Properties

Label 440.2.a.b.1.1
Level $440$
Weight $2$
Character 440.1
Self dual yes
Analytic conductor $3.513$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,2,Mod(1,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.51341768894\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -2.00000 q^{7} -3.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{5} -2.00000 q^{7} -3.00000 q^{9} +1.00000 q^{11} -4.00000 q^{13} -4.00000 q^{17} +1.00000 q^{25} -6.00000 q^{29} +2.00000 q^{35} -2.00000 q^{37} +6.00000 q^{41} +2.00000 q^{43} +3.00000 q^{45} -3.00000 q^{49} -10.0000 q^{53} -1.00000 q^{55} +12.0000 q^{59} -6.00000 q^{61} +6.00000 q^{63} +4.00000 q^{65} -12.0000 q^{67} +16.0000 q^{71} +4.00000 q^{73} -2.00000 q^{77} -4.00000 q^{79} +9.00000 q^{81} +2.00000 q^{83} +4.00000 q^{85} +6.00000 q^{89} +8.00000 q^{91} -2.00000 q^{97} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) 3.00000 0.447214
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 0 0
\(63\) 6.00000 0.755929
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 16.0000 1.89885 0.949425 0.313993i \(-0.101667\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 2.00000 0.219529 0.109764 0.993958i \(-0.464990\pi\)
0.109764 + 0.993958i \(0.464990\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 12.0000 1.10940
\(118\) 0 0
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −22.0000 −1.95218 −0.976092 0.217357i \(-0.930256\pi\)
−0.976092 + 0.217357i \(0.930256\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 0 0
\(153\) 12.0000 0.970143
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −24.0000 −1.87983 −0.939913 0.341415i \(-0.889094\pi\)
−0.939913 + 0.341415i \(0.889094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.00000 −0.464294 −0.232147 0.972681i \(-0.574575\pi\)
−0.232147 + 0.972681i \(0.574575\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −24.0000 −1.82469 −0.912343 0.409426i \(-0.865729\pi\)
−0.912343 + 0.409426i \(0.865729\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) −12.0000 −0.863779 −0.431889 0.901927i \(-0.642153\pi\)
−0.431889 + 0.901927i \(0.642153\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.0000 0.842235
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.00000 −0.136399
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.0000 1.07628
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) −3.00000 −0.200000
\(226\) 0 0
\(227\) −26.0000 −1.72568 −0.862840 0.505477i \(-0.831317\pi\)
−0.862840 + 0.505477i \(0.831317\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.00000 0.191663
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −20.0000 −1.26239 −0.631194 0.775625i \(-0.717435\pi\)
−0.631194 + 0.775625i \(0.717435\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 18.0000 1.11417
\(262\) 0 0
\(263\) 6.00000 0.369976 0.184988 0.982741i \(-0.440775\pi\)
0.184988 + 0.982741i \(0.440775\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) −12.0000 −0.721010 −0.360505 0.932757i \(-0.617396\pi\)
−0.360505 + 0.932757i \(0.617396\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −26.0000 −1.55103 −0.775515 0.631329i \(-0.782510\pi\)
−0.775515 + 0.631329i \(0.782510\pi\)
\(282\) 0 0
\(283\) 18.0000 1.06999 0.534994 0.844856i \(-0.320314\pi\)
0.534994 + 0.844856i \(0.320314\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.0000 −0.701047 −0.350524 0.936554i \(-0.613996\pi\)
−0.350524 + 0.936554i \(0.613996\pi\)
\(294\) 0 0
\(295\) −12.0000 −0.698667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.00000 0.343559
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 0 0
\(315\) −6.00000 −0.338062
\(316\) 0 0
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 0 0
\(333\) 6.00000 0.328798
\(334\) 0 0
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) 28.0000 1.52526 0.762629 0.646837i \(-0.223908\pi\)
0.762629 + 0.646837i \(0.223908\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 34.0000 1.82522 0.912608 0.408836i \(-0.134065\pi\)
0.912608 + 0.408836i \(0.134065\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.0000 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(354\) 0 0
\(355\) −16.0000 −0.849192
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.00000 −0.209370
