Properties

Label 440.2.b.c.89.1
Level $440$
Weight $2$
Character 440.89
Analytic conductor $3.513$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,2,Mod(89,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.89");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 440.89
Dual form 440.2.b.c.89.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(2.00000 - 1.00000i) q^{5} -1.00000i q^{7} +2.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} +(2.00000 - 1.00000i) q^{5} -1.00000i q^{7} +2.00000 q^{9} -1.00000 q^{11} +(-1.00000 - 2.00000i) q^{15} -1.00000i q^{17} -1.00000 q^{19} -1.00000 q^{21} +(3.00000 - 4.00000i) q^{25} -5.00000i q^{27} +1.00000 q^{29} -1.00000 q^{31} +1.00000i q^{33} +(-1.00000 - 2.00000i) q^{35} -1.00000i q^{37} +6.00000i q^{43} +(4.00000 - 2.00000i) q^{45} -8.00000i q^{47} +6.00000 q^{49} -1.00000 q^{51} +9.00000i q^{53} +(-2.00000 + 1.00000i) q^{55} +1.00000i q^{57} -4.00000 q^{59} -7.00000 q^{61} -2.00000i q^{63} +4.00000i q^{67} +5.00000 q^{71} +14.0000i q^{73} +(-4.00000 - 3.00000i) q^{75} +1.00000i q^{77} -4.00000 q^{79} +1.00000 q^{81} +16.0000i q^{83} +(-1.00000 - 2.00000i) q^{85} -1.00000i q^{87} +7.00000 q^{89} +1.00000i q^{93} +(-2.00000 + 1.00000i) q^{95} +16.0000i q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{5} + 4 q^{9} - 2 q^{11} - 2 q^{15} - 2 q^{19} - 2 q^{21} + 6 q^{25} + 2 q^{29} - 2 q^{31} - 2 q^{35} + 8 q^{45} + 12 q^{49} - 2 q^{51} - 4 q^{55} - 8 q^{59} - 14 q^{61} + 10 q^{71} - 8 q^{75} - 8 q^{79} + 2 q^{81} - 2 q^{85} + 14 q^{89} - 4 q^{95} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i −0.957427 0.288675i \(-0.906785\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(4\) 0 0
\(5\) 2.00000 1.00000i 0.894427 0.447214i
\(6\) 0 0
\(7\) 1.00000i 0.377964i −0.981981 0.188982i \(-0.939481\pi\)
0.981981 0.188982i \(-0.0605189\pi\)
\(8\) 0 0
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) −1.00000 2.00000i −0.258199 0.516398i
\(16\) 0 0
\(17\) 1.00000i 0.242536i −0.992620 0.121268i \(-0.961304\pi\)
0.992620 0.121268i \(-0.0386960\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 5.00000i 0.962250i
\(28\) 0 0
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605 −0.0898027 0.995960i \(-0.528624\pi\)
−0.0898027 + 0.995960i \(0.528624\pi\)
\(32\) 0 0
\(33\) 1.00000i 0.174078i
\(34\) 0 0
\(35\) −1.00000 2.00000i −0.169031 0.338062i
\(36\) 0 0
\(37\) 1.00000i 0.164399i −0.996616 0.0821995i \(-0.973806\pi\)
0.996616 0.0821995i \(-0.0261945\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 6.00000i 0.914991i 0.889212 + 0.457496i \(0.151253\pi\)
−0.889212 + 0.457496i \(0.848747\pi\)
\(44\) 0 0
\(45\) 4.00000 2.00000i 0.596285 0.298142i
\(46\) 0 0
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) 6.00000 0.857143
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) 9.00000i 1.23625i 0.786082 + 0.618123i \(0.212106\pi\)
−0.786082 + 0.618123i \(0.787894\pi\)
\(54\) 0 0
\(55\) −2.00000 + 1.00000i −0.269680 + 0.134840i
