Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [440,2,Mod(219,440)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(440, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("440.219");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 440 = 2^{3} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 440.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.51341768894\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
219.1 | −1.37885 | − | 0.314264i | − | 1.93054i | 1.80248 | + | 0.866649i | 0.651439 | + | 2.13907i | −0.606701 | + | 2.66194i | 0.116559i | −2.21299 | − | 1.76144i | −0.727003 | −0.226005 | − | 3.15419i | |||||
219.2 | −1.37885 | − | 0.314264i | 1.93054i | 1.80248 | + | 0.866649i | −0.651439 | + | 2.13907i | 0.606701 | − | 2.66194i | 0.116559i | −2.21299 | − | 1.76144i | −0.727003 | 1.57047 | − | 2.74474i | ||||||
219.3 | −1.37885 | + | 0.314264i | − | 1.93054i | 1.80248 | − | 0.866649i | −0.651439 | − | 2.13907i | 0.606701 | + | 2.66194i | − | 0.116559i | −2.21299 | + | 1.76144i | −0.727003 | 1.57047 | + | 2.74474i | ||||
219.4 | −1.37885 | + | 0.314264i | 1.93054i | 1.80248 | − | 0.866649i | 0.651439 | − | 2.13907i | −0.606701 | − | 2.66194i | − | 0.116559i | −2.21299 | + | 1.76144i | −0.727003 | −0.226005 | + | 3.15419i | |||||
219.5 | −1.35227 | − | 0.413972i | − | 3.03912i | 1.65725 | + | 1.11960i | 2.09783 | − | 0.774024i | −1.25811 | + | 4.10971i | 1.67292i | −1.77757 | − | 2.20006i | −6.23628 | −3.15725 | + | 0.178244i | |||||
219.6 | −1.35227 | − | 0.413972i | 3.03912i | 1.65725 | + | 1.11960i | −2.09783 | − | 0.774024i | 1.25811 | − | 4.10971i | 1.67292i | −1.77757 | − | 2.20006i | −6.23628 | 2.51640 | + | 1.91513i | ||||||
219.7 | −1.35227 | + | 0.413972i | − | 3.03912i | 1.65725 | − | 1.11960i | −2.09783 | + | 0.774024i | 1.25811 | + | 4.10971i | − | 1.67292i | −1.77757 | + | 2.20006i | −6.23628 | 2.51640 | − | 1.91513i | ||||
219.8 | −1.35227 | + | 0.413972i | 3.03912i | 1.65725 | − | 1.11960i | 2.09783 | + | 0.774024i | −1.25811 | − | 4.10971i | − | 1.67292i | −1.77757 | + | 2.20006i | −6.23628 | −3.15725 | − | 0.178244i | |||||
219.9 | −1.24688 | − | 0.667297i | − | 1.20551i | 1.10943 | + | 1.66408i | −1.79732 | − | 1.33028i | −0.804436 | + | 1.50313i | 3.49920i | −0.272891 | − | 2.81523i | 1.54674 | 1.35335 | + | 2.85805i | |||||
219.10 | −1.24688 | − | 0.667297i | 1.20551i | 1.10943 | + | 1.66408i | 1.79732 | − | 1.33028i | 0.804436 | − | 1.50313i | 3.49920i | −0.272891 | − | 2.81523i | 1.54674 | −3.12874 | + | 0.459355i | ||||||
219.11 | −1.24688 | + | 0.667297i | − | 1.20551i | 1.10943 | − | 1.66408i | 1.79732 | + | 1.33028i | 0.804436 | + | 1.50313i | − | 3.49920i | −0.272891 | + | 2.81523i | 1.54674 | −3.12874 | − | 0.459355i | ||||
219.12 | −1.24688 | + | 0.667297i | 1.20551i | 1.10943 | − | 1.66408i | −1.79732 | + | 1.33028i | −0.804436 | − | 1.50313i | − | 3.49920i | −0.272891 | + | 2.81523i | 1.54674 | 1.35335 | − | 2.85805i | |||||
219.13 | −0.944607 | − | 1.05248i | − | 0.907092i | −0.215435 | + | 1.98836i | −1.66478 | + | 1.49282i | −0.954697 | + | 0.856845i | − | 0.330142i | 2.29622 | − | 1.65148i | 2.17718 | 3.14373 | + | 0.342028i | ||||
219.14 | −0.944607 | − | 1.05248i | 0.907092i | −0.215435 | + | 1.98836i | 1.66478 | + | 1.49282i | 0.954697 | − | 0.856845i | − | 0.330142i | 2.29622 | − | 1.65148i | 2.17718 | −0.00140387 | − | 3.16228i | |||||
