Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [440,2,Mod(309,440)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(440, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("440.309");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 440 = 2^{3} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 440.l (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.51341768894\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
309.1 | −1.39945 | − | 0.203802i | 2.02800 | 1.91693 | + | 0.570422i | 1.17627 | + | 1.90168i | −2.83809 | − | 0.413310i | − | 1.20527i | −2.56640 | − | 1.18895i | 1.11278 | −1.25857 | − | 2.90103i | |||||
309.2 | −1.39945 | + | 0.203802i | 2.02800 | 1.91693 | − | 0.570422i | 1.17627 | − | 1.90168i | −2.83809 | + | 0.413310i | 1.20527i | −2.56640 | + | 1.18895i | 1.11278 | −1.25857 | + | 2.90103i | ||||||
309.3 | −1.39753 | − | 0.216578i | −0.580260 | 1.90619 | + | 0.605348i | 0.0314342 | − | 2.23585i | 0.810932 | + | 0.125671i | 2.52547i | −2.53285 | − | 1.25883i | −2.66330 | −0.528165 | + | 3.11786i | ||||||
309.4 | −1.39753 | + | 0.216578i | −0.580260 | 1.90619 | − | 0.605348i | 0.0314342 | + | 2.23585i | 0.810932 | − | 0.125671i | − | 2.52547i | −2.53285 | + | 1.25883i | −2.66330 | −0.528165 | − | 3.11786i | |||||
309.5 | −1.38159 | − | 0.302030i | 2.45029 | 1.81756 | + | 0.834560i | −1.88833 | + | 1.19759i | −3.38529 | − | 0.740061i | 4.10058i | −2.25905 | − | 1.70197i | 3.00393 | 2.97059 | − | 1.08424i | ||||||
309.6 | −1.38159 | + | 0.302030i | 2.45029 | 1.81756 | − | 0.834560i | −1.88833 | − | 1.19759i | −3.38529 | + | 0.740061i | − | 4.10058i | −2.25905 | + | 1.70197i | 3.00393 | 2.97059 | + | 1.08424i | |||||
309.7 | −1.32543 | − | 0.493200i | −2.29285 | 1.51351 | + | 1.30740i | 2.06667 | + | 0.853738i | 3.03901 | + | 1.13084i | − | 0.918608i | −1.36123 | − | 2.47933i | 2.25717 | −2.31816 | − | 2.15085i | |||||
309.8 | −1.32543 | + | 0.493200i | −2.29285 | 1.51351 | − | 1.30740i | 2.06667 | − | 0.853738i | 3.03901 | − | 1.13084i | 0.918608i | −1.36123 | + | 2.47933i | 2.25717 | −2.31816 | + | 2.15085i | ||||||
309.9 | −1.32219 | − | 0.501822i | −0.955334 | 1.49635 | + | 1.32700i | −2.20319 | − | 0.382012i | 1.26313 | + | 0.479408i | − | 0.432693i | −1.31253 | − | 2.50545i | −2.08734 | 2.72133 | + | 1.61070i | |||||
309.10 | −1.32219 | + | 0.501822i | −0.955334 | 1.49635 | − | 1.32700i | −2.20319 | + | 0.382012i | 1.26313 | − | 0.479408i | 0.432693i | −1.31253 | + | 2.50545i | −2.08734 | 2.72133 | − | 1.61070i | ||||||
309.11 | −1.20436 | − | 0.741302i | 0.702572 | 0.900943 | + | 1.78558i | 1.35163 | − | 1.78132i | −0.846147 | − | 0.520818i | − | 4.75522i | 0.238599 | − | 2.81835i | −2.50639 | −2.94834 | + | 1.14337i | |||||
309.12 | −1.20436 | + | 0.741302i | 0.702572 | 0.900943 | − | 1.78558i | 1.35163 | + | 1.78132i | −0.846147 | + | 0.520818i | 4.75522i | 0.238599 | + | 2.81835i | −2.50639 | −2.94834 | − | 1.14337i | ||||||
