Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [440,2,Mod(69,440)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(440, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 5, 5, 8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("440.69");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 440 = 2^{3} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 440.bd (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.51341768894\) |
Analytic rank: | \(0\) |
Dimension: | \(272\) |
Relative dimension: | \(68\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
69.1 | −1.41421 | − | 0.00201151i | 0.363134 | + | 1.11761i | 1.99999 | + | 0.00568940i | −1.66040 | + | 1.49768i | −0.511301 | − | 1.58127i | −0.495674 | − | 0.161054i | −2.82840 | − | 0.0120690i | 1.30986 | − | 0.951669i | 2.35118 | − | 2.11470i |
69.2 | −1.41416 | − | 0.0120545i | −0.00450228 | − | 0.0138566i | 1.99971 | + | 0.0340941i | −0.514302 | − | 2.17612i | 0.00619992 | + | 0.0196498i | 1.45391 | + | 0.472403i | −2.82750 | − | 0.0723201i | 2.42688 | − | 1.76323i | 0.701074 | + | 3.08358i |
69.3 | −1.39377 | + | 0.239585i | 0.897907 | + | 2.76347i | 1.88520 | − | 0.667852i | 1.18714 | + | 1.89491i | −1.91356 | − | 3.63653i | 1.03680 | + | 0.336878i | −2.46753 | + | 1.38250i | −4.40350 | + | 3.19933i | −2.10860 | − | 2.35666i |
69.4 | −1.39363 | − | 0.240425i | −0.703945 | − | 2.16652i | 1.88439 | + | 0.670126i | −1.76148 | + | 1.37738i | 0.460151 | + | 3.18857i | 2.75216 | + | 0.894232i | −2.46502 | − | 1.38696i | −1.77122 | + | 1.28686i | 2.78601 | − | 1.49605i |
69.5 | −1.38721 | + | 0.275042i | −1.05118 | − | 3.23521i | 1.84870 | − | 0.763081i | 2.15276 | − | 0.604677i | 2.34803 | + | 4.19879i | −2.50710 | − | 0.814606i | −2.35466 | + | 1.56703i | −6.93453 | + | 5.03823i | −2.82002 | + | 1.43091i |
69.6 | −1.37727 | − | 0.321136i | 0.139352 | + | 0.428881i | 1.79374 | + | 0.884581i | 1.76999 | + | 1.36643i | −0.0541962 | − | 0.635436i | −2.33222 | − | 0.757784i | −2.18640 | − | 1.79434i | 2.26253 | − | 1.64382i | −1.99895 | − | 2.45035i |
69.7 | −1.32994 | + | 0.480907i | −0.313562 | − | 0.965045i | 1.53746 | − | 1.27915i | 2.23460 | + | 0.0809787i | 0.881114 | + | 1.13265i | 3.37030 | + | 1.09508i | −1.42956 | + | 2.44056i | 1.59406 | − | 1.15815i | −3.01082 | + | 0.966940i |
69.8 | −1.26368 | + | 0.634921i | 0.786928 | + | 2.42192i | 1.19375 | − | 1.60467i | −2.11481 | − | 0.726346i | −2.53215 | − | 2.56088i | −3.88154 | − | 1.26119i | −0.489673 | + | 2.78572i | −2.81937 | + | 2.04839i | 3.13361 | − | 0.424873i |
69.9 | −1.24780 | + | 0.665584i | −0.592589 | − | 1.82380i | 1.11399 | − | 1.66103i | −2.23406 | + | 0.0946529i | 1.95333 | + | 1.88132i | −1.32376 | − | 0.430115i | −0.284485 | + | 2.81408i | −0.548040 | + | 0.398175i | 2.72466 | − | 1.60507i |
69.10 | −1.23898 | − | 0.681851i | −0.578005 | − | 1.77892i | 1.07016 | + | 1.68960i | 1.54673 | − | 1.61481i | −0.496817 | + | 2.59816i | 1.21265 | + | 0.394015i | −0.173853 | − | 2.82308i | −0.403404 | + | 0.293090i | −3.01744 | + | 0.946085i |
69.11 | −1.20900 | − | 0.733710i | −0.662317 | − | 2.03840i | 0.923339 | + | 1.77410i | 0.896103 | + | 2.04866i | −0.694858 | + | 2.95037i | −0.776340 | − | 0.252248i | 0.185365 | − | 2.82235i | −1.28937 | + | 0.936782i | 0.419736 | − | 3.13430i |
