Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [440,2,Mod(141,440)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(440, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 5, 0, 6]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("440.141");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 440 = 2^{3} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 440.bi (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.51341768894\) |
Analytic rank: | \(0\) |
Dimension: | \(176\) |
Relative dimension: | \(44\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
141.1 | −1.40731 | + | 0.139522i | −1.64066 | − | 2.25818i | 1.96107 | − | 0.392703i | 0.951057 | − | 0.309017i | 2.62400 | + | 2.94906i | −2.50625 | − | 1.82090i | −2.70505 | + | 0.826268i | −1.48055 | + | 4.55666i | −1.29532 | + | 0.567577i |
141.2 | −1.40089 | − | 0.193691i | −0.181740 | − | 0.250144i | 1.92497 | + | 0.542678i | 0.951057 | − | 0.309017i | 0.206147 | + | 0.385625i | 1.70838 | + | 1.24121i | −2.59155 | − | 1.13308i | 0.897508 | − | 2.76225i | −1.39218 | + | 0.248687i |
141.3 | −1.38798 | − | 0.271150i | 0.737421 | + | 1.01497i | 1.85296 | + | 0.752699i | −0.951057 | + | 0.309017i | −0.748313 | − | 1.60871i | −1.82369 | − | 1.32499i | −2.36776 | − | 1.54716i | 0.440670 | − | 1.35624i | 1.40383 | − | 0.171029i |
141.4 | −1.38740 | − | 0.274076i | −1.15082 | − | 1.58396i | 1.84976 | + | 0.760508i | −0.951057 | + | 0.309017i | 1.16252 | + | 2.51301i | 0.982305 | + | 0.713686i | −2.35793 | − | 1.56211i | −0.257512 | + | 0.792540i | 1.40419 | − | 0.168069i |
141.5 | −1.33308 | + | 0.472107i | −1.10200 | − | 1.51677i | 1.55423 | − | 1.25872i | −0.951057 | + | 0.309017i | 2.18513 | + | 1.50172i | −0.250287 | − | 0.181844i | −1.47767 | + | 2.41174i | −0.159139 | + | 0.489779i | 1.12195 | − | 0.860946i |
141.6 | −1.30840 | + | 0.536747i | 0.629032 | + | 0.865789i | 1.42381 | − | 1.40456i | 0.951057 | − | 0.309017i | −1.28773 | − | 0.795164i | −2.90328 | − | 2.10936i | −1.10901 | + | 2.60194i | 0.573143 | − | 1.76395i | −1.07850 | + | 0.914794i |
141.7 | −1.30393 | + | 0.547521i | 1.63487 | + | 2.25021i | 1.40044 | − | 1.42785i | 0.951057 | − | 0.309017i | −3.36378 | − | 2.03898i | 1.14662 | + | 0.833067i | −1.04429 | + | 2.62858i | −1.46358 | + | 4.50442i | −1.07091 | + | 0.923658i |
141.8 | −1.16760 | + | 0.797936i | 0.447728 | + | 0.616245i | 0.726598 | − | 1.86335i | −0.951057 | + | 0.309017i | −1.01449 | − | 0.362272i | −3.07379 | − | 2.23324i | 0.638451 | + | 2.75543i | 0.747754 | − | 2.30135i | 0.863882 | − | 1.11969i |
141.9 | −1.16620 | − | 0.799992i | 1.24182 | + | 1.70922i | 0.720027 | + | 1.86589i | 0.951057 | − | 0.309017i | −0.0808452 | − | 2.98672i | 4.19870 | + | 3.05053i | 0.653007 | − | 2.75201i | −0.452256 | + | 1.39190i | −1.35633 | − | 0.400463i |
141.10 | −1.11143 | − | 0.874482i | 0.817965 | + | 1.12583i | 0.470561 | + | 1.94385i | −0.951057 | + | 0.309017i | 0.0754081 | − | 1.96658i | 1.51723 | + | 1.10233i | 1.17687 | − | 2.57196i | 0.328619 | − | 1.01139i | 1.32726 | + | 0.488231i |
