Properties

Label 440.2.c.b.219.1
Level $440$
Weight $2$
Character 440.219
Analytic conductor $3.513$
Analytic rank $0$
Dimension $8$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,2,Mod(219,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.219");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.599695360000.19
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 219.1
Root \(-1.35246 - 0.413333i\) of defining polynomial
Character \(\chi\) \(=\) 440.219
Dual form 440.2.c.b.219.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.35246 - 0.413333i) q^{2} +(1.65831 + 1.11803i) q^{4} -2.23607i q^{5} -5.22173i q^{7} +(-1.78069 - 2.19753i) q^{8} +3.00000 q^{9} +(-0.924240 + 3.02420i) q^{10} -3.31662 q^{11} +3.56840i q^{13} +(-2.15831 + 7.06220i) q^{14} +(1.50000 + 3.70810i) q^{16} -4.55341 q^{17} +(-4.05739 - 1.24000i) q^{18} +(2.50000 - 3.70810i) q^{20} +(4.48561 + 1.37087i) q^{22} -5.00000 q^{25} +(1.47494 - 4.82613i) q^{26} +(5.83808 - 8.65927i) q^{28} -8.94427i q^{31} +(-0.496016 - 5.63507i) q^{32} +(6.15831 + 1.88207i) q^{34} -11.6762 q^{35} +(4.97494 + 3.35410i) q^{36} +(-4.91384 + 3.98174i) q^{40} +9.96326 q^{43} +(-5.50000 - 3.70810i) q^{44} -6.70820i q^{45} -20.2665 q^{49} +(6.76232 + 2.06666i) q^{50} +(-3.98960 + 5.91753i) q^{52} +7.41620i q^{55} +(-11.4749 + 9.29827i) q^{56} -4.00000 q^{59} +(-3.69696 + 12.0968i) q^{62} -15.6652i q^{63} +(-1.65831 + 7.82624i) q^{64} +7.97919 q^{65} +(-7.55097 - 5.09086i) q^{68} +(15.7916 + 4.82613i) q^{70} -14.8324i q^{71} +(-5.34206 - 6.59260i) q^{72} +17.0860 q^{73} +17.3185i q^{77} +(8.29156 - 3.35410i) q^{80} +9.00000 q^{81} -13.3890 q^{83} +10.1817i q^{85} +(-13.4749 - 4.11814i) q^{86} +(5.90587 + 7.28840i) q^{88} +13.2665 q^{89} +(-2.77272 + 9.07260i) q^{90} +18.6332 q^{91} +(27.4097 + 8.37680i) q^{98} -9.94987 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{9} - 4 q^{14} + 12 q^{16} + 20 q^{20} - 40 q^{25} - 28 q^{26} + 36 q^{34} - 44 q^{44} - 56 q^{49} - 52 q^{56} - 32 q^{59} + 60 q^{70} + 72 q^{81} - 68 q^{86} + 96 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.35246 0.413333i −0.956336 0.292270i
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 1.65831 + 1.11803i 0.829156 + 0.559017i
\(5\) 2.23607i 1.00000i
\(6\) 0 0
\(7\) 5.22173i 1.97363i −0.161853 0.986815i \(-0.551747\pi\)
0.161853 0.986815i \(-0.448253\pi\)
\(8\) −1.78069 2.19753i −0.629568 0.776946i
\(9\) 3.00000 1.00000
\(10\) −0.924240 + 3.02420i −0.292270 + 0.956336i
\(11\) −3.31662 −1.00000
\(12\) 0 0
\(13\) 3.56840i 0.989697i 0.868979 + 0.494848i \(0.164776\pi\)
−0.868979 + 0.494848i \(0.835224\pi\)
\(14\) −2.15831 + 7.06220i −0.576833 + 1.88745i
\(15\) 0 0
\(16\) 1.50000 + 3.70810i 0.375000 + 0.927025i
\(17\) −4.55341 −1.10436 −0.552182 0.833724i \(-0.686204\pi\)
−0.552182 + 0.833724i \(0.686204\pi\)
\(18\) −4.05739 1.24000i −0.956336 0.292270i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 2.50000 3.70810i 0.559017 0.829156i
\(21\) 0 0
\(22\) 4.48561 + 1.37087i 0.956336 + 0.292270i
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 1.47494 4.82613i 0.289259 0.946483i
\(27\) 0 0
\(28\) 5.83808 8.65927i 1.10329 1.63645i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 8.94427i 1.60644i −0.595683 0.803219i \(-0.703119\pi\)
0.595683 0.803219i \(-0.296881\pi\)
\(32\) −0.496016 5.63507i −0.0876841 0.996148i
\(33\) 0 0
\(34\) 6.15831 + 1.88207i 1.05614 + 0.322772i
\(35\) −11.6762 −1.97363
\(36\) 4.97494 + 3.35410i 0.829156 + 0.559017i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −4.91384 + 3.98174i −0.776946 + 0.629568i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 9.96326 1.51938 0.759691 0.650284i \(-0.225350\pi\)
0.759691 + 0.650284i \(0.225350\pi\)
\(44\) −5.50000 3.70810i −0.829156 0.559017i
\(45\) 6.70820i 1.00000i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −20.2665 −2.89521
\(50\) 6.76232 + 2.06666i 0.956336 + 0.292270i
\(51\) 0 0
