Properties

Label 440.2.l.c
Level $440$
Weight $2$
Character orbit 440.l
Analytic conductor $3.513$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,2,Mod(309,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.309");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 56 q + 4 q^{4} - 12 q^{6} + 56 q^{9} - 10 q^{10} - 32 q^{14} - 8 q^{15} + 16 q^{16} + 8 q^{20} - 16 q^{24} + 16 q^{25} - 12 q^{26} + 38 q^{30} + 72 q^{34} - 24 q^{36} - 16 q^{39} + 12 q^{40} - 32 q^{41}+ \cdots - 16 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
309.1 −1.39945 0.203802i 2.02800 1.91693 + 0.570422i 1.17627 + 1.90168i −2.83809 0.413310i 1.20527i −2.56640 1.18895i 1.11278 −1.25857 2.90103i
309.2 −1.39945 + 0.203802i 2.02800 1.91693 0.570422i 1.17627 1.90168i −2.83809 + 0.413310i 1.20527i −2.56640 + 1.18895i 1.11278 −1.25857 + 2.90103i
309.3 −1.39753 0.216578i −0.580260 1.90619 + 0.605348i 0.0314342 2.23585i 0.810932 + 0.125671i 2.52547i −2.53285 1.25883i −2.66330 −0.528165 + 3.11786i
309.4 −1.39753 + 0.216578i −0.580260 1.90619 0.605348i 0.0314342 + 2.23585i 0.810932 0.125671i 2.52547i −2.53285 + 1.25883i −2.66330 −0.528165 3.11786i
309.5 −1.38159 0.302030i 2.45029 1.81756 + 0.834560i −1.88833 + 1.19759i −3.38529 0.740061i 4.10058i −2.25905 1.70197i 3.00393 2.97059 1.08424i
309.6 −1.38159 + 0.302030i 2.45029 1.81756 0.834560i −1.88833 1.19759i −3.38529 + 0.740061i 4.10058i −2.25905 + 1.70197i 3.00393 2.97059 + 1.08424i
309.7 −1.32543 0.493200i −2.29285 1.51351 + 1.30740i 2.06667 + 0.853738i 3.03901 + 1.13084i 0.918608i −1.36123 2.47933i 2.25717 −2.31816 2.15085i
309.8 −1.32543 + 0.493200i −2.29285 1.51351 1.30740i 2.06667 0.853738i 3.03901 1.13084i 0.918608i −1.36123 + 2.47933i 2.25717 −2.31816 + 2.15085i
309.9 −1.32219 0.501822i −0.955334 1.49635 + 1.32700i −2.20319 0.382012i 1.26313 + 0.479408i 0.432693i −1.31253 2.50545i −2.08734 2.72133 + 1.61070i
309.10 −1.32219 + 0.501822i −0.955334 1.49635 1.32700i −2.20319 + 0.382012i 1.26313 0.479408i 0.432693i −1.31253 + 2.50545i −2.08734 2.72133 1.61070i
309.11 −1.20436 0.741302i 0.702572 0.900943 + 1.78558i 1.35163 1.78132i −0.846147 0.520818i 4.75522i 0.238599 2.81835i −2.50639 −2.94834 + 1.14337i
309.12 −1.20436 + 0.741302i 0.702572 0.900943 1.78558i 1.35163 + 1.78132i −0.846147 + 0.520818i 4.75522i 0.238599 + 2.81835i −2.50639 −2.94834 1.14337i
309.13 −1.04726 0.950394i 2.84044 0.193504 + 1.99062i 2.20930 0.344972i −2.97468 2.69954i 1.82515i 1.68922 2.26860i 5.06811 −2.64157 1.73843i
309.14 −1.04726 + 0.950394i 2.84044 0.193504 1.99062i 2.20930 + 0.344972i −2.97468 + 2.69954i 1.82515i 1.68922 + 2.26860i 5.06811 −2.64157 + 1.73843i
309.15 −0.959354 1.03906i −3.02021 −0.159281 + 1.99365i 0.177003 2.22905i 2.89745 + 3.13817i 1.23027i 2.22432 1.74711i 6.12165 −2.48592 + 1.95453i
309.16 −0.959354 + 1.03906i −3.02021 −0.159281 1.99365i 0.177003 + 2.22905i 2.89745 3.13817i 1.23027i 2.22432 + 1.74711i 6.12165 −2.48592 1.95453i
309.17 −0.878518 1.10824i 0.467880 −0.456413 + 1.94723i 0.955644 + 2.02157i −0.411040 0.518525i 0.427420i 2.55897 1.20485i −2.78109 1.40084 2.83507i
309.18 −0.878518 + 1.10824i 0.467880 −0.456413 1.94723i 0.955644 2.02157i −0.411040 + 0.518525i 0.427420i 2.55897 + 1.20485i −2.78109 1.40084 + 2.83507i
309.19 −0.634602 1.26384i 3.29264 −1.19456 + 1.60407i −1.69658 + 1.45657i −2.08951 4.16135i 3.97318i 2.78535 + 0.491786i 7.84147 2.91752 + 1.21986i
309.20 −0.634602 + 1.26384i 3.29264 −1.19456 1.60407i −1.69658 1.45657i −2.08951 + 4.16135i 3.97318i 2.78535 0.491786i 7.84147 2.91752 1.21986i
See all 56 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 309.56
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.b even 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 440.2.l.c 56
4.b odd 2 1 1760.2.l.c 56
5.b even 2 1 inner 440.2.l.c 56
8.b even 2 1 inner 440.2.l.c 56
8.d odd 2 1 1760.2.l.c 56
20.d odd 2 1 1760.2.l.c 56
40.e odd 2 1 1760.2.l.c 56
40.f even 2 1 inner 440.2.l.c 56
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.l.c 56 1.a even 1 1 trivial
440.2.l.c 56 5.b even 2 1 inner
440.2.l.c 56 8.b even 2 1 inner
440.2.l.c 56 40.f even 2 1 inner
1760.2.l.c 56 4.b odd 2 1
1760.2.l.c 56 8.d odd 2 1
1760.2.l.c 56 20.d odd 2 1
1760.2.l.c 56 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{28} - 56 T_{3}^{26} + 1368 T_{3}^{24} - 19172 T_{3}^{22} + 170574 T_{3}^{20} - 1007388 T_{3}^{18} + \cdots + 20736 \) acting on \(S_{2}^{\mathrm{new}}(440, [\chi])\). Copy content Toggle raw display