Properties

Label 440.2.c.b.219.5
Level $440$
Weight $2$
Character 440.219
Analytic conductor $3.513$
Analytic rank $0$
Dimension $8$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,2,Mod(219,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.219");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.599695360000.19
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 219.5
Root \(0.413333 - 1.35246i\) of defining polynomial
Character \(\chi\) \(=\) 440.219
Dual form 440.2.c.b.219.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.413333 - 1.35246i) q^{2} +(-1.65831 - 1.11803i) q^{4} +2.23607i q^{5} +0.856447i q^{7} +(-2.19753 + 1.78069i) q^{8} +3.00000 q^{9} +(3.02420 + 0.924240i) q^{10} +3.31662 q^{11} -6.26630i q^{13} +(1.15831 + 0.353997i) q^{14} +(1.50000 + 3.70810i) q^{16} +6.87506 q^{17} +(1.24000 - 4.05739i) q^{18} +(2.50000 - 3.70810i) q^{20} +(1.37087 - 4.48561i) q^{22} -5.00000 q^{25} +(-8.47494 - 2.59007i) q^{26} +(0.957536 - 1.42026i) q^{28} +8.94427i q^{31} +(5.63507 - 0.496016i) q^{32} +(2.84169 - 9.29827i) q^{34} -1.91507 q^{35} +(-4.97494 - 3.35410i) q^{36} +(-3.98174 - 4.91384i) q^{40} -8.52839 q^{43} +(-5.50000 - 3.70810i) q^{44} +6.70820i q^{45} +6.26650 q^{49} +(-2.06666 + 6.76232i) q^{50} +(-7.00593 + 10.3915i) q^{52} +7.41620i q^{55} +(-1.52506 - 1.88207i) q^{56} -4.00000 q^{59} +(12.0968 + 3.69696i) q^{62} +2.56934i q^{63} +(1.65831 - 7.82624i) q^{64} +14.0119 q^{65} +(-11.4010 - 7.68655i) q^{68} +(-0.791562 + 2.59007i) q^{70} -14.8324i q^{71} +(-6.59260 + 5.34206i) q^{72} +0.261743 q^{73} +2.84051i q^{77} +(-8.29156 + 3.35410i) q^{80} +9.00000 q^{81} -12.3585 q^{83} +15.3731i q^{85} +(-3.52506 + 11.5343i) q^{86} +(-7.28840 + 5.90587i) q^{88} -13.2665 q^{89} +(9.07260 + 2.77272i) q^{90} +5.36675 q^{91} +(2.59015 - 8.47521i) q^{98} +9.94987 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{9} - 4 q^{14} + 12 q^{16} + 20 q^{20} - 40 q^{25} - 28 q^{26} + 36 q^{34} - 44 q^{44} - 56 q^{49} - 52 q^{56} - 32 q^{59} + 60 q^{70} + 72 q^{81} - 68 q^{86} + 96 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.413333 1.35246i 0.292270 0.956336i
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −1.65831 1.11803i −0.829156 0.559017i
\(5\) 2.23607i 1.00000i
\(6\) 0 0
\(7\) 0.856447i 0.323706i 0.986815 + 0.161853i \(0.0517471\pi\)
−0.986815 + 0.161853i \(0.948253\pi\)
\(8\) −2.19753 + 1.78069i −0.776946 + 0.629568i
\(9\) 3.00000 1.00000
\(10\) 3.02420 + 0.924240i 0.956336 + 0.292270i
\(11\) 3.31662 1.00000
\(12\) 0 0
\(13\) 6.26630i 1.73796i −0.494848 0.868979i \(-0.664776\pi\)
0.494848 0.868979i \(-0.335224\pi\)
\(14\) 1.15831 + 0.353997i 0.309572 + 0.0946098i
\(15\) 0 0
\(16\) 1.50000 + 3.70810i 0.375000 + 0.927025i
\(17\) 6.87506 1.66745 0.833724 0.552182i \(-0.186204\pi\)
0.833724 + 0.552182i \(0.186204\pi\)
\(18\) 1.24000 4.05739i 0.292270 0.956336i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 2.50000 3.70810i 0.559017 0.829156i
\(21\) 0 0
\(22\) 1.37087 4.48561i 0.292270 0.956336i
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) −8.47494 2.59007i −1.66207 0.507954i
\(27\) 0 0
\(28\) 0.957536 1.42026i 0.180957 0.268403i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 8.94427i 1.60644i 0.595683 + 0.803219i \(0.296881\pi\)
−0.595683 + 0.803219i \(0.703119\pi\)
\(32\) 5.63507 0.496016i 0.996148 0.0876841i
\(33\) 0 0
\(34\) 2.84169 9.29827i 0.487345 1.59464i
\(35\) −1.91507 −0.323706
\(36\) −4.97494 3.35410i −0.829156 0.559017i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −3.98174 4.91384i −0.629568 0.776946i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −8.52839 −1.30057 −0.650284 0.759691i \(-0.725350\pi\)
−0.650284 + 0.759691i \(0.725350\pi\)
\(44\) −5.50000 3.70810i −0.829156 0.559017i
\(45\) 6.70820i 1.00000i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 6.26650 0.895214
\(50\) −2.06666 + 6.76232i −0.292270 + 0.956336i
\(51\) 0 0