\(56\) 0 0
\(57\) 1.00000i 0.132453i
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) 0 0
\(63\) 2.00000i 0.251976i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.00000 0.593391 0.296695 0.954972i \(-0.404115\pi\)
0.296695 + 0.954972i \(0.404115\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) 0 0
\(75\) −4.00000 3.00000i −0.461880 0.346410i
\(76\) 0 0
\(77\) 1.00000i 0.113961i
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000i 1.75623i 0.478451 + 0.878114i \(0.341198\pi\)
−0.478451 + 0.878114i \(0.658802\pi\)
\(84\) 0 0
\(85\) −1.00000 2.00000i −0.108465 0.216930i
\(86\) 0 0
\(87\) 1.00000i 0.107211i
\(88\) 0 0
\(89\) 7.00000 0.741999 0.370999 0.928633i \(-0.379015\pi\)
0.370999 + 0.928633i \(0.379015\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.00000i 0.103695i
\(94\) 0 0
\(95\) −2.00000 + 1.00000i −0.205196 + 0.102598i
\(96\) 0 0
\(97\) 16.0000i 1.62455i 0.583272 + 0.812277i \(0.301772\pi\)
−0.583272 + 0.812277i \(0.698228\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 0 0
\(105\) −2.00000 + 1.00000i −0.195180 + 0.0975900i
\(106\) 0 0
\(107\) 8.00000i 0.773389i −0.922208 0.386695i \(-0.873617\pi\)
0.922208 0.386695i \(-0.126383\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) −1.00000 −0.0949158
\(112\) 0 0
\(113\) 2.00000i 0.188144i 0.995565 + 0.0940721i \(0.0299884\pi\)
−0.995565 + 0.0940721i \(0.970012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) 16.0000i 1.41977i 0.704317 + 0.709885i \(0.251253\pi\)
−0.704317 + 0.709885i \(0.748747\pi\)
\(128\) 0 0
\(129\) 6.00000 0.528271
\(130\) 0 0
\(131\) 21.0000 1.83478 0.917389 0.397991i \(-0.130293\pi\)
0.917389 + 0.397991i \(0.130293\pi\)
\(132\) 0 0
\(133\) 1.00000i 0.0867110i
\(134\) 0 0
\(135\) −5.00000 10.0000i −0.430331 0.860663i
\(136\) 0 0
\(137\) 12.0000i 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2.00000 1.00000i 0.166091 0.0830455i
\(146\) 0 0
\(147\) 6.00000i 0.494872i
\(148\) 0 0
\(149\) −17.0000 −1.39269 −0.696347 0.717705i \(-0.745193\pi\)
−0.696347 + 0.717705i \(0.745193\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 0 0
\(153\) 2.00000i 0.161690i
\(154\) 0 0
\(155\) −2.00000 + 1.00000i −0.160644 + 0.0803219i
\(156\) 0 0
\(157\) 13.0000i 1.03751i −0.854922 0.518756i \(-0.826395\pi\)
0.854922 0.518756i \(-0.173605\pi\)
\(158\) 0 0
\(159\) 9.00000 0.713746
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 19.0000i 1.48819i 0.668071 + 0.744097i \(0.267120\pi\)
−0.668071 + 0.744097i \(0.732880\pi\)
\(164\) 0 0
\(165\) 1.00000 + 2.00000i 0.0778499 + 0.155700i
\(166\) 0 0
\(167\) 3.00000i 0.232147i 0.993241 + 0.116073i \(0.0370308\pi\)
−0.993241 + 0.116073i \(0.962969\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) −2.00000 −0.152944
\(172\) 0 0
\(173\) 22.0000i 1.67263i −0.548250 0.836315i \(-0.684706\pi\)
0.548250 0.836315i \(-0.315294\pi\)
\(174\) 0 0
\(175\) −4.00000 3.00000i −0.302372 0.226779i
\(176\) 0 0
\(177\) 4.00000i 0.300658i