\(52\) −3.98960 + 5.91753i −0.553257 + 0.820613i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 7.41620i 1.00000i
\(56\) −11.4749 + 9.29827i −1.53340 + 1.24253i
\(57\) 0 0
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) −3.69696 + 12.0968i −0.469514 + 1.53629i
\(63\) 15.6652i 1.97363i
\(64\) −1.65831 + 7.82624i −0.207289 + 0.978280i
\(65\) 7.97919 0.989697
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −7.55097 5.09086i −0.915689 0.617358i
\(69\) 0 0
\(70\) 15.7916 + 4.82613i 1.88745 + 0.576833i
\(71\) 14.8324i 1.76028i −0.474713 0.880141i \(-0.657448\pi\)
0.474713 0.880141i \(-0.342552\pi\)
\(72\) −5.34206 6.59260i −0.629568 0.776946i
\(73\) 17.0860 1.99977 0.999883 0.0153173i \(-0.00487585\pi\)
0.999883 + 0.0153173i \(0.00487585\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 17.3185i 1.97363i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 8.29156 3.35410i 0.927025 0.375000i
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) −13.3890 −1.46964 −0.734819 0.678263i \(-0.762733\pi\)
−0.734819 + 0.678263i \(0.762733\pi\)
\(84\) 0 0
\(85\) 10.1817i 1.10436i
\(86\) −13.4749 4.11814i −1.45304 0.444070i
\(87\) 0 0
\(88\) 5.90587 + 7.28840i 0.629568 + 0.776946i
\(89\) 13.2665 1.40625 0.703123 0.711068i \(-0.251788\pi\)
0.703123 + 0.711068i \(0.251788\pi\)
\(90\) −2.77272 + 9.07260i −0.292270 + 0.956336i
\(91\) 18.6332 1.95330
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 27.4097 + 8.37680i 2.76880 + 0.846185i
\(99\) −9.94987 −1.00000
\(100\) −8.29156 5.59017i −0.829156 0.559017i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 7.84169 6.35421i 0.768941 0.623081i
\(105\) 0 0
\(106\) 0 0
\(107\) 8.25036 0.797593 0.398796 0.917039i \(-0.369428\pi\)
0.398796 + 0.917039i \(0.369428\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 3.06536 10.0301i 0.292270 0.956336i
\(111\) 0 0
\(112\) 19.3627 7.83260i 1.82960 0.740111i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 10.7052i 0.989697i
\(118\) 5.40985 + 1.65333i 0.498017 + 0.152201i
\(119\) 23.7767i 2.17960i
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 10.0000 14.8324i 0.898027 1.33199i
\(125\) 11.1803i 1.00000i
\(126\) −6.47494 + 21.1866i −0.576833 + 1.88745i
\(127\) 1.39159i 0.123483i 0.998092 + 0.0617417i \(0.0196655\pi\)
−0.998092 + 0.0617417i \(0.980334\pi\)
\(128\) 5.47765 9.89926i 0.484160 0.874979i
\(129\) 0 0
\(130\) −10.7916 3.29806i −0.946483 0.289259i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 8.10819 + 10.0063i 0.695271 + 0.858030i
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −19.3627 13.0543i −1.63645 1.10329i
\(141\) 0 0
\(142\) −6.13071 + 20.0603i −0.514478 + 1.68342i
\(143\) 11.8351i 0.989697i
\(144\) 4.50000 + 11.1243i 0.375000 + 0.927025i
\(145\) 0 0
\(146\) −23.1082 7.06220i −1.91245 0.584472i
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −13.6602 −1.10436
\(154\) 7.15831 23.4227i 0.576833 1.88745i
\(155\) −20.0000 −1.60644
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −12.6004 + 1.10913i −0.996148 + 0.0876841i
\(161\) 0 0
\(162\) −12.1722 3.71999i −0.956336 0.292270i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 18.1082 + 5.53413i 1.40547 + 0.429532i
\(167\) 9.05188i 0.700455i −0.936665 0.350228i \(-0.886104\pi\)
0.936665 0.350228i \(-0.113896\pi\)
\(168\) 0 0
\(169\) 0.266499 0.0204999
\(170\) 4.20844 13.7704i 0.322772 1.05614i
\(171\) 0 0
\(172\) 16.5222 + 11.1393i 1.25981 + 0.849361i
\(173\) 24.4553i 1.85930i −0.368438 0.929652i \(-0.620107\pi\)
0.368438 0.929652i \(-0.379893\pi\)
\(174\) 0 0
\(175\) 26.1087i 1.97363i
\(176\) −4.97494 12.2984i −0.375000 0.927025i
\(177\) 0 0
\(178\) −17.9424 5.48348i −1.34484 0.411004i
\(179\) 19.8997 1.48738 0.743689 0.668526i \(-0.233075\pi\)
0.743689 + 0.668526i \(0.233075\pi\)
\(180\) 7.50000 11.1243i 0.559017 0.829156i
\(181\) 4.47214i 0.332411i 0.986091 + 0.166206i \(0.0531515\pi\)
−0.986091 + 0.166206i \(0.946848\pi\)
