# Properties

 Label 440.2.a.b Level $440$ Weight $2$ Character orbit 440.a Self dual yes Analytic conductor $3.513$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [440,2,Mod(1,440)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(440, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("440.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$440 = 2^{3} \cdot 5 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 440.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$3.51341768894$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{5} - 2 q^{7} - 3 q^{9}+O(q^{10})$$ q - q^5 - 2 * q^7 - 3 * q^9 $$q - q^{5} - 2 q^{7} - 3 q^{9} + q^{11} - 4 q^{13} - 4 q^{17} + q^{25} - 6 q^{29} + 2 q^{35} - 2 q^{37} + 6 q^{41} + 2 q^{43} + 3 q^{45} - 3 q^{49} - 10 q^{53} - q^{55} + 12 q^{59} - 6 q^{61} + 6 q^{63} + 4 q^{65} - 12 q^{67} + 16 q^{71} + 4 q^{73} - 2 q^{77} - 4 q^{79} + 9 q^{81} + 2 q^{83} + 4 q^{85} + 6 q^{89} + 8 q^{91} - 2 q^{97} - 3 q^{99}+O(q^{100})$$ q - q^5 - 2 * q^7 - 3 * q^9 + q^11 - 4 * q^13 - 4 * q^17 + q^25 - 6 * q^29 + 2 * q^35 - 2 * q^37 + 6 * q^41 + 2 * q^43 + 3 * q^45 - 3 * q^49 - 10 * q^53 - q^55 + 12 * q^59 - 6 * q^61 + 6 * q^63 + 4 * q^65 - 12 * q^67 + 16 * q^71 + 4 * q^73 - 2 * q^77 - 4 * q^79 + 9 * q^81 + 2 * q^83 + 4 * q^85 + 6 * q^89 + 8 * q^91 - 2 * q^97 - 3 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 −2.00000 0 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$
$$11$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 440.2.a.b 1
3.b odd 2 1 3960.2.a.j 1
4.b odd 2 1 880.2.a.e 1
5.b even 2 1 2200.2.a.g 1
5.c odd 4 2 2200.2.b.e 2
8.b even 2 1 3520.2.a.s 1
8.d odd 2 1 3520.2.a.v 1
11.b odd 2 1 4840.2.a.d 1
12.b even 2 1 7920.2.a.bi 1
20.d odd 2 1 4400.2.a.m 1
20.e even 4 2 4400.2.b.l 2
44.c even 2 1 9680.2.a.o 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.a.b 1 1.a even 1 1 trivial
880.2.a.e 1 4.b odd 2 1
2200.2.a.g 1 5.b even 2 1
2200.2.b.e 2 5.c odd 4 2
3520.2.a.s 1 8.b even 2 1
3520.2.a.v 1 8.d odd 2 1
3960.2.a.j 1 3.b odd 2 1
4400.2.a.m 1 20.d odd 2 1
4400.2.b.l 2 20.e even 4 2
4840.2.a.d 1 11.b odd 2 1
7920.2.a.bi 1 12.b even 2 1
9680.2.a.o 1 44.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(440))$$:

 $$T_{3}$$ T3 $$T_{7} + 2$$ T7 + 2 $$T_{13} + 4$$ T13 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T + 2$$
$11$ $$T - 1$$
$13$ $$T + 4$$
$17$ $$T + 4$$
$19$ $$T$$
$23$ $$T$$
$29$ $$T + 6$$
$31$ $$T$$
$37$ $$T + 2$$
$41$ $$T - 6$$
$43$ $$T - 2$$
$47$ $$T$$
$53$ $$T + 10$$
$59$ $$T - 12$$
$61$ $$T + 6$$
$67$ $$T + 12$$
$71$ $$T - 16$$
$73$ $$T - 4$$
$79$ $$T + 4$$
$83$ $$T - 2$$
$89$ $$T - 6$$
$97$ $$T + 2$$