Properties

Label 440.2.bd.a
Level $440$
Weight $2$
Character orbit 440.bd
Analytic conductor $3.513$
Analytic rank $0$
Dimension $272$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,2,Mod(69,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.bd (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(272\)
Relative dimension: \(68\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 272 q - 6 q^{4} + 2 q^{6} - 72 q^{9} - 12 q^{10} - 18 q^{14} + 6 q^{15} - 34 q^{16} + 4 q^{20} - 10 q^{24} - 6 q^{25} + 44 q^{26} - 38 q^{30} - 12 q^{31} - 40 q^{34} + 16 q^{36} - 20 q^{39} - 12 q^{40}+ \cdots + 110 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
69.1 −1.41421 0.00201151i 0.363134 + 1.11761i 1.99999 + 0.00568940i −1.66040 + 1.49768i −0.511301 1.58127i −0.495674 0.161054i −2.82840 0.0120690i 1.30986 0.951669i 2.35118 2.11470i
69.2 −1.41416 0.0120545i −0.00450228 0.0138566i 1.99971 + 0.0340941i −0.514302 2.17612i 0.00619992 + 0.0196498i 1.45391 + 0.472403i −2.82750 0.0723201i 2.42688 1.76323i 0.701074 + 3.08358i
69.3 −1.39377 + 0.239585i 0.897907 + 2.76347i 1.88520 0.667852i 1.18714 + 1.89491i −1.91356 3.63653i 1.03680 + 0.336878i −2.46753 + 1.38250i −4.40350 + 3.19933i −2.10860 2.35666i
69.4 −1.39363 0.240425i −0.703945 2.16652i 1.88439 + 0.670126i −1.76148 + 1.37738i 0.460151 + 3.18857i 2.75216 + 0.894232i −2.46502 1.38696i −1.77122 + 1.28686i 2.78601 1.49605i
69.5 −1.38721 + 0.275042i −1.05118 3.23521i 1.84870 0.763081i 2.15276 0.604677i 2.34803 + 4.19879i −2.50710 0.814606i −2.35466 + 1.56703i −6.93453 + 5.03823i −2.82002 + 1.43091i
69.6 −1.37727 0.321136i 0.139352 + 0.428881i 1.79374 + 0.884581i 1.76999 + 1.36643i −0.0541962 0.635436i −2.33222 0.757784i −2.18640 1.79434i 2.26253 1.64382i −1.99895 2.45035i
69.7 −1.32994 + 0.480907i −0.313562 0.965045i 1.53746 1.27915i 2.23460 + 0.0809787i 0.881114 + 1.13265i 3.37030 + 1.09508i −1.42956 + 2.44056i 1.59406 1.15815i −3.01082 + 0.966940i
69.8 −1.26368 + 0.634921i 0.786928 + 2.42192i 1.19375 1.60467i −2.11481 0.726346i −2.53215 2.56088i −3.88154 1.26119i −0.489673 + 2.78572i −2.81937 + 2.04839i 3.13361 0.424873i
69.9 −1.24780 + 0.665584i −0.592589 1.82380i 1.11399 1.66103i −2.23406 + 0.0946529i 1.95333 + 1.88132i −1.32376 0.430115i −0.284485 + 2.81408i −0.548040 + 0.398175i 2.72466 1.60507i
69.10 −1.23898 0.681851i −0.578005 1.77892i 1.07016 + 1.68960i 1.54673 1.61481i −0.496817 + 2.59816i 1.21265 + 0.394015i −0.173853 2.82308i −0.403404 + 0.293090i −3.01744 + 0.946085i
69.11 −1.20900 0.733710i −0.662317 2.03840i 0.923339 + 1.77410i 0.896103 + 2.04866i −0.694858 + 2.95037i −0.776340 0.252248i 0.185365 2.82235i −1.28937 + 0.936782i 0.419736 3.13430i
69.12 −1.20853 0.734470i 0.494804 + 1.52285i 0.921108 + 1.77526i −1.76108 1.37789i 0.520501 2.20384i 1.87765 + 0.610085i 0.190687 2.82199i 0.352807 0.256329i 1.11631 + 2.95869i
69.13 −1.20813 0.735138i 0.882355 + 2.71561i 0.919144 + 1.77628i 0.988697 2.00561i 0.930351 3.92946i −4.43032 1.43950i 0.195369 2.82167i −4.16893 + 3.02891i −2.66887 + 1.69621i
69.14 −1.15789 + 0.811963i 0.250044 + 0.769556i 0.681432 1.88033i 2.05403 0.883720i −0.914375 0.688037i −3.11966 1.01364i 0.737734 + 2.73052i 1.89736 1.37851i −1.66080 + 2.69105i
69.15 −1.13003 + 0.850311i 0.250044 + 0.769556i 0.553941 1.92176i −0.205737 + 2.22658i −0.936920 0.657007i 3.11966 + 1.01364i 1.00812 + 2.64267i 1.89736 1.37851i −1.66080 2.69105i
69.16 −1.07881 0.914421i 0.402650 + 1.23923i 0.327670 + 1.97298i 2.22341 0.237575i 0.698794 1.70509i 4.67210 + 1.51806i 1.45064 2.42810i 1.05349 0.765403i −2.61589 1.77683i
69.17 −1.01860 + 0.981049i −0.592589 1.82380i 0.0750873 1.99859i −0.600343 2.15397i 2.39285 + 1.27636i 1.32376 + 0.430115i 1.88423 + 2.10943i −0.548040 + 0.398175i 2.72466 + 1.60507i
69.18 −0.994343 + 1.00562i 0.786928 + 2.42192i −0.0225629 1.99987i −1.34431 1.78685i −3.21802 1.61686i 3.88154 + 1.26119i 2.03356 + 1.96587i −2.81937 + 2.04839i 3.13361 + 0.424873i
69.19 −0.976466 1.02299i 0.140964 + 0.433841i −0.0930269 + 1.99784i −1.73106 + 1.41543i 0.306170 0.567836i −2.83764 0.922004i 2.13461 1.85565i 2.25870 1.64104i 3.13829 + 0.388745i
69.20 −0.868343 + 1.11624i −0.313562 0.965045i −0.491962 1.93855i 0.767545 + 2.10021i 1.34950 + 0.487980i −3.37030 1.09508i 2.59107 + 1.13418i 1.59406 1.15815i −3.01082 0.966940i
See next 80 embeddings (of 272 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 69.68
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.b even 2 1 inner
11.c even 5 1 inner
40.f even 2 1 inner
55.j even 10 1 inner
88.o even 10 1 inner
440.bd even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 440.2.bd.a 272
5.b even 2 1 inner 440.2.bd.a 272
8.b even 2 1 inner 440.2.bd.a 272
11.c even 5 1 inner 440.2.bd.a 272
40.f even 2 1 inner 440.2.bd.a 272
55.j even 10 1 inner 440.2.bd.a 272
88.o even 10 1 inner 440.2.bd.a 272
440.bd even 10 1 inner 440.2.bd.a 272
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.bd.a 272 1.a even 1 1 trivial
440.2.bd.a 272 5.b even 2 1 inner
440.2.bd.a 272 8.b even 2 1 inner
440.2.bd.a 272 11.c even 5 1 inner
440.2.bd.a 272 40.f even 2 1 inner
440.2.bd.a 272 55.j even 10 1 inner
440.2.bd.a 272 88.o even 10 1 inner
440.2.bd.a 272 440.bd even 10 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(440, [\chi])\).