\(366\) 0 0
\(367\) 32.0000 1.67039 0.835193 0.549957i \(-0.185356\pi\)
0.835193 + 0.549957i \(0.185356\pi\)
\(368\) 0 0
\(369\) −18.0000 −0.937043
\(370\) 0 0
\(371\) 20.0000 1.03835
\(372\) 0 0
\(373\) −16.0000 −0.828449 −0.414224 0.910175i \(-0.635947\pi\)
−0.414224 + 0.910175i \(0.635947\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.0000 0.613171 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(384\) 0 0
\(385\) 2.00000 0.101929
\(386\) 0 0
\(387\) −6.00000 −0.304997
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −9.00000 −0.447214
\(406\) 0 0
\(407\) −2.00000 −0.0991363
\(408\) 0 0
\(409\) 2.00000 0.0988936 0.0494468 0.998777i \(-0.484254\pi\)
0.0494468 + 0.998777i \(0.484254\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −24.0000 −1.18096
\(414\) 0 0
\(415\) −2.00000 −0.0981761
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) 12.0000 0.580721
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) 30.0000 1.44171 0.720854 0.693087i \(-0.243750\pi\)
0.720854 + 0.693087i \(0.243750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 32.0000 1.52728 0.763638 0.645644i \(-0.223411\pi\)
0.763638 + 0.645644i \(0.223411\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.00000 −0.375046
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) 24.0000 1.10822
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.00000 0.0919601
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 30.0000 1.37361
\(478\) 0 0
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) 0 0
\(481\) 8.00000 0.364769
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 24.0000 1.08091
\(494\) 0 0
\(495\) 3.00000 0.134840
\(496\) 0 0
\(497\) −32.0000 −1.43540
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) 6.00000 0.262362 0.131181 0.991358i \(-0.458123\pi\)
0.131181 + 0.991358i \(0.458123\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −36.0000 −1.56227
\(532\) 0 0
\(533\) −24.0000 −1.03956
\(534\) 0 0
\(535\) 6.00000 0.259403
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.00000 −0.129219
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) −42.0000 −1.79579 −0.897895 0.440209i \(-0.854904\pi\)
−0.897895 + 0.440209i \(0.854904\pi\)
\(548\) 0 0
\(549\) 18.0000 0.768221
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 8.00000 0.340195
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.0000 1.01691 0.508456 0.861088i \(-0.330216\pi\)
0.508456 + 0.861088i \(0.330216\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −34.0000 −1.43293 −0.716465 0.697623i \(-0.754241\pi\)
−0.716465 + 0.697623i \(0.754241\pi\)
\(564\) 0 0
\(565\) −14.0000 −0.588984
\(566\) 0 0
\(567\) −18.0000 −0.755929
\(568\) 0 0
\(569\) −38.0000 −1.59304 −0.796521 0.604610i \(-0.793329\pi\)
−0.796521 + 0.604610i \(0.793329\pi\)
\(570\) 0 0
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −42.0000 −1.74848 −0.874241 0.485491i \(-0.838641\pi\)
−0.874241 + 0.485491i \(0.838641\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.00000 −0.165948
\(582\) 0 0
\(583\) −10.0000 −0.414158
\(584\) 0 0
\(585\) −12.0000 −0.496139
\(586\) 0 0
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12.0000 −0.492781 −0.246390 0.969171i \(-0.579245\pi\)
−0.246390 + 0.969171i \(0.579245\pi\)
\(594\) 0 0
\(595\) −8.00000 −0.327968
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) 0 0
\(601\) −42.0000 −1.71322 −0.856608 0.515968i \(-0.827432\pi\)
−0.856608 + 0.515968i \(0.827432\pi\)
\(602\) 0 0
\(603\) 36.0000 1.46603
\(604\) 0 0
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) 42.0000 1.70473 0.852364 0.522949i \(-0.175168\pi\)
0.852364 + 0.522949i \(0.175168\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 16.0000 0.646234 0.323117 0.946359i \(-0.395269\pi\)
0.323117 + 0.946359i \(0.395269\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.0000 −0.402585 −0.201292 0.979531i \(-0.564514\pi\)
−0.201292 + 0.979531i \(0.564514\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 22.0000 0.873043
\(636\) 0 0
\(637\) 12.0000 0.475457
\(638\) 0 0
\(639\) −48.0000 −1.89885
\(640\) 0 0
\(641\) −34.0000 −1.34292 −0.671460 0.741041i \(-0.734332\pi\)
−0.671460 + 0.741041i \(0.734332\pi\)