\(52\) −7.00593 + 10.3915i −0.971548 + 1.44104i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 7.41620i 1.00000i
\(56\) −1.52506 1.88207i −0.203795 0.251502i
\(57\) 0 0
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 12.0968 + 3.69696i 1.53629 + 0.469514i
\(63\) 2.56934i 0.323706i
\(64\) 1.65831 7.82624i 0.207289 0.978280i
\(65\) 14.0119 1.73796
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −11.4010 7.68655i −1.38257 0.932132i
\(69\) 0 0
\(70\) −0.791562 + 2.59007i −0.0946098 + 0.309572i
\(71\) 14.8324i 1.76028i −0.474713 0.880141i \(-0.657448\pi\)
0.474713 0.880141i \(-0.342552\pi\)
\(72\) −6.59260 + 5.34206i −0.776946 + 0.629568i
\(73\) 0.261743 0.0306347 0.0153173 0.999883i \(-0.495124\pi\)
0.0153173 + 0.999883i \(0.495124\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.84051i 0.323706i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −8.29156 + 3.35410i −0.927025 + 0.375000i
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) −12.3585 −1.35653 −0.678263 0.734819i \(-0.737267\pi\)
−0.678263 + 0.734819i \(0.737267\pi\)
\(84\) 0 0
\(85\) 15.3731i 1.66745i
\(86\) −3.52506 + 11.5343i −0.380117 + 1.24378i
\(87\) 0 0
\(88\) −7.28840 + 5.90587i −0.776946 + 0.629568i
\(89\) −13.2665 −1.40625 −0.703123 0.711068i \(-0.748212\pi\)
−0.703123 + 0.711068i \(0.748212\pi\)
\(90\) 9.07260 + 2.77272i 0.956336 + 0.292270i
\(91\) 5.36675 0.562588
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 2.59015 8.47521i 0.261644 0.856125i
\(99\) 9.94987 1.00000
\(100\) 8.29156 + 5.59017i 0.829156 + 0.559017i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 11.1583 + 13.7704i 1.09416 + 1.35030i
\(105\) 0 0
\(106\) 0 0
\(107\) −18.9719 −1.83408 −0.917039 0.398796i \(-0.869428\pi\)
−0.917039 + 0.398796i \(0.869428\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 10.0301 + 3.06536i 0.956336 + 0.292270i
\(111\) 0 0
\(112\) −3.17579 + 1.28467i −0.300084 + 0.121390i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 18.7989i 1.73796i
\(118\) −1.65333 + 5.40985i −0.152201 + 0.498017i
\(119\) 5.88813i 0.539764i
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 10.0000 14.8324i 0.898027 1.33199i
\(125\) 11.1803i 1.00000i
\(126\) 3.47494 + 1.06199i 0.309572 + 0.0946098i
\(127\) 22.4959i 1.99618i 0.0617417 + 0.998092i \(0.480334\pi\)
−0.0617417 + 0.998092i \(0.519666\pi\)
\(128\) −9.89926 5.47765i −0.874979 0.484160i
\(129\) 0 0
\(130\) 5.79156 18.9505i 0.507954 1.66207i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −15.1082 + 12.2423i −1.29552 + 1.04977i
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 3.17579 + 2.14112i 0.268403 + 0.180957i
\(141\) 0 0
\(142\) −20.0603 6.13071i −1.68342 0.514478i
\(143\) 20.7830i 1.73796i
\(144\) 4.50000 + 11.1243i 0.375000 + 0.927025i
\(145\) 0 0
\(146\) 0.108187 0.353997i 0.00895360 0.0292970i
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 20.6252 1.66745
\(154\) 3.84169 + 1.17408i 0.309572 + 0.0946098i
\(155\) −20.0000 −1.60644
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.10913 + 12.6004i 0.0876841 + 0.996148i
\(161\) 0 0
\(162\) 3.71999 12.1722i 0.292270 0.956336i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −5.10819 + 16.7145i −0.396472 + 1.29729i
\(167\) 24.2087i 1.87333i 0.350228 + 0.936665i \(0.386104\pi\)
−0.350228 + 0.936665i \(0.613896\pi\)
\(168\) 0 0
\(169\) −26.2665 −2.02050
\(170\) 20.7916 + 6.35421i 1.59464 + 0.487345i
\(171\) 0 0
\(172\) 14.1427 + 9.53503i 1.07837 + 0.727040i
\(173\) 9.69209i 0.736876i 0.929652 + 0.368438i \(0.120107\pi\)
−0.929652 + 0.368438i \(0.879893\pi\)
\(174\) 0 0
\(175\) 4.28223i 0.323706i
\(176\) 4.97494 + 12.2984i 0.375000 + 0.927025i
\(177\) 0 0
\(178\) −5.48348 + 17.9424i −0.411004 + 1.34484i
\(179\) −19.8997 −1.48738 −0.743689 0.668526i \(-0.766925\pi\)
−0.743689 + 0.668526i \(0.766925\pi\)
\(180\) 7.50000 11.1243i 0.559017 0.829156i
\(181\) 4.47214i 0.332411i −0.986091 0.166206i \(-0.946848\pi\)
0.986091 0.166206i \(-0.0531515\pi\)