\(182\) −25.2008 7.70173i −1.86801 0.570890i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 15.1019 1.10436
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 26.8328i 1.94155i 0.239983 + 0.970777i \(0.422858\pi\)
−0.239983 + 0.970777i \(0.577142\pi\)
\(192\) 0 0
\(193\) 1.12762 0.0811678 0.0405839 0.999176i \(-0.487078\pi\)
0.0405839 + 0.999176i \(0.487078\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −33.6082 22.6586i −2.40058 1.61847i
\(197\) 3.04492i 0.216941i −0.994100 0.108471i \(-0.965405\pi\)
0.994100 0.108471i \(-0.0345954\pi\)
\(198\) 13.4568 + 4.11261i 0.956336 + 0.292270i
\(199\) 14.8324i 1.05144i −0.850657 0.525720i \(-0.823796\pi\)
0.850657 0.525720i \(-0.176204\pi\)
\(200\) 8.90343 + 10.9877i 0.629568 + 0.776946i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −13.2320 + 5.35260i −0.917474 + 0.371136i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −11.1583 3.41014i −0.762767 0.233113i
\(215\) 22.2785i 1.51938i
\(216\) 0 0
\(217\) −46.7046 −3.17052
\(218\) 0 0
\(219\) 0 0
\(220\) −8.29156 + 12.2984i −0.559017 + 0.829156i
\(221\) 16.2484i 1.09298i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) −29.4248 + 2.59007i −1.96603 + 0.173056i
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) −6.53747 −0.433907 −0.216954 0.976182i \(-0.569612\pi\)
−0.216954 + 0.976182i \(0.569612\pi\)
\(228\) 0 0
\(229\) 29.6648i 1.96030i 0.198246 + 0.980152i \(0.436476\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 29.6186 1.94038 0.970190 0.242348i \(-0.0779174\pi\)
0.970190 + 0.242348i \(0.0779174\pi\)
\(234\) 4.42481 14.4784i 0.289259 0.946483i
\(235\) 0 0
\(236\) −6.63325 4.47214i −0.431788 0.291111i
\(237\) 0 0
\(238\) 9.82767 32.1571i 0.637033 2.08443i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −14.8771 4.54666i −0.956336 0.292270i
\(243\) 0 0
\(244\) 0 0
\(245\) 45.3173i 2.89521i
\(246\) 0 0
\(247\) 0 0
\(248\) −19.6553 + 15.9269i −1.24812 + 1.01136i
\(249\) 0 0
\(250\) 4.62120 15.1210i 0.292270 0.956336i
\(251\) 28.0000 1.76734 0.883672 0.468106i \(-0.155064\pi\)
0.883672 + 0.468106i \(0.155064\pi\)
\(252\) 17.5142 25.9778i 1.10329 1.63645i
\(253\) 0 0
\(254\) 0.575188 1.88207i 0.0360905 0.118092i
\(255\) 0 0
\(256\) −11.5000 + 11.1243i −0.718750 + 0.695269i
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 13.2320 + 8.92101i 0.820613 + 0.553257i
\(261\) 0 0
\(262\) 0 0
\(263\) 19.4953i 1.20213i 0.799198 + 0.601067i \(0.205258\pi\)
−0.799198 + 0.601067i \(0.794742\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 29.6648i 1.80869i −0.426798 0.904347i \(-0.640358\pi\)
0.426798 0.904347i \(-0.359642\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) −6.83011 16.8845i −0.414136 1.02377i
\(273\) 0 0
\(274\) 0 0
\(275\) 16.5831 1.00000
\(276\) 0 0
\(277\) 31.0687i 1.86673i −0.358923 0.933367i \(-0.616856\pi\)
0.358923 0.933367i \(-0.383144\pi\)
\(278\) 0 0
\(279\) 26.8328i 1.60644i
\(280\) 20.7916 + 25.6587i 1.24253 + 1.53340i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) −33.3156 −1.98040 −0.990202 0.139641i \(-0.955405\pi\)
−0.990202 + 0.139641i \(0.955405\pi\)
\(284\) 16.5831 24.5967i 0.984027 1.45955i
\(285\) 0 0
\(286\) −4.89181 + 16.0065i −0.289259 + 0.946483i
\(287\) 0 0
\(288\) −1.48805 16.9052i −0.0876841 0.996148i
\(289\) 3.73350 0.219618
\(290\) 0 0
\(291\) 0 0
\(292\) 28.3339 + 19.1027i 1.65812 + 1.11790i
\(293\) 23.9319i 1.39811i 0.715066 + 0.699057i \(0.246397\pi\)
−0.715066 + 0.699057i \(0.753603\pi\)
\(294\) 0 0
\(295\) 8.94427i 0.520756i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 52.0255i 2.99870i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 18.4749 + 5.64621i 1.05614 + 0.322772i
\(307\) 31.6027 1.80366 0.901830 0.432092i \(-0.142224\pi\)
0.901830 + 0.432092i \(0.142224\pi\)
\(308\) −19.3627 + 28.7195i −1.10329 + 1.63645i
\(309\) 0 0
\(310\) 27.0493 + 8.26665i 1.53629 + 0.469514i
\(311\) 14.8324i 0.841068i 0.907277 + 0.420534i \(0.138157\pi\)