\(642\) 0 0
\(643\) −8.00000 −0.315489 −0.157745 0.987480i \(-0.550422\pi\)
−0.157745 + 0.987480i \(0.550422\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.0000 1.10079 0.550397 0.834903i \(-0.314476\pi\)
0.550397 + 0.834903i \(0.314476\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −42.0000 −1.64359 −0.821794 0.569785i \(-0.807026\pi\)
−0.821794 + 0.569785i \(0.807026\pi\)
\(654\) 0 0
\(655\) −8.00000 −0.312586
\(656\) 0 0
\(657\) −12.0000 −0.468165
\(658\) 0 0
\(659\) −28.0000 −1.09073 −0.545363 0.838200i \(-0.683608\pi\)
−0.545363 + 0.838200i \(0.683608\pi\)
\(660\) 0 0
\(661\) 46.0000 1.78919 0.894596 0.446875i \(-0.147463\pi\)
0.894596 + 0.446875i \(0.147463\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.00000 −0.231627
\(672\) 0 0
\(673\) 20.0000 0.770943 0.385472 0.922720i \(-0.374039\pi\)
0.385472 + 0.922720i \(0.374039\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.0000 0.768662 0.384331 0.923195i \(-0.374432\pi\)
0.384331 + 0.923195i \(0.374432\pi\)
\(678\) 0 0
\(679\) 4.00000 0.153506
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 40.0000 1.52388
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 0 0
\(693\) 6.00000 0.227921
\(694\) 0 0
\(695\) 12.0000 0.455186
\(696\) 0 0
\(697\) −24.0000 −0.909065
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.0000 −0.451306
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 12.0000 0.450035
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 4.00000 0.149592
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −40.0000 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) 24.0000 0.886460 0.443230 0.896408i \(-0.353832\pi\)
0.443230 + 0.896408i \(0.353832\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.0000 −0.442026
\(738\) 0 0
\(739\) −44.0000 −1.61857 −0.809283 0.587419i \(-0.800144\pi\)
−0.809283 + 0.587419i \(0.800144\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.0000 0.807102 0.403551 0.914957i \(-0.367776\pi\)
0.403551 + 0.914957i \(0.367776\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) 0 0
\(747\) −6.00000 −0.219529
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) 34.0000 1.23575 0.617876 0.786276i \(-0.287994\pi\)
0.617876 + 0.786276i \(0.287994\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34.0000 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(762\) 0 0
\(763\) 20.0000 0.724049
\(764\) 0 0
\(765\) −12.0000 −0.433861
\(766\) 0 0
\(767\) −48.0000 −1.73318
\(768\) 0 0
\(769\) −18.0000 −0.649097 −0.324548 0.945869i \(-0.605212\pi\)
−0.324548 + 0.945869i \(0.605212\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −34.0000 −1.22290 −0.611448 0.791285i \(-0.709412\pi\)
−0.611448 + 0.791285i \(0.709412\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −18.0000 −0.642448
\(786\) 0 0
\(787\) 26.0000 0.926800 0.463400 0.886149i \(-0.346629\pi\)
0.463400 + 0.886149i \(0.346629\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −28.0000 −0.995565
\(792\) 0 0
\(793\) 24.0000 0.852265
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −22.0000 −0.779280 −0.389640 0.920967i \(-0.627401\pi\)
−0.389640 + 0.920967i \(0.627401\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −18.0000 −0.635999
\(802\) 0 0
\(803\) 4.00000 0.141157
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.0000 0.773479 0.386739 0.922189i \(-0.373601\pi\)
0.386739 + 0.922189i \(0.373601\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 24.0000 0.840683
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −24.0000 −0.838628
\(820\) 0 0
\(821\) −6.00000 −0.209401 −0.104701 0.994504i \(-0.533388\pi\)
−0.104701 + 0.994504i \(0.533388\pi\)
\(822\) 0 0
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.00000 0.0695468 0.0347734 0.999395i \(-0.488929\pi\)
0.0347734 + 0.999395i \(0.488929\pi\)
\(828\) 0 0
\(829\) 50.0000 1.73657 0.868286 0.496064i \(-0.165222\pi\)
0.868286 + 0.496064i \(0.165222\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 12.0000 0.415775
\(834\) 0 0
\(835\) 6.00000 0.207639
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) −2.00000 −0.0687208
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 24.0000 0.821744 0.410872 0.911693i \(-0.365224\pi\)