\(182\) 2.21825 7.25833i 0.164428 0.538023i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 22.8020 1.66745
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 26.8328i 1.94155i −0.239983 0.970777i \(-0.577142\pi\)
0.239983 0.970777i \(-0.422858\pi\)
\(192\) 0 0
\(193\) −27.7620 −1.99835 −0.999176 0.0405839i \(-0.987078\pi\)
−0.999176 + 0.0405839i \(0.987078\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −10.3918 7.00616i −0.742272 0.500440i
\(197\) 27.9057i 1.98820i −0.108471 0.994100i \(-0.534595\pi\)
0.108471 0.994100i \(-0.465405\pi\)
\(198\) 4.11261 13.4568i 0.292270 0.956336i
\(199\) 14.8324i 1.05144i −0.850657 0.525720i \(-0.823796\pi\)
0.850657 0.525720i \(-0.176204\pi\)
\(200\) 10.9877 8.90343i 0.776946 0.629568i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 23.2361 9.39945i 1.61113 0.651734i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −7.84169 + 25.6587i −0.536047 + 1.75400i
\(215\) 19.0701i 1.30057i
\(216\) 0 0
\(217\) −7.66029 −0.520014
\(218\) 0 0
\(219\) 0 0
\(220\) 8.29156 12.2984i 0.559017 0.829156i
\(221\) 43.0812i 2.89796i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0.424812 + 4.82613i 0.0283839 + 0.322460i
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) 29.4153 1.95236 0.976182 0.216954i \(-0.0696120\pi\)
0.976182 + 0.216954i \(0.0696120\pi\)
\(228\) 0 0
\(229\) 29.6648i 1.96030i 0.198246 + 0.980152i \(0.436476\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.39855 0.484695 0.242348 0.970190i \(-0.422083\pi\)
0.242348 + 0.970190i \(0.422083\pi\)
\(234\) −25.4248 7.77020i −1.66207 0.507954i
\(235\) 0 0
\(236\) 6.63325 + 4.47214i 0.431788 + 0.291111i
\(237\) 0 0
\(238\) 7.96347 + 2.43375i 0.516195 + 0.157757i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 4.54666 14.8771i 0.292270 0.956336i
\(243\) 0 0
\(244\) 0 0
\(245\) 14.0123i 0.895214i
\(246\) 0 0
\(247\) 0 0
\(248\) −15.9269 19.6553i −1.01136 1.24812i
\(249\) 0 0
\(250\) −15.1210 4.62120i −0.956336 0.292270i
\(251\) 28.0000 1.76734 0.883672 0.468106i \(-0.155064\pi\)
0.883672 + 0.468106i \(0.155064\pi\)
\(252\) 2.87261 4.26077i 0.180957 0.268403i
\(253\) 0 0
\(254\) 30.4248 + 9.29827i 1.90902 + 0.583425i
\(255\) 0 0
\(256\) −11.5000 + 11.1243i −0.718750 + 0.695269i
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −23.2361 15.6657i −1.44104 0.971548i
\(261\) 0 0
\(262\) 0 0
\(263\) 25.9216i 1.59840i −0.601067 0.799198i \(-0.705258\pi\)
0.601067 0.799198i \(-0.294742\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 29.6648i 1.80869i −0.426798 0.904347i \(-0.640358\pi\)
0.426798 0.904347i \(-0.359642\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 10.3126 + 25.4934i 0.625293 + 1.54577i
\(273\) 0 0
\(274\) 0 0
\(275\) −16.5831 −1.00000
\(276\) 0 0
\(277\) 11.9473i 0.717845i −0.933367 0.358923i \(-0.883144\pi\)
0.933367 0.358923i \(-0.116856\pi\)
\(278\) 0 0
\(279\) 26.8328i 1.60644i
\(280\) 4.20844 3.41014i 0.251502 0.203795i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 4.69825 0.279282 0.139641 0.990202i \(-0.455405\pi\)
0.139641 + 0.990202i \(0.455405\pi\)
\(284\) −16.5831 + 24.5967i −0.984027 + 1.45955i
\(285\) 0 0
\(286\) −28.1082 8.59027i −1.66207 0.507954i
\(287\) 0 0
\(288\) 16.9052 1.48805i 0.996148 0.0876841i
\(289\) 30.2665 1.78038
\(290\) 0 0
\(291\) 0 0
\(292\) −0.434051 0.292637i −0.0254009 0.0171253i
\(293\) 24.4799i 1.43013i 0.699057 + 0.715066i \(0.253603\pi\)
−0.699057 + 0.715066i \(0.746397\pi\)
\(294\) 0 0
\(295\) 8.94427i 0.520756i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 7.30411i 0.421002i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 8.52506 27.8948i 0.487345 1.59464i
\(307\) −15.1417 −0.864183 −0.432092 0.901830i \(-0.642224\pi\)
−0.432092 + 0.901830i \(0.642224\pi\)
\(308\) 3.17579 4.71046i 0.180957 0.268403i
\(309\) 0 0
\(310\) −8.26665 + 27.0493i −0.469514 + 1.53629i
\(311\) 14.8324i 0.841068i 0.907277 + 0.420534i \(0.138157\pi\)