−0.907277 + 0.420534i \(0.861843\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) −35.0285 −1.97363
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 17.5000 + 3.70810i 0.978280 + 0.207289i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 14.9248 + 10.0623i 0.829156 + 0.559017i
\(325\) 17.8420i 0.989697i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −6.63325 −0.364596 −0.182298 0.983243i \(-0.558354\pi\)
−0.182298 + 0.983243i \(0.558354\pi\)
\(332\) −22.2032 14.9694i −1.21856 0.821553i
\(333\) 0 0
\(334\) −3.74144 + 12.2423i −0.204722 + 0.669871i
\(335\) 0 0
\(336\) 0 0
\(337\) −11.4050 −0.621269 −0.310634 0.950529i \(-0.600541\pi\)
−0.310634 + 0.950529i \(0.600541\pi\)
\(338\) −0.360430 0.110153i −0.0196048 0.00599152i
\(339\) 0 0
\(340\) −11.3835 + 16.8845i −0.617358 + 0.915689i
\(341\) 29.6648i 1.60644i
\(342\) 0 0
\(343\) 69.2741i 3.74045i
\(344\) −17.7414 21.8946i −0.956554 1.18048i
\(345\) 0 0
\(346\) −10.1082 + 33.0749i −0.543419 + 1.77812i
\(347\) 16.8148 0.902667 0.451334 0.892355i \(-0.350948\pi\)
0.451334 + 0.892355i \(0.350948\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 10.7916 35.3110i 0.576833 1.88745i
\(351\) 0 0
\(352\) 1.64510 + 18.6894i 0.0876841 + 0.996148i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) −33.1662 −1.76028
\(356\) 22.0000 + 14.8324i 1.16600 + 0.786115i
\(357\) 0 0
\(358\) −26.9137 8.22521i −1.42243 0.434716i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −14.7415 + 11.9452i −0.776946 + 0.629568i
\(361\) 19.0000 1.00000
\(362\) 1.84848 6.04840i 0.0971539 0.317897i
\(363\) 0 0
\(364\) 30.8997 + 20.8326i 1.61959 + 1.09193i
\(365\) 38.2055i 1.99977i
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 31.5921i 1.63578i −0.575375 0.817890i \(-0.695144\pi\)
0.575375 0.817890i \(-0.304856\pi\)
\(374\) −20.4248 6.24212i −1.05614 0.322772i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −36.0000 −1.84920 −0.924598 0.380945i \(-0.875599\pi\)
−0.924598 + 0.380945i \(0.875599\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 11.0909 36.2904i 0.567459 1.85678i
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 38.7254 1.97363
\(386\) −1.52506 0.466082i −0.0776237 0.0237229i
\(387\) 29.8898 1.51938
\(388\) 0 0
\(389\) 29.6648i 1.50406i 0.659126 + 0.752032i \(0.270926\pi\)
−0.659126 + 0.752032i \(0.729074\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 36.0883 + 44.5363i 1.82273 + 2.24942i
\(393\) 0 0
\(394\) −1.25856 + 4.11814i −0.0634055 + 0.207469i
\(395\) 0 0
\(396\) −16.5000 11.1243i −0.829156 0.559017i
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) −6.13071 + 20.0603i −0.307305 + 1.00553i
\(399\) 0 0
\(400\) −7.50000 18.5405i −0.375000 0.927025i
\(401\) 39.7995 1.98749 0.993746 0.111664i \(-0.0356180\pi\)
0.993746 + 0.111664i \(0.0356180\pi\)
\(402\) 0 0
\(403\) 31.9168 1.58989
\(404\) 0 0
\(405\) 20.1246i 1.00000i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 20.8869i 1.02778i
\(414\) 0 0
\(415\) 29.9388i 1.46964i
\(416\) 20.1082 1.76999i 0.985885 0.0867807i
\(417\) 0 0
\(418\) 0 0
\(419\) −19.8997 −0.972166 −0.486083 0.873913i \(-0.661575\pi\)
−0.486083 + 0.873913i \(0.661575\pi\)
\(420\) 0 0
\(421\) 31.3050i 1.52571i −0.646570 0.762855i \(-0.723797\pi\)
0.646570 0.762855i \(-0.276203\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 22.7670 1.10436
\(426\) 0 0
\(427\) 0 0
\(428\) 13.6817 + 9.22419i 0.661329 + 0.445868i
\(429\) 0 0
\(430\) −9.20844 + 30.1309i −0.444070 + 1.45304i
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 63.1662 + 19.3045i 3.03208 + 0.926647i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 16.2973 13.2059i 0.776946 0.629568i
\(441\) −60.7995 −2.89521
\(442\) −6.71599 + 21.9753i −0.319447 + 1.04526i
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 29.6648i 1.40625i
\(446\) 0 0
\(447\) 0 0
\(448\) 40.8665 + 8.65927i 1.93076 + 0.409112i
\(449\) −13.2665 −0.626085 −0.313042 0.949739i \(-0.601348\pi\)