\(178\) 0 0
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 7.00000i 0.517455i
\(184\) 0 0
\(185\) −1.00000 2.00000i −0.0735215 0.147043i
\(186\) 0 0
\(187\) 1.00000i 0.0731272i
\(188\) 0 0
\(189\) −5.00000 −0.363696
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) 13.0000i 0.935760i 0.883792 + 0.467880i \(0.154982\pi\)
−0.883792 + 0.467880i \(0.845018\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000i 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 0 0
\(199\) −17.0000 −1.20510 −0.602549 0.798082i \(-0.705848\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) 1.00000i 0.0701862i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) 17.0000 1.17033 0.585164 0.810915i \(-0.301030\pi\)
0.585164 + 0.810915i \(0.301030\pi\)
\(212\) 0 0
\(213\) 5.00000i 0.342594i
\(214\) 0 0
\(215\) 6.00000 + 12.0000i 0.409197 + 0.818393i
\(216\) 0 0
\(217\) 1.00000i 0.0678844i
\(218\) 0 0
\(219\) 14.0000 0.946032
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 10.0000i 0.669650i −0.942280 0.334825i \(-0.891323\pi\)
0.942280 0.334825i \(-0.108677\pi\)
\(224\) 0 0
\(225\) 6.00000 8.00000i 0.400000 0.533333i
\(226\) 0 0
\(227\) 12.0000i 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 0 0
\(229\) −12.0000 −0.792982 −0.396491 0.918039i \(-0.629772\pi\)
−0.396491 + 0.918039i \(0.629772\pi\)
\(230\) 0 0
\(231\) 1.00000 0.0657952
\(232\) 0 0
\(233\) 1.00000i 0.0655122i 0.999463 + 0.0327561i \(0.0104285\pi\)
−0.999463 + 0.0327561i \(0.989572\pi\)
\(234\) 0 0
\(235\) −8.00000 16.0000i −0.521862 1.04372i
\(236\) 0 0
\(237\) 4.00000i 0.259828i
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 16.0000i 1.02640i
\(244\) 0 0
\(245\) 12.0000 6.00000i 0.766652 0.383326i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 16.0000 1.01396
\(250\) 0 0
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −2.00000 + 1.00000i −0.125245 + 0.0626224i
\(256\) 0 0
\(257\) 24.0000i 1.49708i −0.663090 0.748539i \(-0.730755\pi\)
0.663090 0.748539i \(-0.269245\pi\)
\(258\) 0 0
\(259\) −1.00000 −0.0621370
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) 21.0000i 1.29492i −0.762101 0.647458i \(-0.775832\pi\)
0.762101 0.647458i \(-0.224168\pi\)
\(264\) 0 0
\(265\) 9.00000 + 18.0000i 0.552866 + 1.10573i
\(266\) 0 0
\(267\) 7.00000i 0.428393i
\(268\) 0 0
\(269\) −8.00000 −0.487769 −0.243884 0.969804i \(-0.578422\pi\)
−0.243884 + 0.969804i \(0.578422\pi\)
\(270\) 0 0
\(271\) −6.00000 −0.364474 −0.182237 0.983255i \(-0.558334\pi\)
−0.182237 + 0.983255i \(0.558334\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.00000 + 4.00000i −0.180907 + 0.241209i
\(276\) 0 0
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) 0 0
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) 20.0000i 1.18888i −0.804141 0.594438i \(-0.797374\pi\)
0.804141 0.594438i \(-0.202626\pi\)
\(284\) 0 0
\(285\) 1.00000 + 2.00000i 0.0592349 + 0.118470i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 16.0000 0.941176