−0.907277 + 0.420534i \(0.861843\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) −5.74522 −0.323706
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 17.5000 + 3.70810i 0.978280 + 0.207289i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −14.9248 10.0623i −0.829156 0.559017i
\(325\) 31.3315i 1.73796i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.63325 0.364596 0.182298 0.983243i \(-0.441646\pi\)
0.182298 + 0.983243i \(0.441646\pi\)
\(332\) 20.4943 + 13.8173i 1.12477 + 0.758321i
\(333\) 0 0
\(334\) 32.7414 + 10.0063i 1.79153 + 0.547518i
\(335\) 0 0
\(336\) 0 0
\(337\) −34.8988 −1.90106 −0.950529 0.310634i \(-0.899459\pi\)
−0.950529 + 0.310634i \(0.899459\pi\)
\(338\) −10.8568 + 35.5245i −0.590532 + 1.93228i
\(339\) 0 0
\(340\) 17.1877 25.4934i 0.932132 1.38257i
\(341\) 29.6648i 1.60644i
\(342\) 0 0
\(343\) 11.3620i 0.613493i
\(344\) 18.7414 15.1864i 1.01047 0.818796i
\(345\) 0 0
\(346\) 13.1082 + 4.00605i 0.704700 + 0.215367i
\(347\) 33.2455 1.78471 0.892355 0.451334i \(-0.149052\pi\)
0.892355 + 0.451334i \(0.149052\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) −5.79156 1.76999i −0.309572 0.0946098i
\(351\) 0 0
\(352\) 18.6894 1.64510i 0.996148 0.0876841i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 33.1662 1.76028
\(356\) 22.0000 + 14.8324i 1.16600 + 0.786115i
\(357\) 0 0
\(358\) −8.22521 + 26.9137i −0.434716 + 1.42243i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −11.9452 14.7415i −0.629568 0.776946i
\(361\) 19.0000 1.00000
\(362\) −6.04840 1.84848i −0.317897 0.0971539i
\(363\) 0 0
\(364\) −8.89975 6.00021i −0.466474 0.314496i
\(365\) 0.585274i 0.0306347i
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 22.2247i 1.15075i 0.817890 + 0.575375i \(0.195144\pi\)
−0.817890 + 0.575375i \(0.804856\pi\)
\(374\) 9.42481 30.8389i 0.487345 1.59464i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −36.0000 −1.84920 −0.924598 0.380945i \(-0.875599\pi\)
−0.924598 + 0.380945i \(0.875599\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −36.2904 11.0909i −1.85678 0.567459i
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) −6.35158 −0.323706
\(386\) −11.4749 + 37.5471i −0.584059 + 1.91110i
\(387\) −25.5852 −1.30057
\(388\) 0 0
\(389\) 29.6648i 1.50406i 0.659126 + 0.752032i \(0.270926\pi\)
−0.659126 + 0.752032i \(0.729074\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −13.7708 + 11.1587i −0.695533 + 0.563598i
\(393\) 0 0
\(394\) −37.7414 11.5343i −1.90139 0.581092i
\(395\) 0 0
\(396\) −16.5000 11.1243i −0.829156 0.559017i
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) −20.0603 6.13071i −1.00553 0.307305i
\(399\) 0 0
\(400\) −7.50000 18.5405i −0.375000 0.927025i
\(401\) −39.7995 −1.98749 −0.993746 0.111664i \(-0.964382\pi\)
−0.993746 + 0.111664i \(0.964382\pi\)
\(402\) 0 0
\(403\) 56.0475 2.79192
\(404\) 0 0
\(405\) 20.1246i 1.00000i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.42579i 0.168572i
\(414\) 0 0
\(415\) 27.6345i 1.35653i
\(416\) −3.10819 35.3110i −0.152391 1.73126i
\(417\) 0 0
\(418\) 0 0
\(419\) 19.8997 0.972166 0.486083 0.873913i \(-0.338425\pi\)
0.486083 + 0.873913i \(0.338425\pi\)
\(420\) 0 0
\(421\) 31.3050i 1.52571i 0.646570 + 0.762855i \(0.276203\pi\)
−0.646570 + 0.762855i \(0.723797\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −34.3753 −1.66745
\(426\) 0 0
\(427\) 0 0
\(428\) 31.4613 + 21.2112i 1.52074 + 1.02528i
\(429\) 0 0
\(430\) −25.7916 7.88228i −1.24378 0.380117i
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) −3.16625 + 10.3603i −0.151985 + 0.497308i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) −13.2059 16.2973i −0.629568 0.776946i
\(441\) 18.7995 0.895214
\(442\) −58.2657 17.8069i −2.77142 0.846986i
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 29.6648i 1.40625i
\(446\) 0 0
\(447\) 0 0
\(448\) 6.70276 + 1.42026i 0.316675 + 0.0671008i
\(449\) 13.2665 0.626085 0.313042 0.949739i \(-0.398652\pi\)
0.313042 + 0.949739i \(0.398652\pi\)