−0.313042 + 0.949739i \(0.601348\pi\)
\(450\) 20.2869 + 6.19999i 0.956336 + 0.292270i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 8.84169 + 2.70215i 0.414961 + 0.126818i
\(455\) 41.6652i 1.95330i
\(456\) 0 0
\(457\) 10.2344 0.478746 0.239373 0.970928i \(-0.423058\pi\)
0.239373 + 0.970928i \(0.423058\pi\)
\(458\) 12.2614 40.1205i 0.572939 1.87471i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −40.0581 12.2423i −1.85565 0.567115i
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) −11.9688 + 17.7526i −0.553257 + 0.820613i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 7.12275 + 8.79014i 0.327851 + 0.404599i
\(473\) −33.0444 −1.51938
\(474\) 0 0
\(475\) 0 0
\(476\) −26.5831 + 39.4291i −1.21844 + 1.80723i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 18.2414 + 12.2984i 0.829156 + 0.559017i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 18.7311 61.2899i 0.846185 2.76880i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 22.2486i 1.00000i
\(496\) 33.1662 13.4164i 1.48921 0.602414i
\(497\) −77.4508 −3.47414
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) −12.5000 + 18.5405i −0.559017 + 0.829156i
\(501\) 0 0
\(502\) −37.8690 11.5733i −1.69017 0.516542i
\(503\) 8.00491i 0.356921i 0.983947 + 0.178461i \(0.0571117\pi\)
−0.983947 + 0.178461i \(0.942888\pi\)
\(504\) −34.4248 + 27.8948i −1.53340 + 1.24253i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −1.55584 + 2.30769i −0.0690293 + 0.102387i
\(509\) 29.6648i 1.31487i −0.753512 0.657434i \(-0.771642\pi\)
0.753512 0.657434i \(-0.228358\pi\)
\(510\) 0 0
\(511\) 89.2186i 3.94680i
\(512\) 20.1514 10.2919i 0.890573 0.454841i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −14.2084 17.5345i −0.623081 0.768941i
\(521\) −39.7995 −1.74365 −0.871824 0.489820i \(-0.837063\pi\)
−0.871824 + 0.489820i \(0.837063\pi\)
\(522\) 0 0
\(523\) −28.1769 −1.23209 −0.616044 0.787711i \(-0.711266\pi\)
−0.616044 + 0.787711i \(0.711266\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 8.05806 26.3667i 0.351348 1.14964i
\(527\) 40.7269i 1.77409i
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 18.4484i 0.797593i
\(536\) 0 0
\(537\) 0 0
\(538\) −12.2614 + 40.1205i −0.528628 + 1.72972i
\(539\) 67.2164 2.89521
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 2.25856 + 25.6587i 0.0968351 + 1.10011i
\(545\) 0 0
\(546\) 0 0
\(547\) 38.4542 1.64418 0.822092 0.569354i \(-0.192807\pi\)
0.822092 + 0.569354i \(0.192807\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −22.4281 6.85435i −0.956336 0.292270i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −12.8417 + 42.0192i −0.545591 + 1.78523i
\(555\) 0 0
\(556\) 0 0
\(557\) 45.3423i 1.92121i 0.277911 + 0.960607i \(0.410358\pi\)
−0.277911 + 0.960607i \(0.589642\pi\)
\(558\) −11.0909 + 36.2904i −0.469514 + 1.53629i
\(559\) 35.5529i 1.50373i
\(560\) −17.5142 43.2963i −0.740111 1.82960i
\(561\) 0 0
\(562\) 0 0
\(563\) −18.5277 −0.780850 −0.390425 0.920635i \(-0.627672\pi\)
−0.390425 + 0.920635i \(0.627672\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 45.0581 + 13.7704i 1.89393 + 0.578813i
\(567\) 46.9956i 1.97363i
\(568\) −32.5947 + 26.4118i −1.36764 + 1.10822i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 13.2320 19.6262i 0.553257 0.820613i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −4.97494 + 23.4787i −0.207289 + 0.978280i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −5.04942 1.54318i −0.210028 0.0641877i
\(579\) 0 0
\(580\) 0 0
\(581\) 69.9140i 2.90052i
\(582\) 0 0
\(583\) 0 0
\(584\) −30.4248 37.5471i −1.25899 1.55371i
\(585\) 23.9376 0.989697
\(586\) 9.89181 32.3669i 0.408627 1.33707i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 3.69696 12.0968i 0.152201 0.498017i
\(591\) 0 0
\(592\) 0 0
\(593\) 2.29817 0.0943744 0.0471872 0.998886i \(-0.484974\pi\)
0.0471872 + 0.998886i \(0.484974\pi\)
\(594\) 0 0
\(595\) 53.1662 2.17960
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 44.7214i 1.82727i 0.406541 + 0.913633i \(0.366735\pi\)