69.12 | −1.20853 | − | 0.734470i | 0.494804 | + | 1.52285i | 0.921108 | + | 1.77526i | −1.76108 | − | 1.37789i | 0.520501 | − | 2.20384i | 1.87765 | + | 0.610085i | 0.190687 | − | 2.82199i | 0.352807 | − | 0.256329i | 1.11631 | + | 2.95869i |
69.13 | −1.20813 | − | 0.735138i | 0.882355 | + | 2.71561i | 0.919144 | + | 1.77628i | 0.988697 | − | 2.00561i | 0.930351 | − | 3.92946i | −4.43032 | − | 1.43950i | 0.195369 | − | 2.82167i | −4.16893 | + | 3.02891i | −2.66887 | + | 1.69621i |
69.14 | −1.15789 | + | 0.811963i | 0.250044 | + | 0.769556i | 0.681432 | − | 1.88033i | 2.05403 | − | 0.883720i | −0.914375 | − | 0.688037i | −3.11966 | − | 1.01364i | 0.737734 | + | 2.73052i | 1.89736 | − | 1.37851i | −1.66080 | + | 2.69105i |
69.15 | −1.13003 | + | 0.850311i | 0.250044 | + | 0.769556i | 0.553941 | − | 1.92176i | −0.205737 | + | 2.22658i | −0.936920 | − | 0.657007i | 3.11966 | + | 1.01364i | 1.00812 | + | 2.64267i | 1.89736 | − | 1.37851i | −1.66080 | − | 2.69105i |
69.16 | −1.07881 | − | 0.914421i | 0.402650 | + | 1.23923i | 0.327670 | + | 1.97298i | 2.22341 | − | 0.237575i | 0.698794 | − | 1.70509i | 4.67210 | + | 1.51806i | 1.45064 | − | 2.42810i | 1.05349 | − | 0.765403i | −2.61589 | − | 1.77683i |
69.17 | −1.01860 | + | 0.981049i | −0.592589 | − | 1.82380i | 0.0750873 | − | 1.99859i | −0.600343 | − | 2.15397i | 2.39285 | + | 1.27636i | 1.32376 | + | 0.430115i | 1.88423 | + | 2.10943i | −0.548040 | + | 0.398175i | 2.72466 | + | 1.60507i |
69.18 | −0.994343 | + | 1.00562i | 0.786928 | + | 2.42192i | −0.0225629 | − | 1.99987i | −1.34431 | − | 1.78685i | −3.21802 | − | 1.61686i | 3.88154 | + | 1.26119i | 2.03356 | + | 1.96587i | −2.81937 | + | 2.04839i | 3.13361 | + | 0.424873i |
69.19 | −0.976466 | − | 1.02299i | 0.140964 | + | 0.433841i | −0.0930269 | + | 1.99784i | −1.73106 | + | 1.41543i | 0.306170 | − | 0.567836i | −2.83764 | − | 0.922004i | 2.13461 | − | 1.85565i | 2.25870 | − | 1.64104i | 3.13829 | + | 0.388745i |
69.20 | −0.868343 | + | 1.11624i | −0.313562 | − | 0.965045i | −0.491962 | − | 1.93855i | 0.767545 | + | 2.10021i | 1.34950 | + | 0.487980i | −3.37030 | − | 1.09508i | 2.59107 | + | 1.13418i | 1.59406 | − | 1.15815i | −3.01082 | − | 0.966940i |
See next 80 embeddings (of 272 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
40.f | even | 2 | 1 | inner |
55.j | even | 10 | 1 | inner |
88.o | even | 10 | 1 | inner |
440.bd | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 440.2.bd.a | ✓ | 272 |
5.b | even | 2 | 1 | inner | 440.2.bd.a | ✓ | 272 |
8.b | even | 2 | 1 | inner | 440.2.bd.a | ✓ | 272 |
11.c | even | 5 | 1 | inner | 440.2.bd.a | ✓ | 272 |
40.f | even | 2 | 1 | inner | 440.2.bd.a | ✓ | 272 |
55.j | even | 10 | 1 | inner | 440.2.bd.a | ✓ | 272 |
88.o | even | 10 | 1 | inner | 440.2.bd.a | ✓ | 272 |
440.bd | even | 10 | 1 | inner | 440.2.bd.a | ✓ | 272 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
440.2.bd.a | ✓ | 272 | 1.a | even | 1 | 1 | trivial |
440.2.bd.a | ✓ | 272 | 5.b | even | 2 | 1 | inner |
440.2.bd.a | ✓ | 272 | 8.b | even | 2 | 1 | inner |
440.2.bd.a | ✓ | 272 | 11.c | even | 5 | 1 | inner |
440.2.bd.a | ✓ | 272 | 40.f | even | 2 | 1 | inner |
440.2.bd.a | ✓ | 272 | 55.j | even | 10 | 1 | inner |
440.2.bd.a | ✓ | 272 | 88.o | even | 10 | 1 | inner |
440.2.bd.a | ✓ | 272 | 440.bd | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(440, [\chi])\).