\(450\) −6.19999 + 20.2869i −0.292270 + 0.956336i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 12.1583 39.7831i 0.570618 1.86712i
\(455\) 12.0004i 0.562588i
\(456\) 0 0
\(457\) −41.5121 −1.94186 −0.970928 0.239373i \(-0.923058\pi\)
−0.970928 + 0.239373i \(0.923058\pi\)
\(458\) 40.1205 + 12.2614i 1.87471 + 0.572939i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 3.05806 10.0063i 0.141662 0.463531i
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) −21.0178 + 31.1744i −0.971548 + 1.44104i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 8.79014 7.12275i 0.404599 0.327851i
\(473\) −28.2855 −1.30057
\(474\) 0 0
\(475\) 0 0
\(476\) 6.58312 9.76435i 0.301737 0.447548i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −18.2414 12.2984i −0.829156 0.559017i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 18.9511 + 5.79175i 0.856125 + 0.261644i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 22.2486i 1.00000i
\(496\) −33.1662 + 13.4164i −1.48921 + 0.602414i
\(497\) 12.7032 0.569814
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) −12.5000 + 18.5405i −0.559017 + 0.829156i
\(501\) 0 0
\(502\) 11.5733 37.8690i 0.516542 1.69017i
\(503\) 44.1353i 1.96789i 0.178461 + 0.983947i \(0.442888\pi\)
−0.178461 + 0.983947i \(0.557112\pi\)
\(504\) −4.57519 5.64621i −0.203795 0.251502i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 25.1511 37.3052i 1.11590 1.65515i
\(509\) 29.6648i 1.31487i −0.753512 0.657434i \(-0.771642\pi\)
0.753512 0.657434i \(-0.228358\pi\)
\(510\) 0 0
\(511\) 0.224169i 0.00991664i
\(512\) 10.2919 + 20.1514i 0.454841 + 0.890573i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −30.7916 + 24.9507i −1.35030 + 1.09416i
\(521\) 39.7995 1.74365 0.871824 0.489820i \(-0.162937\pi\)
0.871824 + 0.489820i \(0.162937\pi\)
\(522\) 0 0
\(523\) 36.0286 1.57542 0.787711 0.616044i \(-0.211266\pi\)
0.787711 + 0.616044i \(0.211266\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −35.0581 10.7143i −1.52860 0.467164i
\(527\) 61.4924i 2.67865i
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 42.4224i 1.83408i
\(536\) 0 0
\(537\) 0 0
\(538\) −40.1205 12.2614i −1.72972 0.528628i
\(539\) 20.7836 0.895214
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 38.7414 3.41014i 1.66103 0.146209i
\(545\) 0 0
\(546\) 0 0
\(547\) 26.6322 1.13871 0.569354 0.822092i \(-0.307193\pi\)
0.569354 + 0.822092i \(0.307193\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −6.85435 + 22.4281i −0.292270 + 0.956336i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −16.1583 4.93822i −0.686501 0.209805i
\(555\) 0 0
\(556\) 0 0
\(557\) 13.1179i 0.555822i −0.960607 0.277911i \(-0.910358\pi\)
0.960607 0.277911i \(-0.0896420\pi\)
\(558\) 36.2904 + 11.0909i 1.53629 + 0.469514i
\(559\) 53.4415i 2.26033i
\(560\) −2.87261 7.10128i −0.121390 0.300084i
\(561\) 0 0
\(562\) 0 0
\(563\) −43.6889 −1.84127 −0.920635 0.390425i \(-0.872328\pi\)
−0.920635 + 0.390425i \(0.872328\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.94194 6.35421i 0.0816258 0.267087i
\(567\) 7.70802i 0.323706i
\(568\) 26.4118 + 32.5947i 1.10822 + 1.36764i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) −23.2361 + 34.4646i −0.971548 + 1.44104i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 4.97494 23.4787i 0.207289 0.978280i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 12.5101 40.9343i 0.520353 1.70264i
\(579\) 0 0
\(580\) 0 0
\(581\) 10.5844i 0.439116i
\(582\) 0 0
\(583\) 0 0
\(584\) −0.575188 + 0.466082i −0.0238015 + 0.0192866i
\(585\) 42.0356 1.73796
\(586\) 33.1082 + 10.1183i 1.36769 + 0.417985i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −12.0968 3.69696i −0.498017 0.152201i
\(591\) 0 0
\(592\) 0 0
\(593\) 48.6489 1.99777 0.998886 0.0471872i \(-0.0150257\pi\)
0.998886 + 0.0471872i \(0.0150257\pi\)
\(594\) 0 0
\(595\) −13.1662 −0.539764
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 44.7214i 1.82727i −0.406541 0.913633i \(-0.633265\pi\)