0.410872 + 0.911693i \(0.365224\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20.0000 −0.683187 −0.341593 0.939848i \(-0.610967\pi\)
−0.341593 + 0.939848i \(0.610967\pi\)
\(858\) 0 0
\(859\) 28.0000 0.955348 0.477674 0.878537i \(-0.341480\pi\)
0.477674 + 0.878537i \(0.341480\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −44.0000 −1.49778 −0.748889 0.662696i \(-0.769412\pi\)
−0.748889 + 0.662696i \(0.769412\pi\)
\(864\) 0 0
\(865\) 24.0000 0.816024
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.00000 −0.135691
\(870\) 0 0
\(871\) 48.0000 1.62642
\(872\) 0 0
\(873\) 6.00000 0.203069
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) −24.0000 −0.810422 −0.405211 0.914223i \(-0.632802\pi\)
−0.405211 + 0.914223i \(0.632802\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 58.0000 1.95407 0.977035 0.213080i \(-0.0683494\pi\)
0.977035 + 0.213080i \(0.0683494\pi\)
\(882\) 0 0
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.0000 1.41022 0.705111 0.709097i \(-0.250897\pi\)
0.705111 + 0.709097i \(0.250897\pi\)
\(888\) 0 0
\(889\) 44.0000 1.47571
\(890\) 0 0
\(891\) 9.00000 0.301511
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −20.0000 −0.668526
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 40.0000 1.33259
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) 0 0
\(907\) 44.0000 1.46100 0.730498 0.682915i \(-0.239288\pi\)
0.730498 + 0.682915i \(0.239288\pi\)
\(908\) 0 0
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) 0 0
\(913\) 2.00000 0.0661903
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −16.0000 −0.528367
\(918\) 0 0
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −64.0000 −2.10659
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 0 0
\(927\) −12.0000 −0.394132
\(928\) 0 0
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.00000 0.130814
\(936\) 0 0
\(937\) −16.0000 −0.522697 −0.261349 0.965244i \(-0.584167\pi\)
−0.261349 + 0.965244i \(0.584167\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 54.0000 1.76035 0.880175 0.474650i \(-0.157425\pi\)
0.880175 + 0.474650i \(0.157425\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.0000 −1.16984 −0.584921 0.811090i \(-0.698875\pi\)
−0.584921 + 0.811090i \(0.698875\pi\)
\(948\) 0 0
\(949\) −16.0000 −0.519382
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 24.0000 0.776622
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 18.0000 0.580042
\(964\) 0 0
\(965\) 12.0000 0.386294
\(966\) 0 0
\(967\) 34.0000 1.09337 0.546683 0.837340i \(-0.315890\pi\)
0.546683 + 0.837340i \(0.315890\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −36.0000 −1.15529 −0.577647 0.816286i \(-0.696029\pi\)
−0.577647 + 0.816286i \(0.696029\pi\)
\(972\) 0 0
\(973\) 24.0000 0.769405
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.0000 −0.319928 −0.159964 0.987123i \(-0.551138\pi\)
−0.159964 + 0.987123i \(0.551138\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) 0 0
\(981\) 30.0000 0.957826
\(982\) 0 0
\(983\) −36.0000 −1.14822 −0.574111 0.818778i \(-0.694652\pi\)
−0.574111 + 0.818778i \(0.694652\pi\)
\(984\) 0 0
\(985\) 8.00000 0.254901
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16.0000 0.507234
\(996\) 0 0
\(997\) 16.0000 0.506725 0.253363 0.967371i \(-0.418463\pi\)
0.253363 + 0.967371i \(0.418463\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.a.b.1.1 1
3.2 odd 2 3960.2.a.j.1.1 1
4.3 odd 2 880.2.a.e.1.1 1
5.2 odd 4 2200.2.b.e.1849.1 2
5.3 odd 4 2200.2.b.e.1849.2 2
5.4 even 2 2200.2.a.g.1.1 1
8.3 odd 2 3520.2.a.v.1.1 1
8.5 even 2 3520.2.a.s.1.1 1
11.10 odd 2 4840.2.a.d.1.1 1
12.11 even 2 7920.2.a.bi.1.1 1
20.3 even 4 4400.2.b.l.4049.1 2
20.7 even 4 4400.2.b.l.4049.2 2
20.19 odd 2 4400.2.a.m.1.1 1
44.43 even 2 9680.2.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.a.b.1.1 1 1.1 even 1 trivial
880.2.a.e.1.1 1 4.3 odd 2
2200.2.a.g.1.1 1 5.4 even 2
2200.2.b.e.1849.1 2 5.2 odd 4
2200.2.b.e.1849.2 2 5.3 odd 4
3520.2.a.s.1.1 1 8.5 even 2
3520.2.a.v.1.1 1 8.3 odd 2
3960.2.a.j.1.1 1 3.2 odd 2
4400.2.a.m.1.1 1 20.19 odd 2
4400.2.b.l.4049.1 2 20.3 even 4
4400.2.b.l.4049.2 2 20.7 even 4
4840.2.a.d.1.1 1 11.10 odd 2
7920.2.a.bi.1.1 1 12.11 even 2
9680.2.a.o.1.1 1 44.43 even 2