.32 yes 56 1.1 even 1 trivial
1760.2.l.c.529.7 56 40.19 odd 2
1760.2.l.c.529.8 56 4.3 odd 2
1760.2.l.c.529.49 56 20.19 odd 2
1760.2.l.c.529.50 56 8.3 odd 2