0.406541 0.913633i \(-0.366735\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −9.87854 3.01903i −0.402619 0.123046i
\(603\) 0 0
\(604\) 0 0
\(605\) 24.5967i 1.00000i
\(606\) 0 0
\(607\) 47.5610i 1.93044i −0.261433 0.965222i \(-0.584195\pi\)
0.261433 0.965222i \(-0.415805\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −34.2030 23.0597i −1.38257 0.932132i
\(613\) 21.0541i 0.850368i −0.905107 0.425184i \(-0.860209\pi\)
0.905107 0.425184i \(-0.139791\pi\)
\(614\) −6.25856 + 20.4786i −0.252575 + 0.826449i
\(615\) 0 0
\(616\) −5.05806 6.24212i −0.203795 0.251502i
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 46.4327 1.86629 0.933145 0.359501i \(-0.117053\pi\)
0.933145 + 0.359501i \(0.117053\pi\)
\(620\) 33.1662 + 22.3607i 1.33199 + 0.898027i
\(621\) 0 0
\(622\) 20.0603 + 6.13071i 0.804343 + 0.245819i
\(623\) 11.3620i 0.455211i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −2.37469 + 7.77020i −0.0946098 + 0.309572i
\(631\) 14.8324i 0.590468i 0.955425 + 0.295234i \(0.0953977\pi\)
−0.955425 + 0.295234i \(0.904602\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −50.3023 −1.99618
\(636\) 0 0
\(637\) 39.2678i 1.55585i
\(638\) 0 0
\(639\) 44.4972i 1.76028i
\(640\) 12.2484 22.1354i 0.484160 0.874979i
\(641\) −39.7995 −1.57199 −0.785993 0.618236i \(-0.787848\pi\)
−0.785993 + 0.618236i \(0.787848\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −19.7778 + 16.0262i −0.776946 + 0.629568i
\(649\) −13.2665 −0.520756
\(650\) 42.3747 + 12.9503i 1.66207 + 0.507954i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0.785228 0.0306347
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 29.6648i 1.15383i 0.816805 + 0.576913i \(0.195743\pi\)
−0.816805 + 0.576913i \(0.804257\pi\)
\(662\) 2.74174 8.97122i 0.106561 0.348677i
\(663\) 0 0
\(664\) 27.1583 22.0067i 1.05395 0.854025i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 27.0662 40.1457i 1.04722 1.55328i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 20.1017 0.774864 0.387432 0.921898i \(-0.373362\pi\)
0.387432 + 0.921898i \(0.373362\pi\)
\(674\) −14.4248 + 47.1993i −0.555623 + 1.81805i
\(675\) 0 0
\(676\) 43.5581 + 29.3668i 1.67531 + 1.12949i
\(677\) 34.7573i 1.33583i −0.744237 0.667915i \(-0.767187\pi\)
0.744237 0.667915i \(-0.232813\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −27.3747 33.7829i −1.04977 1.29552i
\(681\) 0 0
\(682\) 40.1205 + 12.2614i 1.53629 + 0.469514i
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 15.3668 + 4.69630i 0.586705 + 0.179306i
\(687\) 0 0
\(688\) −12.7926 31.6241i −0.487713 1.20566i
\(689\) 0 0
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 10.8361 16.0725i 0.411926 0.610985i
\(693\) 8.52154i 0.323706i
\(694\) 13.7414 44.9633i 0.521618 1.70678i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −4.78768 + 7.10128i −0.180957 + 0.268403i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 5.50000 25.9567i 0.207289 0.978280i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 4.47214i 0.167955i 0.996468 + 0.0839773i \(0.0267623\pi\)
−0.996468 + 0.0839773i \(0.973238\pi\)
\(710\) 13.7087 44.8561i 0.514478 1.68342i
\(711\) 0 0
\(712\) 29.1536 23.6235i 1.09258 0.885327i
\(713\) 0 0
\(714\) 0 0
\(715\) 46.4721 1.73796
\(716\) 33.0000 + 22.2486i 1.23327 + 0.831469i
\(717\) 0 0
\(718\) 0 0
\(719\) 26.8328i 1.00070i −0.865825 0.500348i \(-0.833206\pi\)
0.865825 0.500348i \(-0.166794\pi\)
\(720\) −24.8747 + 10.0623i −0.927025 + 0.375000i
\(721\) 0 0
\(722\) 7.85332 25.6968i 0.292270 0.956336i
\(723\) 0 0
\(724\) −5.00000 + 7.41620i −0.185824 + 0.275621i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) −11.7936 + 9.55650i −0.437101 + 0.354187i
\(729\) 27.0000 1.00000
\(730\) 0.791562 + 0.241913i 0.0292970 + 0.00895360i
\(731\) −58.6332 −2.16863
\(732\) 0 0
\(733\) 52.9709i 1.95652i 0.207371 + 0.978262i \(0.433509\pi\)
−0.207371 + 0.978262i \(0.566491\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 49.2739i 1.80769i −0.427865 0.903843i \(-0.640734\pi\)