\(290\) 0 0
\(291\) 16.0000 0.937937
\(292\) 0 0
\(293\) 16.0000i 0.934730i 0.884064 + 0.467365i \(0.154797\pi\)
−0.884064 + 0.467365i \(0.845203\pi\)
\(294\) 0 0
\(295\) −8.00000 + 4.00000i −0.465778 + 0.232889i
\(296\) 0 0
\(297\) 5.00000i 0.290129i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 6.00000 0.345834
\(302\) 0 0
\(303\) 10.0000i 0.574485i
\(304\) 0 0
\(305\) −14.0000 + 7.00000i −0.801638 + 0.400819i
\(306\) 0 0
\(307\) 16.0000i 0.913168i 0.889680 + 0.456584i \(0.150927\pi\)
−0.889680 + 0.456584i \(0.849073\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −13.0000 −0.737162 −0.368581 0.929596i \(-0.620156\pi\)
−0.368581 + 0.929596i \(0.620156\pi\)
\(312\) 0 0
\(313\) 18.0000i 1.01742i −0.860938 0.508710i \(-0.830123\pi\)
0.860938 0.508710i \(-0.169877\pi\)
\(314\) 0 0
\(315\) −2.00000 4.00000i −0.112687 0.225374i
\(316\) 0 0
\(317\) 1.00000i 0.0561656i 0.999606 + 0.0280828i \(0.00894021\pi\)
−0.999606 + 0.0280828i \(0.991060\pi\)
\(318\) 0 0
\(319\) −1.00000 −0.0559893
\(320\) 0 0
\(321\) −8.00000 −0.446516
\(322\) 0 0
\(323\) 1.00000i 0.0556415i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.0000i 0.553001i
\(328\) 0 0
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) −34.0000 −1.86881 −0.934405 0.356214i \(-0.884068\pi\)
−0.934405 + 0.356214i \(0.884068\pi\)
\(332\) 0 0
\(333\) 2.00000i 0.109599i
\(334\) 0 0
\(335\) 4.00000 + 8.00000i 0.218543 + 0.437087i
\(336\) 0 0
\(337\) 13.0000i 0.708155i 0.935216 + 0.354078i \(0.115205\pi\)
−0.935216 + 0.354078i \(0.884795\pi\)
\(338\) 0 0
\(339\) 2.00000 0.108625
\(340\) 0 0
\(341\) 1.00000 0.0541530
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.0000i 0.966291i 0.875540 + 0.483145i \(0.160506\pi\)
−0.875540 + 0.483145i \(0.839494\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.0000i 0.745145i −0.928003 0.372572i \(-0.878476\pi\)
0.928003 0.372572i \(-0.121524\pi\)
\(354\) 0 0
\(355\) 10.0000 5.00000i 0.530745 0.265372i
\(356\) 0 0
\(357\) 1.00000i 0.0529256i
\(358\) 0 0
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) 14.0000 + 28.0000i 0.732793 + 1.46559i
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.00000 0.467257
\(372\) 0 0
\(373\) 4.00000i 0.207112i 0.994624 + 0.103556i \(0.0330221\pi\)
−0.994624 + 0.103556i \(0.966978\pi\)
\(374\) 0 0
\(375\) −11.0000 2.00000i −0.568038 0.103280i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −2.00000 −0.102733 −0.0513665 0.998680i \(-0.516358\pi\)
−0.0513665 + 0.998680i \(0.516358\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) 0 0
\(383\) 18.0000i 0.919757i 0.887982 + 0.459879i \(0.152107\pi\)
−0.887982 + 0.459879i \(0.847893\pi\)
\(384\) 0 0
\(385\) 1.00000 + 2.00000i 0.0509647 + 0.101929i
\(386\) 0 0
\(387\) 12.0000i 0.609994i
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 21.0000i 1.05931i
\(394\) 0 0
\(395\) −8.00000 + 4.00000i −0.402524 + 0.201262i
\(396\) 0 0
\(397\) 14.0000i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 0 0