309.13 | −1.04726 | − | 0.950394i | 2.84044 | 0.193504 | + | 1.99062i | 2.20930 | − | 0.344972i | −2.97468 | − | 2.69954i | 1.82515i | 1.68922 | − | 2.26860i | 5.06811 | −2.64157 | − | 1.73843i | ||||||
309.14 | −1.04726 | + | 0.950394i | 2.84044 | 0.193504 | − | 1.99062i | 2.20930 | + | 0.344972i | −2.97468 | + | 2.69954i | − | 1.82515i | 1.68922 | + | 2.26860i | 5.06811 | −2.64157 | + | 1.73843i | |||||
309.15 | −0.959354 | − | 1.03906i | −3.02021 | −0.159281 | + | 1.99365i | 0.177003 | − | 2.22905i | 2.89745 | + | 3.13817i | 1.23027i | 2.22432 | − | 1.74711i | 6.12165 | −2.48592 | + | 1.95453i | ||||||
309.16 | −0.959354 | + | 1.03906i | −3.02021 | −0.159281 | − | 1.99365i | 0.177003 | + | 2.22905i | 2.89745 | − | 3.13817i | − | 1.23027i | 2.22432 | + | 1.74711i | 6.12165 | −2.48592 | − | 1.95453i | |||||
309.17 | −0.878518 | − | 1.10824i | 0.467880 | −0.456413 | + | 1.94723i | 0.955644 | + | 2.02157i | −0.411040 | − | 0.518525i | 0.427420i | 2.55897 | − | 1.20485i | −2.78109 | 1.40084 | − | 2.83507i | ||||||
309.18 | −0.878518 | + | 1.10824i | 0.467880 | −0.456413 | − | 1.94723i | 0.955644 | − | 2.02157i | −0.411040 | + | 0.518525i | − | 0.427420i | 2.55897 | + | 1.20485i | −2.78109 | 1.40084 | + | 2.83507i | |||||
309.19 | −0.634602 | − | 1.26384i | 3.29264 | −1.19456 | + | 1.60407i | −1.69658 | + | 1.45657i | −2.08951 | − | 4.16135i | − | 3.97318i | 2.78535 | + | 0.491786i | 7.84147 | 2.91752 | + | 1.21986i | |||||
309.20 | −0.634602 | + | 1.26384i | 3.29264 | −1.19456 | − | 1.60407i | −1.69658 | − | 1.45657i | −2.08951 | + | 4.16135i | 3.97318i | 2.78535 | − | 0.491786i | 7.84147 | 2.91752 | − | 1.21986i | ||||||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
40.f | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 440.2.l.c | ✓ | 56 |
4.b | odd | 2 | 1 | 1760.2.l.c | 56 | ||
5.b | even | 2 | 1 | inner | 440.2.l.c | ✓ | 56 |
8.b | even | 2 | 1 | inner | 440.2.l.c | ✓ | 56 |
8.d | odd | 2 | 1 | 1760.2.l.c | 56 | ||
20.d | odd | 2 | 1 | 1760.2.l.c | 56 | ||
40.e | odd | 2 | 1 | 1760.2.l.c | 56 | ||
40.f | even | 2 | 1 | inner | 440.2.l.c | ✓ | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
440.2.l.c | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
440.2.l.c | ✓ | 56 | 5.b | even | 2 | 1 | inner |
440.2.l.c | ✓ | 56 | 8.b | even | 2 | 1 | inner |
440.2.l.c | ✓ | 56 | 40.f | even | 2 | 1 | inner |
1760.2.l.c | 56 | 4.b | odd | 2 | 1 | ||
1760.2.l.c | 56 | 8.d | odd | 2 | 1 | ||
1760.2.l.c | 56 | 20.d | odd | 2 | 1 | ||
1760.2.l.c | 56 | 40.e | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{28} - 56 T_{3}^{26} + 1368 T_{3}^{24} - 19172 T_{3}^{22} + 170574 T_{3}^{20} - 1007388 T_{3}^{18} + \cdots + 20736 \)
acting on \(S_{2}^{\mathrm{new}}(440, [\chi])\).