0.427865 0.903843i \(-0.359266\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 30.0581 + 9.18618i 1.10050 + 0.336330i
\(747\) −37.0756 −1.35653
\(748\) −37.8128 25.4934i −1.38257 0.932132i
\(749\) 16.2484i 0.593703i
\(750\) 0 0
\(751\) 44.4972i 1.62373i 0.583848 + 0.811863i \(0.301546\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) −14.8800 + 48.6887i −0.540465 + 1.76845i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −30.0000 + 44.4972i −1.08536 + 1.60985i
\(765\) 46.1193i 1.66745i
\(766\) 0 0
\(767\) 25.0652i 0.905052i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) −2.62531 + 8.59027i −0.0946098 + 0.309572i
\(771\) 0 0
\(772\) 46.0381 + 31.0389i 1.65695 + 1.11711i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) −10.5752 + 34.6030i −0.380117 + 1.24378i
\(775\) 44.7214i 1.60644i
\(776\) 0 0
\(777\) 0 0
\(778\) 40.1205 + 12.2614i 1.43839 + 0.439593i
\(779\) 0 0
\(780\) 0 0
\(781\) 49.1935i 1.76028i
\(782\) 0 0
\(783\) 0 0
\(784\) 9.39975 + 23.2368i 0.335705 + 0.829886i
\(785\) 0 0
\(786\) 0 0
\(787\) 11.3116 0.403214 0.201607 0.979467i \(-0.435384\pi\)
0.201607 + 0.979467i \(0.435384\pi\)
\(788\) −31.1995 + 46.2764i −1.11144 + 1.64853i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −21.8652 + 17.7176i −0.776946 + 0.629568i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −16.5831 + 24.5967i −0.587773 + 0.871809i
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −28.1753 + 2.48008i −0.996148 + 0.0876841i
\(801\) −39.7995 −1.40625
\(802\) −16.4504 + 53.8273i −0.580885 + 1.90071i
\(803\) 0.868102 0.0306347
\(804\) 0 0
\(805\) 0 0
\(806\) 23.1662 75.8021i 0.815996 2.67002i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 27.2178 + 8.31816i 0.956336 + 0.292270i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 16.1003 0.562588
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −4.63325 1.41599i −0.161211 0.0492686i
\(827\) −21.7550 −0.756497 −0.378248 0.925704i \(-0.623473\pi\)
−0.378248 + 0.925704i \(0.623473\pi\)
\(828\) 0 0
\(829\) 22.3607i 0.776619i −0.921529 0.388309i \(-0.873059\pi\)
0.921529 0.388309i \(-0.126941\pi\)
\(830\) −37.3747 11.4223i −1.29729 0.396472i
\(831\) 0 0
\(832\) −49.0415 10.3915i −1.70021 0.360260i
\(833\) 43.0826 1.49272
\(834\) 0 0
\(835\) −54.1324 −1.87333
\(836\) 0 0
\(837\) 0 0
\(838\) 8.22521 26.9137i 0.284135 0.929717i
\(839\) 14.8324i 0.512071i −0.966667 0.256036i \(-0.917584\pi\)
0.966667 0.256036i \(-0.0824164\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 42.3388 + 12.9394i 1.45909 + 0.445920i
\(843\) 0 0
\(844\) 0 0
\(845\) 58.7337i 2.02050i
\(846\) 0 0
\(847\) 9.42091i 0.323706i
\(848\) 0 0
\(849\) 0 0
\(850\) −14.2084 + 46.4913i −0.487345 + 1.59464i
\(851\) 0 0
\(852\) 0 0
\(853\) 25.6505i 0.878255i −0.898425 0.439128i \(-0.855288\pi\)
0.898425 0.439128i \(-0.144712\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 41.6913 33.7829i 1.42498 1.15468i
\(857\) 55.2623 1.88772 0.943861 0.330342i \(-0.107164\pi\)
0.943861 + 0.330342i \(0.107164\pi\)
\(858\) 0 0
\(859\) −46.4327 −1.58426 −0.792132 0.610349i \(-0.791029\pi\)
−0.792132 + 0.610349i \(0.791029\pi\)
\(860\) −21.3210 + 31.6241i −0.727040 + 1.07837i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −21.6722 −0.736876
\(866\) 0 0
\(867\) 0 0
\(868\) 12.7032 + 8.56447i 0.431173 + 0.290697i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9.57536 0.323706
\(876\) 0 0
\(877\) 4.01106i 0.135444i −0.997704 0.0677220i \(-0.978427\pi\)
0.997704 0.0677220i \(-0.0215731\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −27.5000 + 11.1243i −0.927025 + 0.375000i
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 7.77044 25.4256i 0.261644 0.856125i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −48.1662 + 71.4421i −1.62001 + 2.40286i
\(885\) 0 0
\(886\) 0 0
\(887\) 31.0603i 1.04290i 0.853281 + 0.521452i \(0.174609\pi\)