\(399\) 1.00000 0.0500626
\(400\) 0 0
\(401\) −29.0000 −1.44819 −0.724095 0.689700i \(-0.757743\pi\)
−0.724095 + 0.689700i \(0.757743\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.00000 1.00000i 0.0993808 0.0496904i
\(406\) 0 0
\(407\) 1.00000i 0.0495682i
\(408\) 0 0
\(409\) 32.0000 1.58230 0.791149 0.611623i \(-0.209483\pi\)
0.791149 + 0.611623i \(0.209483\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) 4.00000i 0.196827i
\(414\) 0 0
\(415\) 16.0000 + 32.0000i 0.785409 + 1.57082i
\(416\) 0 0
\(417\) 12.0000i 0.587643i
\(418\) 0 0
\(419\) −8.00000 −0.390826 −0.195413 0.980721i \(-0.562605\pi\)
−0.195413 + 0.980721i \(0.562605\pi\)
\(420\) 0 0
\(421\) 24.0000 1.16969 0.584844 0.811146i \(-0.301156\pi\)
0.584844 + 0.811146i \(0.301156\pi\)
\(422\) 0 0
\(423\) 16.0000i 0.777947i
\(424\) 0 0
\(425\) −4.00000 3.00000i −0.194029 0.145521i
\(426\) 0 0
\(427\) 7.00000i 0.338754i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 26.0000i 1.24948i 0.780833 + 0.624740i \(0.214795\pi\)
−0.780833 + 0.624740i \(0.785205\pi\)
\(434\) 0 0
\(435\) −1.00000 2.00000i −0.0479463 0.0958927i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −26.0000 −1.24091 −0.620456 0.784241i \(-0.713053\pi\)
−0.620456 + 0.784241i \(0.713053\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) 20.0000i 0.950229i 0.879924 + 0.475114i \(0.157593\pi\)
−0.879924 + 0.475114i \(0.842407\pi\)
\(444\) 0 0
\(445\) 14.0000 7.00000i 0.663664 0.331832i
\(446\) 0 0
\(447\) 17.0000i 0.804072i
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 10.0000i 0.469841i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.00000i 0.0467780i 0.999726 + 0.0233890i \(0.00744563\pi\)
−0.999726 + 0.0233890i \(0.992554\pi\)
\(458\) 0 0
\(459\) −5.00000 −0.233380
\(460\) 0 0
\(461\) 9.00000 0.419172 0.209586 0.977790i \(-0.432788\pi\)
0.209586 + 0.977790i \(0.432788\pi\)
\(462\) 0 0
\(463\) 36.0000i 1.67306i −0.547920 0.836531i \(-0.684580\pi\)
0.547920 0.836531i \(-0.315420\pi\)
\(464\) 0 0
\(465\) 1.00000 + 2.00000i 0.0463739 + 0.0927478i
\(466\) 0 0
\(467\) 5.00000i 0.231372i 0.993286 + 0.115686i \(0.0369067\pi\)
−0.993286 + 0.115686i \(0.963093\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) −13.0000 −0.599008
\(472\) 0 0
\(473\) 6.00000i 0.275880i
\(474\) 0 0
\(475\) −3.00000 + 4.00000i −0.137649 + 0.183533i
\(476\) 0 0
\(477\) 18.0000i 0.824163i
\(478\) 0 0
\(479\) 34.0000 1.55350 0.776750 0.629809i \(-0.216867\pi\)
0.776750 + 0.629809i \(0.216867\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.0000 + 32.0000i 0.726523 + 1.45305i
\(486\) 0 0
\(487\) 18.0000i 0.815658i −0.913058 0.407829i \(-0.866286\pi\)
0.913058 0.407829i \(-0.133714\pi\)
\(488\) 0 0
\(489\) 19.0000 0.859210
\(490\) 0 0
\(491\) −27.0000 −1.21849 −0.609246 0.792981i \(-0.708528\pi\)
−0.609246 + 0.792981i \(0.708528\pi\)
\(492\) 0 0
\(493\) 1.00000i 0.0450377i
\(494\) 0 0
\(495\) −4.00000 + 2.00000i −0.179787 + 0.0898933i
\(496\) 0 0