141.11 | −1.07634 | + | 0.917325i | −1.43949 | − | 1.98129i | 0.317028 | − | 1.97471i | 0.951057 | − | 0.309017i | 3.36687 | + | 0.812064i | 2.79417 | + | 2.03008i | 1.47022 | + | 2.41629i | −0.926319 | + | 2.85092i | −0.740194 | + | 1.20504i |
141.12 | −0.936190 | − | 1.05998i | −1.76822 | − | 2.43375i | −0.247097 | + | 1.98468i | −0.951057 | + | 0.309017i | −0.924324 | + | 4.15273i | −3.56481 | − | 2.58998i | 2.33504 | − | 1.59612i | −1.86948 | + | 5.75367i | 1.21792 | + | 0.718798i |
141.13 | −0.928705 | − | 1.06654i | 0.510216 | + | 0.702252i | −0.275014 | + | 1.98100i | 0.951057 | − | 0.309017i | 0.275139 | − | 1.19635i | −3.04744 | − | 2.21410i | 2.36822 | − | 1.54645i | 0.694213 | − | 2.13657i | −1.21283 | − | 0.727354i |
141.14 | −0.867603 | + | 1.11681i | 1.68053 | + | 2.31305i | −0.494531 | − | 1.93790i | −0.951057 | + | 0.309017i | −4.04128 | − | 0.129976i | 1.91912 | + | 1.39432i | 2.59332 | + | 1.12903i | −1.59898 | + | 4.92115i | 0.480026 | − | 1.33025i |
141.15 | −0.753980 | + | 1.19646i | 0.146254 | + | 0.201302i | −0.863029 | − | 1.80421i | −0.951057 | + | 0.309017i | −0.351122 | + | 0.0232099i | 0.460550 | + | 0.334609i | 2.80937 | + | 0.327759i | 0.907919 | − | 2.79429i | 0.347351 | − | 1.37089i |
141.16 | −0.687331 | − | 1.23595i | −1.58735 | − | 2.18480i | −1.05515 | + | 1.69902i | 0.951057 | − | 0.309017i | −1.60927 | + | 3.46357i | 2.62183 | + | 1.90487i | 2.82514 | + | 0.136332i | −1.32662 | + | 4.08290i | −1.03562 | − | 0.963063i |
141.17 | −0.630440 | + | 1.26592i | 1.00423 | + | 1.38221i | −1.20509 | − | 1.59617i | 0.951057 | − | 0.309017i | −2.38287 | + | 0.399877i | 1.69771 | + | 1.23346i | 2.78035 | − | 0.519256i | 0.0250325 | − | 0.0770420i | −0.208394 | + | 1.39878i |
141.18 | −0.373026 | − | 1.36413i | −0.645500 | − | 0.888455i | −1.72170 | + | 1.01771i | 0.951057 | − | 0.309017i | −0.971180 | + | 1.21196i | 0.366696 | + | 0.266420i | 2.03053 | + | 1.96899i | 0.554369 | − | 1.70617i | −0.776308 | − | 1.18209i |
141.19 | −0.265232 | − | 1.38912i | 1.08077 | + | 1.48755i | −1.85930 | + | 0.736877i | 0.951057 | − | 0.309017i | 1.77973 | − | 1.89586i | −0.397798 | − | 0.289017i | 1.51676 | + | 2.38735i | −0.117688 | + | 0.362207i | −0.681512 | − | 1.23917i |
141.20 | −0.234051 | + | 1.39471i | −1.00423 | − | 1.38221i | −1.89044 | − | 0.652866i | −0.951057 | + | 0.309017i | 2.16283 | − | 1.07711i | 1.69771 | + | 1.23346i | 1.35302 | − | 2.48382i | 0.0250325 | − | 0.0770420i | −0.208394 | − | 1.39878i |
See next 80 embeddings (of 176 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
88.o | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 440.2.bi.c | ✓ | 176 |
8.b | even | 2 | 1 | inner | 440.2.bi.c | ✓ | 176 |
11.c | even | 5 | 1 | inner | 440.2.bi.c | ✓ | 176 |
88.o | even | 10 | 1 | inner | 440.2.bi.c | ✓ | 176 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
440.2.bi.c | ✓ | 176 | 1.a | even | 1 | 1 | trivial |
440.2.bi.c | ✓ | 176 | 8.b | even | 2 | 1 | inner |
440.2.bi.c | ✓ | 176 | 11.c | even | 5 | 1 | inner |
440.2.bi.c | ✓ | 176 | 88.o | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{176} - 96 T_{3}^{174} + 4862 T_{3}^{172} - 173153 T_{3}^{170} + 4880921 T_{3}^{168} + \cdots + 27\!\cdots\!96 \)
acting on \(S_{2}^{\mathrm{new}}(440, [\chi])\).