−0.853281 + 0.521452i \(0.825391\pi\)
\(888\) 0 0
\(889\) −19.2665 −0.646178
\(890\) −40.1205 12.2614i −1.34484 0.411004i
\(891\) 29.8496 1.00000
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 44.4972i 1.48738i
\(896\) 4.69131 8.47819i 0.156726 0.283236i
\(897\) 0 0
\(898\) 5.48348 17.9424i 0.182986 0.598747i
\(899\) 0 0
\(900\) 24.8747 + 16.7705i 0.829156 + 0.559017i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.0000 0.332411
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) −48.7798 32.8873i −1.61881 1.09140i
\(909\) 0 0
\(910\) 16.2301 + 4.96016i 0.538023 + 0.164428i
\(911\) 8.94427i 0.296337i 0.988962 + 0.148168i \(0.0473378\pi\)
−0.988962 + 0.148168i \(0.952662\pi\)
\(912\) 0 0
\(913\) −40.9886 −1.35653
\(914\) −17.1583 + 56.1436i −0.567547 + 1.85707i
\(915\) 0 0
\(916\) 33.1662 49.1935i 1.09584 1.62540i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −92.9442 −3.05930
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −12.2691 8.27183i −0.401888 0.270953i
\(933\) 0 0
\(934\) 0 0
\(935\) 50.9868i 1.66745i
\(936\) 33.4749 + 41.3112i 1.09416 + 1.35030i
\(937\) 49.1724 1.60639 0.803196 0.595714i \(-0.203131\pi\)
0.803196 + 0.595714i \(0.203131\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −6.00000 14.8324i −0.195283 0.482753i
\(945\) 0 0
\(946\) −11.6913 + 38.2551i −0.380117 + 1.24378i
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 1.64016i 0.0532418i
\(950\) 0 0
\(951\) 0 0
\(952\) −10.4849 12.9394i −0.339818 0.419367i
\(953\) −12.9649 −0.419974 −0.209987 0.977704i \(-0.567342\pi\)
−0.209987 + 0.977704i \(0.567342\pi\)
\(954\) 0 0
\(955\) 60.0000 1.94155
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −49.0000 −1.58065
\(962\) 0 0
\(963\) −56.9156 −1.83408
\(964\) 0 0
\(965\) 62.0777i 1.99835i
\(966\) 0 0
\(967\) 37.2837i 1.19896i 0.800389 + 0.599481i \(0.204626\pi\)
−0.800389 + 0.599481i \(0.795374\pi\)
\(968\) −24.1729 + 19.5875i −0.776946 + 0.629568i
\(969\) 0 0
\(970\) 0 0
\(971\) −59.6992 −1.91584 −0.957920 0.287035i \(-0.907330\pi\)
−0.957920 + 0.287035i \(0.907330\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) −44.0000 −1.40625
\(980\) 15.6662 23.2368i 0.500440 0.742272i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 62.3991 1.98820
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 30.0904 + 9.19607i 0.956336 + 0.292270i
\(991\) 62.6099i 1.98887i −0.105356 0.994435i \(-0.533598\pi\)
0.105356 0.994435i \(-0.466402\pi\)
\(992\) 4.43651 + 50.4016i 0.140859 + 1.60025i
\(993\) 0 0
\(994\) 5.25063 17.1805i 0.166540 0.544934i
\(995\) 33.1662 1.05144
\(996\) 0 0
\(997\) 58.6519i 1.85753i 0.370675 + 0.928763i \(0.379126\pi\)
−0.370675 + 0.928763i \(0.620874\pi\)
\(998\) 1.65333 5.40985i 0.0523353 0.171246i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.c.b.219.5 yes 8
4.3 odd 2 1760.2.c.b.879.6 8
5.4 even 2 inner 440.2.c.b.219.4 yes 8
8.3 odd 2 inner 440.2.c.b.219.6 yes 8
8.5 even 2 1760.2.c.b.879.3 8
11.10 odd 2 inner 440.2.c.b.219.4 yes 8
20.19 odd 2 1760.2.c.b.879.7 8
40.19 odd 2 inner 440.2.c.b.219.3 8
40.29 even 2 1760.2.c.b.879.2 8
44.43 even 2 1760.2.c.b.879.7 8
55.54 odd 2 CM 440.2.c.b.219.5 yes 8
88.21 odd 2 1760.2.c.b.879.2 8
88.43 even 2 inner 440.2.c.b.219.3 8
220.219 even 2 1760.2.c.b.879.6 8
440.109 odd 2 1760.2.c.b.879.3 8
440.219 even 2 inner 440.2.c.b.219.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.c.b.219.3 8 40.19 odd 2 inner
440.2.c.b.219.3 8 88.43 even 2 inner
440.2.c.b.219.4 yes 8 5.4 even 2 inner
440.2.c.b.219.4 yes 8 11.10 odd 2 inner
440.2.c.b.219.5 yes 8 1.1 even 1 trivial
440.2.c.b.219.5 yes 8 55.54 odd 2 CM
440.2.c.b.219.6 yes 8 8.3 odd 2 inner
440.2.c.b.219.6 yes 8 440.219 even 2 inner
1760.2.c.b.879.2 8 40.29 even 2
1760.2.c.b.879.2 8 88.21 odd 2
1760.2.c.b.879.3 8 8.5 even 2
1760.2.c.b.879.3 8 440.109 odd 2
1760.2.c.b.879.6 8 4.3 odd 2
1760.2.c.b.879.6 8 220.219 even 2
1760.2.c.b.879.7 8 20.19 odd 2
1760.2.c.b.879.7 8 44.43 even 2