\(497\) 5.00000i 0.224281i
\(498\) 0 0
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 0 0
\(501\) 3.00000 0.134030
\(502\) 0 0
\(503\) 24.0000i 1.07011i −0.844818 0.535054i \(-0.820291\pi\)
0.844818 0.535054i \(-0.179709\pi\)
\(504\) 0 0
\(505\) −20.0000 + 10.0000i −0.889988 + 0.444994i
\(506\) 0 0
\(507\) 13.0000i 0.577350i
\(508\) 0 0
\(509\) −8.00000 −0.354594 −0.177297 0.984157i \(-0.556735\pi\)
−0.177297 + 0.984157i \(0.556735\pi\)
\(510\) 0 0
\(511\) 14.0000 0.619324
\(512\) 0 0
\(513\) 5.00000i 0.220755i
\(514\) 0 0
\(515\) 8.00000 + 16.0000i 0.352522 + 0.705044i
\(516\) 0 0
\(517\) 8.00000i 0.351840i
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) −2.00000 −0.0876216 −0.0438108 0.999040i \(-0.513950\pi\)
−0.0438108 + 0.999040i \(0.513950\pi\)
\(522\) 0 0
\(523\) 28.0000i 1.22435i −0.790721 0.612177i \(-0.790294\pi\)
0.790721 0.612177i \(-0.209706\pi\)
\(524\) 0 0
\(525\) −3.00000 + 4.00000i −0.130931 + 0.174574i
\(526\) 0 0
\(527\) 1.00000i 0.0435607i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −8.00000 −0.347170
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −8.00000 16.0000i −0.345870 0.691740i
\(536\) 0 0
\(537\) 10.0000i 0.431532i
\(538\) 0 0
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) 3.00000 0.128980 0.0644900 0.997918i \(-0.479458\pi\)
0.0644900 + 0.997918i \(0.479458\pi\)
\(542\) 0 0
\(543\) 22.0000i 0.944110i
\(544\) 0 0
\(545\) −20.0000 + 10.0000i −0.856706 + 0.428353i
\(546\) 0 0
\(547\) 12.0000i 0.513083i 0.966533 + 0.256541i \(0.0825830\pi\)
−0.966533 + 0.256541i \(0.917417\pi\)
\(548\) 0 0
\(549\) −14.0000 −0.597505
\(550\) 0 0
\(551\) −1.00000 −0.0426014
\(552\) 0 0
\(553\) 4.00000i 0.170097i
\(554\) 0 0
\(555\) −2.00000 + 1.00000i −0.0848953 + 0.0424476i
\(556\) 0 0
\(557\) 8.00000i 0.338971i −0.985533 0.169485i \(-0.945789\pi\)
0.985533 0.169485i \(-0.0542106\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 1.00000 0.0422200
\(562\) 0 0
\(563\) 12.0000i 0.505740i −0.967500 0.252870i \(-0.918626\pi\)
0.967500 0.252870i \(-0.0813744\pi\)
\(564\) 0 0
\(565\) 2.00000 + 4.00000i 0.0841406 + 0.168281i
\(566\) 0 0
\(567\) 1.00000i 0.0419961i
\(568\) 0 0
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) 7.00000 0.292941 0.146470 0.989215i \(-0.453209\pi\)
0.146470 + 0.989215i \(0.453209\pi\)
\(572\) 0 0
\(573\) 24.0000i 1.00261i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 4.00000i 0.166522i −0.996528 0.0832611i \(-0.973466\pi\)
0.996528 0.0832611i \(-0.0265335\pi\)
\(578\) 0 0
\(579\) 13.0000 0.540262
\(580\) 0 0
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) 9.00000i 0.372742i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 33.0000i 1.36206i −0.732257 0.681028i \(-0.761533\pi\)
0.732257 0.681028i \(-0.238467\pi\)
\(588\) 0 0
\(589\) 1.00000 0.0412043
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) 0 0
\(593\) 18.0000i 0.739171i −0.929197 0.369586i \(-0.879500\pi\)
0.929197 0.369586i \(-0.120500\pi\)