−0.406541 + 0.913633i \(0.633265\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −21.5038 + 70.3625i −0.876430 + 2.86776i
\(603\) 0 0
\(604\) 0 0
\(605\) 24.5967i 1.00000i
\(606\) 0 0
\(607\) 12.8820i 0.522865i 0.965222 + 0.261433i \(0.0841949\pi\)
−0.965222 + 0.261433i \(0.915805\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −22.6529 15.2726i −0.915689 0.617358i
\(613\) 44.8188i 1.81021i −0.425184 0.905107i \(-0.639791\pi\)
0.425184 0.905107i \(-0.360209\pi\)
\(614\) −42.7414 13.0624i −1.72490 0.527156i
\(615\) 0 0
\(616\) 38.0581 30.8389i 1.53340 1.24253i
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −46.4327 −1.86629 −0.933145 0.359501i \(-0.882947\pi\)
−0.933145 + 0.359501i \(0.882947\pi\)
\(620\) −33.1662 22.3607i −1.33199 0.898027i
\(621\) 0 0
\(622\) 6.13071 20.0603i 0.245819 0.804343i
\(623\) 69.2741i 2.77541i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 47.3747 + 14.4784i 1.88745 + 0.576833i
\(631\) 14.8324i 0.590468i 0.955425 + 0.295234i \(0.0953977\pi\)
−0.955425 + 0.295234i \(0.904602\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.11168 0.123483
\(636\) 0 0
\(637\) 72.3190i 2.86538i
\(638\) 0 0
\(639\) 44.4972i 1.76028i
\(640\) −22.1354 12.2484i −0.874979 0.484160i
\(641\) 39.7995 1.57199 0.785993 0.618236i \(-0.212152\pi\)
0.785993 + 0.618236i \(0.212152\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −16.0262 19.7778i −0.629568 0.776946i
\(649\) 13.2665 0.520756
\(650\) −7.37469 + 24.1307i −0.289259 + 0.946483i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 51.2580 1.99977
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 29.6648i 1.15383i 0.816805 + 0.576913i \(0.195743\pi\)
−0.816805 + 0.576913i \(0.804257\pi\)
\(662\) 8.97122 + 2.74174i 0.348677 + 0.106561i
\(663\) 0 0
\(664\) 23.8417 + 29.4229i 0.925237 + 1.14183i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 10.1203 15.0108i 0.391566 0.580787i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −47.8322 −1.84380 −0.921898 0.387432i \(-0.873362\pi\)
−0.921898 + 0.387432i \(0.873362\pi\)
\(674\) 15.4248 + 4.71405i 0.594142 + 0.181578i
\(675\) 0 0
\(676\) 0.441939 + 0.297955i 0.0169976 + 0.0114598i
\(677\) 38.7289i 1.48847i 0.667915 + 0.744237i \(0.267187\pi\)
−0.667915 + 0.744237i \(0.732813\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 22.3747 18.1305i 0.858030 0.695271i
\(681\) 0 0
\(682\) 12.2614 40.1205i 0.469514 1.53629i
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 28.6332 93.6907i 1.09322 3.57713i
\(687\) 0 0
\(688\) 14.9449 + 36.9447i 0.569768 + 1.40851i
\(689\) 0 0
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 27.3419 40.5546i 1.03938 1.54165i
\(693\) 51.9556i 1.97363i
\(694\) −22.7414 6.95012i −0.863253 0.263823i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −29.1904 + 43.2963i −1.10329 + 1.63645i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 5.50000 25.9567i 0.207289 0.978280i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 4.47214i 0.167955i −0.996468 0.0839773i \(-0.973238\pi\)
0.996468 0.0839773i \(-0.0267623\pi\)
\(710\) 44.8561 + 13.7087i 1.68342 + 0.514478i
\(711\) 0 0
\(712\) −23.6235 29.1536i −0.885327 1.09258i
\(713\) 0 0
\(714\) 0 0
\(715\) −26.4640 −0.989697
\(716\) 33.0000 + 22.2486i 1.23327 + 0.831469i
\(717\) 0 0
\(718\) 0 0
\(719\) 26.8328i 1.00070i 0.865825 + 0.500348i \(0.166794\pi\)
−0.865825 + 0.500348i \(0.833206\pi\)
\(720\) 24.8747 10.0623i 0.927025 0.375000i
\(721\) 0 0
\(722\) −25.6968 7.85332i −0.956336 0.292270i
\(723\) 0 0
\(724\) −5.00000 + 7.41620i −0.185824 + 0.275621i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) −33.1800 40.9472i −1.22973 1.51760i
\(729\) 27.0000 1.00000
\(730\) −15.7916 + 51.6715i −0.584472 + 1.91245i
\(731\) −45.3668 −1.67795
\(732\) 0 0
\(733\) 11.2287i 0.414741i −0.978262 0.207371i \(-0.933509\pi\)