219.15 | −0.944607 | + | 1.05248i | − | 0.907092i | −0.215435 | − | 1.98836i | 1.66478 | − | 1.49282i | 0.954697 | + | 0.856845i | 0.330142i | 2.29622 | + | 1.65148i | 2.17718 | −0.00140387 | + | 3.16228i | |||||
219.16 | −0.944607 | + | 1.05248i | 0.907092i | −0.215435 | − | 1.98836i | −1.66478 | − | 1.49282i | −0.954697 | − | 0.856845i | 0.330142i | 2.29622 | + | 1.65148i | 2.17718 | 3.14373 | − | 0.342028i | ||||||
219.17 | −0.861423 | − | 1.12158i | − | 1.93862i | −0.515899 | + | 1.93232i | 2.16613 | − | 0.554857i | −2.17432 | + | 1.66997i | − | 3.35344i | 2.61166 | − | 1.08592i | −0.758244 | −2.48828 | − | 1.95153i | ||||
219.18 | −0.861423 | − | 1.12158i | 1.93862i | −0.515899 | + | 1.93232i | −2.16613 | − | 0.554857i | 2.17432 | − | 1.66997i | − | 3.35344i | 2.61166 | − | 1.08592i | −0.758244 | 1.24364 | + | 2.90747i | |||||
219.19 | −0.861423 | + | 1.12158i | − | 1.93862i | −0.515899 | − | 1.93232i | −2.16613 | + | 0.554857i | 2.17432 | + | 1.66997i | 3.35344i | 2.61166 | + | 1.08592i | −0.758244 | 1.24364 | − | 2.90747i | |||||
219.20 | −0.861423 | + | 1.12158i | 1.93862i | −0.515899 | − | 1.93232i | 2.16613 | + | 0.554857i | −2.17432 | − | 1.66997i | 3.35344i | 2.61166 | + | 1.08592i | −0.758244 | −2.48828 | + | 1.95153i | ||||||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
40.e | odd | 2 | 1 | inner |
55.d | odd | 2 | 1 | inner |
88.g | even | 2 | 1 | inner |
440.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 440.2.c.c | ✓ | 56 |
4.b | odd | 2 | 1 | 1760.2.c.c | 56 | ||
5.b | even | 2 | 1 | inner | 440.2.c.c | ✓ | 56 |
8.b | even | 2 | 1 | 1760.2.c.c | 56 | ||
8.d | odd | 2 | 1 | inner | 440.2.c.c | ✓ | 56 |
11.b | odd | 2 | 1 | inner | 440.2.c.c | ✓ | 56 |
20.d | odd | 2 | 1 | 1760.2.c.c | 56 | ||
40.e | odd | 2 | 1 | inner | 440.2.c.c | ✓ | 56 |
40.f | even | 2 | 1 | 1760.2.c.c | 56 | ||
44.c | even | 2 | 1 | 1760.2.c.c | 56 | ||
55.d | odd | 2 | 1 | inner | 440.2.c.c | ✓ | 56 |
88.b | odd | 2 | 1 | 1760.2.c.c | 56 | ||
88.g | even | 2 | 1 | inner | 440.2.c.c | ✓ | 56 |
220.g | even | 2 | 1 | 1760.2.c.c | 56 | ||
440.c | even | 2 | 1 | inner | 440.2.c.c | ✓ | 56 |
440.o | odd | 2 | 1 | 1760.2.c.c | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
440.2.c.c | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
440.2.c.c | ✓ | 56 | 5.b | even | 2 | 1 | inner |
440.2.c.c | ✓ | 56 | 8.d | odd | 2 | 1 | inner |
440.2.c.c | ✓ | 56 | 11.b | odd | 2 | 1 | inner |
440.2.c.c | ✓ | 56 | 40.e | odd | 2 | 1 | inner |
440.2.c.c | ✓ | 56 | 55.d | odd | 2 | 1 | inner |
440.2.c.c | ✓ | 56 | 88.g | even | 2 | 1 | inner |
440.2.c.c | ✓ | 56 | 440.c | even | 2 | 1 | inner |
1760.2.c.c | 56 | 4.b | odd | 2 | 1 | ||
1760.2.c.c | 56 | 8.b | even | 2 | 1 | ||
1760.2.c.c | 56 | 20.d | odd | 2 | 1 | ||
1760.2.c.c | 56 | 40.f | even | 2 | 1 | ||
1760.2.c.c | 56 | 44.c | even | 2 | 1 | ||
1760.2.c.c | 56 | 88.b | odd | 2 | 1 | ||
1760.2.c.c | 56 | 220.g | even | 2 | 1 | ||
1760.2.c.c | 56 | 440.o | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(440, [\chi])\):
\( T_{3}^{14} + 34T_{3}^{12} + 460T_{3}^{10} + 3174T_{3}^{8} + 11911T_{3}^{6} + 23872T_{3}^{4} + 23036T_{3}^{2} + 8136 \)
|
\( T_{7}^{14} + 48T_{7}^{12} + 889T_{7}^{10} + 7834T_{7}^{8} + 32084T_{7}^{6} + 47048T_{7}^{4} + 5344T_{7}^{2} + 64 \)
|