\(594\) 0 0
\(595\) −2.00000 + 1.00000i −0.0819920 + 0.0409960i
\(596\) 0 0
\(597\) 17.0000i 0.695764i
\(598\) 0 0
\(599\) 5.00000 0.204294 0.102147 0.994769i \(-0.467429\pi\)
0.102147 + 0.994769i \(0.467429\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 8.00000i 0.325785i
\(604\) 0 0
\(605\) 2.00000 1.00000i 0.0813116 0.0406558i
\(606\) 0 0
\(607\) 3.00000i 0.121766i −0.998145 0.0608831i \(-0.980608\pi\)
0.998145 0.0608831i \(-0.0193917\pi\)
\(608\) 0 0
\(609\) −1.00000 −0.0405220
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 46.0000i 1.85792i −0.370177 0.928961i \(-0.620703\pi\)
0.370177 0.928961i \(-0.379297\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.00000i 0.322068i 0.986949 + 0.161034i \(0.0514829\pi\)
−0.986949 + 0.161034i \(0.948517\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.00000i 0.280449i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 1.00000i 0.0399362i
\(628\) 0 0
\(629\) −1.00000 −0.0398726
\(630\) 0 0
\(631\) 21.0000 0.835997 0.417998 0.908448i \(-0.362732\pi\)
0.417998 + 0.908448i \(0.362732\pi\)
\(632\) 0 0
\(633\) 17.0000i 0.675689i
\(634\) 0 0
\(635\) 16.0000 + 32.0000i 0.634941 + 1.26988i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 10.0000 0.395594
\(640\) 0 0
\(641\) −1.00000 −0.0394976 −0.0197488 0.999805i \(-0.506287\pi\)
−0.0197488 + 0.999805i \(0.506287\pi\)
\(642\) 0 0
\(643\) 1.00000i 0.0394362i −0.999806 0.0197181i \(-0.993723\pi\)
0.999806 0.0197181i \(-0.00627687\pi\)
\(644\) 0 0
\(645\) 12.0000 6.00000i 0.472500 0.236250i
\(646\) 0 0
\(647\) 48.0000i 1.88707i −0.331266 0.943537i \(-0.607476\pi\)
0.331266 0.943537i \(-0.392524\pi\)
\(648\) 0 0
\(649\) 4.00000 0.157014
\(650\) 0 0
\(651\) 1.00000 0.0391931
\(652\) 0 0
\(653\) 27.0000i 1.05659i 0.849060 + 0.528296i \(0.177169\pi\)
−0.849060 + 0.528296i \(0.822831\pi\)
\(654\) 0 0
\(655\) 42.0000 21.0000i 1.64108 0.820538i
\(656\) 0 0
\(657\) 28.0000i 1.09238i
\(658\) 0 0
\(659\) 33.0000 1.28550 0.642749 0.766077i \(-0.277794\pi\)
0.642749 + 0.766077i \(0.277794\pi\)
\(660\) 0 0
\(661\) 28.0000 1.08907 0.544537 0.838737i \(-0.316705\pi\)
0.544537 + 0.838737i \(0.316705\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.00000 + 2.00000i 0.0387783 + 0.0775567i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −10.0000 −0.386622
\(670\) 0 0
\(671\) 7.00000 0.270232
\(672\) 0 0
\(673\) 35.0000i 1.34915i −0.738206 0.674575i \(-0.764327\pi\)
0.738206 0.674575i \(-0.235673\pi\)
\(674\) 0 0
\(675\) −20.0000 15.0000i −0.769800 0.577350i
\(676\) 0 0
\(677\) 36.0000i 1.38359i −0.722093 0.691796i \(-0.756820\pi\)
0.722093 0.691796i \(-0.243180\pi\)
\(678\) 0 0
\(679\) 16.0000 0.614024
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 15.0000i 0.573959i −0.957937 0.286980i \(-0.907349\pi\)
0.957937 0.286980i \(-0.0926512\pi\)
\(684\) 0 0
\(685\) −12.0000 24.0000i −0.458496 0.916993i
\(686\) 0 0