0.978262 0.207371i \(-0.0664906\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 23.3255i 0.855729i 0.903843 + 0.427865i \(0.140734\pi\)
−0.903843 + 0.427865i \(0.859266\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −13.0581 + 42.7272i −0.478090 + 1.56435i
\(747\) −40.1671 −1.46964
\(748\) 25.0437 + 16.8845i 0.915689 + 0.617358i
\(749\) 43.0812i 1.57415i
\(750\) 0 0
\(751\) 44.4972i 1.62373i 0.583848 + 0.811863i \(0.301546\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 48.6887 + 14.8800i 1.76845 + 0.540465i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −30.0000 + 44.4972i −1.08536 + 1.60985i
\(765\) 30.5452i 1.10436i
\(766\) 0 0
\(767\) 14.2736i 0.515390i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) −52.3747 16.0065i −1.88745 0.576833i
\(771\) 0 0
\(772\) 1.86994 + 1.26072i 0.0673008 + 0.0453742i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) −40.4248 12.3544i −1.45304 0.444070i
\(775\) 44.7214i 1.60644i
\(776\) 0 0
\(777\) 0 0
\(778\) 12.2614 40.1205i 0.439593 1.43839i
\(779\) 0 0
\(780\) 0 0
\(781\) 49.1935i 1.76028i
\(782\) 0 0
\(783\) 0 0
\(784\) −30.3997 75.1502i −1.08571 2.68394i
\(785\) 0 0
\(786\) 0 0
\(787\) −54.9550 −1.95893 −0.979467 0.201607i \(-0.935384\pi\)
−0.979467 + 0.201607i \(0.935384\pi\)
\(788\) 3.40432 5.04942i 0.121274 0.179878i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 17.7176 + 21.8652i 0.629568 + 0.776946i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 16.5831 24.5967i 0.587773 0.871809i
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.48008 + 28.1753i 0.0876841 + 0.996148i
\(801\) 39.7995 1.40625
\(802\) −53.8273 16.4504i −1.90071 0.580885i
\(803\) −56.6679 −1.99977
\(804\) 0 0
\(805\) 0 0
\(806\) −43.1662 13.1922i −1.52047 0.464677i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −8.31816 + 27.2178i −0.292270 + 0.956336i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 55.8997 1.95330
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 8.63325 28.2488i 0.300389 0.982902i
\(827\) 53.2421 1.85141 0.925704 0.378248i \(-0.123473\pi\)
0.925704 + 0.378248i \(0.123473\pi\)
\(828\) 0 0
\(829\) 22.3607i 0.776619i 0.921529 + 0.388309i \(0.126941\pi\)
−0.921529 + 0.388309i \(0.873059\pi\)
\(830\) 12.3747 40.4911i 0.429532 1.40547i
\(831\) 0 0
\(832\) −27.9272 5.91753i −0.968200 0.205153i
\(833\) 92.2816 3.19737
\(834\) 0 0
\(835\) −20.2406 −0.700455
\(836\) 0 0
\(837\) 0 0
\(838\) 26.9137 + 8.22521i 0.929717 + 0.284135i
\(839\) 14.8324i 0.512071i −0.966667 0.256036i \(-0.917584\pi\)
0.966667 0.256036i \(-0.0824164\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −12.9394 + 42.3388i −0.445920 + 1.45909i
\(843\) 0 0
\(844\) 0 0
\(845\) 0.595910i 0.0204999i
\(846\) 0 0
\(847\) 57.4391i 1.97363i
\(848\) 0 0
\(849\) 0 0
\(850\) −30.7916 9.41035i −1.05614 0.322772i
\(851\) 0 0
\(852\) 0 0
\(853\) 52.4791i 1.79685i 0.439128 + 0.898425i \(0.355288\pi\)
−0.439128 + 0.898425i \(0.644712\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −14.6913 18.1305i −0.502139 0.619686i
\(857\) −19.3412 −0.660684 −0.330342 0.943861i \(-0.607164\pi\)
−0.330342 + 0.943861i \(0.607164\pi\)
\(858\) 0 0
\(859\) 46.4327 1.58426 0.792132 0.610349i \(-0.208971\pi\)
0.792132 + 0.610349i \(0.208971\pi\)
\(860\) 24.9081 36.9447i 0.849361 1.25981i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −54.6838 −1.85930
\(866\) 0 0
\(867\) 0 0
\(868\) −77.4508 52.2173i −2.62885 1.77237i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 58.3808 1.97363
\(876\) 0 0
\(877\) 59.0924i 1.99541i 0.0677220 + 0.997704i \(0.478427\pi\)
−0.0677220 + 0.997704i \(0.521573\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −27.5000 + 11.1243i −0.927025 + 0.375000i
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 82.2291 + 25.1304i 2.76880 + 0.846185i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 18.1662 26.9449i 0.610997 0.906255i
\(885\) 0 0
\(886\) 0 0
\(887\) 50.8257i 1.70656i −0.521452 0.853281i \(-0.674609\pi\)