\(687\) 12.0000i 0.457829i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 40.0000 1.52167 0.760836 0.648944i \(-0.224789\pi\)
0.760836 + 0.648944i \(0.224789\pi\)
\(692\) 0 0
\(693\) 2.00000i 0.0759737i
\(694\) 0 0
\(695\) −24.0000 + 12.0000i −0.910372 + 0.455186i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 1.00000 0.0378235
\(700\) 0 0
\(701\) 33.0000 1.24639 0.623196 0.782065i \(-0.285834\pi\)
0.623196 + 0.782065i \(0.285834\pi\)
\(702\) 0 0
\(703\) 1.00000i 0.0377157i
\(704\) 0 0
\(705\) −16.0000 + 8.00000i −0.602595 + 0.301297i
\(706\) 0 0
\(707\) 10.0000i 0.376089i
\(708\) 0 0
\(709\) −18.0000 −0.676004 −0.338002 0.941145i \(-0.609751\pi\)
−0.338002 + 0.941145i \(0.609751\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 16.0000i 0.597531i
\(718\) 0 0
\(719\) 41.0000 1.52904 0.764521 0.644599i \(-0.222976\pi\)
0.764521 + 0.644599i \(0.222976\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.00000 4.00000i 0.111417 0.148556i
\(726\) 0 0
\(727\) 18.0000i 0.667583i 0.942647 + 0.333792i \(0.108328\pi\)
−0.942647 + 0.333792i \(0.891672\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 6.00000 0.221918
\(732\) 0 0
\(733\) 6.00000i 0.221615i −0.993842 0.110808i \(-0.964656\pi\)
0.993842 0.110808i \(-0.0353437\pi\)
\(734\) 0 0
\(735\) −6.00000 12.0000i −0.221313 0.442627i
\(736\) 0 0
\(737\) 4.00000i 0.147342i
\(738\) 0 0
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.0000i 0.770415i 0.922830 + 0.385208i \(0.125870\pi\)
−0.922830 + 0.385208i \(0.874130\pi\)
\(744\) 0 0
\(745\) −34.0000 + 17.0000i −1.24566 + 0.622832i
\(746\) 0 0
\(747\) 32.0000i 1.17082i
\(748\) 0 0
\(749\) −8.00000 −0.292314
\(750\) 0 0
\(751\) −29.0000 −1.05823 −0.529113 0.848552i \(-0.677475\pi\)
−0.529113 + 0.848552i \(0.677475\pi\)
\(752\) 0 0
\(753\) 6.00000i 0.218652i
\(754\) 0 0
\(755\) 20.0000 10.0000i 0.727875 0.363937i
\(756\) 0 0
\(757\) 10.0000i 0.363456i −0.983349 0.181728i \(-0.941831\pi\)
0.983349 0.181728i \(-0.0581691\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20.0000 −0.724999 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(762\) 0 0
\(763\) 10.0000i 0.362024i
\(764\) 0 0
\(765\) −2.00000 4.00000i −0.0723102 0.144620i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) 0 0
\(773\) 45.0000i 1.61854i 0.587439 + 0.809269i \(0.300136\pi\)
−0.587439 + 0.809269i \(0.699864\pi\)
\(774\) 0 0
\(775\) −3.00000 + 4.00000i −0.107763 + 0.143684i
\(776\) 0 0
\(777\) 1.00000i 0.0358748i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −5.00000 −0.178914
\(782\) 0 0
\(783\) 5.00000i 0.178685i
\(784\) 0 0
\(785\) −13.0000 26.0000i −0.463990 0.927980i
\(786\) 0 0
\(787\) 30.0000i 1.06938i −0.845047 0.534692i \(-0.820428\pi\)
0.845047 0.534692i \(-0.179572\pi\)
\(788\) 0 0
\(789\) −21.0000 −0.747620
\(790\) 0 0
\(791\) 2.00000 0.0711118
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 18.0000 9.00000i 0.638394 0.319197i
\(796\) 0 0
\(797\) 54.0000i 1.91278i 0.292096 + 0.956389i \(0.405647\pi\)
−0.292096 + 0.956389i \(0.594353\pi\)