0.521452 0.853281i \(-0.325391\pi\)
\(888\) 0 0
\(889\) 7.26650 0.243711
\(890\) −12.2614 + 40.1205i −0.411004 + 1.34484i
\(891\) −29.8496 −1.00000
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 44.4972i 1.48738i
\(896\) −51.6913 28.6028i −1.72689 0.955553i
\(897\) 0 0
\(898\) 17.9424 + 5.48348i 0.598747 + 0.182986i
\(899\) 0 0
\(900\) −24.8747 16.7705i −0.829156 0.559017i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.0000 0.332411
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) −10.8412 7.30911i −0.359777 0.242561i
\(909\) 0 0
\(910\) −17.2216 + 56.3507i −0.570890 + 1.86801i
\(911\) 8.94427i 0.296337i −0.988962 0.148168i \(-0.952662\pi\)
0.988962 0.148168i \(-0.0473378\pi\)
\(912\) 0 0
\(913\) 44.4064 1.46964
\(914\) −13.8417 4.23022i −0.457842 0.139923i
\(915\) 0 0
\(916\) −33.1662 + 49.1935i −1.09584 + 1.62540i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 52.9280 1.74215
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 49.1169 + 33.1146i 1.60888 + 1.08470i
\(933\) 0 0
\(934\) 0 0
\(935\) 33.7690i 1.10436i
\(936\) 23.5251 19.0626i 0.768941 0.623081i
\(937\) 36.4702 1.19143 0.595714 0.803196i \(-0.296869\pi\)
0.595714 + 0.803196i \(0.296869\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −6.00000 14.8324i −0.195283 0.482753i
\(945\) 0 0
\(946\) 44.6913 + 13.6583i 1.45304 + 0.444070i
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 60.9697i 1.97916i
\(950\) 0 0
\(951\) 0 0
\(952\) 52.2500 42.3388i 1.69343 1.37221i
\(953\) 60.3648 1.95541 0.977704 0.209987i \(-0.0673422\pi\)
0.977704 + 0.209987i \(0.0673422\pi\)
\(954\) 0 0
\(955\) 60.0000 1.94155
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −49.0000 −1.58065
\(962\) 0 0
\(963\) 24.7511 0.797593
\(964\) 0 0
\(965\) 2.52143i 0.0811678i
\(966\) 0 0
\(967\) 49.7788i 1.60078i 0.599481 + 0.800389i \(0.295374\pi\)
−0.599481 + 0.800389i \(0.704626\pi\)
\(968\) −19.5875 24.1729i −0.629568 0.776946i
\(969\) 0 0
\(970\) 0 0
\(971\) 59.6992 1.91584 0.957920 0.287035i \(-0.0926697\pi\)
0.957920 + 0.287035i \(0.0926697\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) −44.0000 −1.40625
\(980\) −50.6662 + 75.1502i −1.61847 + 2.40058i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −6.80864 −0.216941
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 9.19607 30.0904i 0.292270 0.956336i
\(991\) 62.6099i 1.98887i 0.105356 + 0.994435i \(0.466402\pi\)
−0.105356 + 0.994435i \(0.533598\pi\)
\(992\) −50.4016 + 4.43651i −1.60025 + 0.140859i
\(993\) 0 0
\(994\) 104.749 + 32.0129i 3.32245 + 1.01539i
\(995\) −33.1662 −1.05144
\(996\) 0 0
\(997\) 23.4084i 0.741350i 0.928763 + 0.370675i \(0.120874\pi\)
−0.928763 + 0.370675i \(0.879126\pi\)
\(998\) −5.40985 1.65333i −0.171246 0.0523353i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.c.b.219.1 8
4.3 odd 2 1760.2.c.b.879.4 8
5.4 even 2 inner 440.2.c.b.219.8 yes 8
8.3 odd 2 inner 440.2.c.b.219.2 yes 8
8.5 even 2 1760.2.c.b.879.5 8
11.10 odd 2 inner 440.2.c.b.219.8 yes 8
20.19 odd 2 1760.2.c.b.879.1 8
40.19 odd 2 inner 440.2.c.b.219.7 yes 8
40.29 even 2 1760.2.c.b.879.8 8
44.43 even 2 1760.2.c.b.879.1 8
55.54 odd 2 CM 440.2.c.b.219.1 8
88.21 odd 2 1760.2.c.b.879.8 8
88.43 even 2 inner 440.2.c.b.219.7 yes 8
220.219 even 2 1760.2.c.b.879.4 8
440.109 odd 2 1760.2.c.b.879.5 8
440.219 even 2 inner 440.2.c.b.219.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.c.b.219.1 8 1.1 even 1 trivial
440.2.c.b.219.1 8 55.54 odd 2 CM
440.2.c.b.219.2 yes 8 8.3 odd 2 inner
440.2.c.b.219.2 yes 8 440.219 even 2 inner
440.2.c.b.219.7 yes 8 40.19 odd 2 inner
440.2.c.b.219.7 yes 8 88.43 even 2 inner
440.2.c.b.219.8 yes 8 5.4 even 2 inner
440.2.c.b.219.8 yes 8 11.10 odd 2 inner
1760.2.c.b.879.1 8 20.19 odd 2
1760.2.c.b.879.1 8 44.43 even 2
1760.2.c.b.879.4 8 4.3 odd 2
1760.2.c.b.879.4 8 220.219 even 2
1760.2.c.b.879.5 8 8.5 even 2
1760.2.c.b.879.5 8 440.109 odd 2
1760.2.c.b.879.8 8 40.29 even 2
1760.2.c.b.879.8 8 88.21 odd 2