Properties

Label 440.2.a
Level $440$
Weight $2$
Character orbit 440.a
Rep. character $\chi_{440}(1,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $7$
Sturm bound $144$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(144\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(7\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(440))\).

Total New Old
Modular forms 80 10 70
Cusp forms 65 10 55
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(6\)\(1\)\(5\)\(5\)\(1\)\(4\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(13\)\(2\)\(11\)\(11\)\(2\)\(9\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(14\)\(2\)\(12\)\(12\)\(2\)\(10\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(7\)\(0\)\(7\)\(5\)\(0\)\(5\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(10\)\(2\)\(8\)\(8\)\(2\)\(6\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(11\)\(1\)\(10\)\(9\)\(1\)\(8\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(10\)\(0\)\(10\)\(8\)\(0\)\(8\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(9\)\(2\)\(7\)\(7\)\(2\)\(5\)\(2\)\(0\)\(2\)
Plus space\(+\)\(34\)\(2\)\(32\)\(27\)\(2\)\(25\)\(7\)\(0\)\(7\)
Minus space\(-\)\(46\)\(8\)\(38\)\(38\)\(8\)\(30\)\(8\)\(0\)\(8\)

Trace form

\( 10 q + 4 q^{3} - 2 q^{5} + 8 q^{7} + 6 q^{9} + 8 q^{13} + 8 q^{19} + 16 q^{21} - 4 q^{23} + 10 q^{25} + 16 q^{27} + 12 q^{29} + 28 q^{31} - 4 q^{33} - 4 q^{37} - 16 q^{39} - 12 q^{41} + 16 q^{43} + 6 q^{45}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(440))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 11
440.2.a.a 440.a 1.a $1$ $3.513$ \(\Q\) None 440.2.a.a \(0\) \(0\) \(-1\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-2q^{7}-3q^{9}-q^{11}-8q^{19}+\cdots\)
440.2.a.b 440.a 1.a $1$ $3.513$ \(\Q\) None 440.2.a.b \(0\) \(0\) \(-1\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-2q^{7}-3q^{9}+q^{11}-4q^{13}+\cdots\)
440.2.a.c 440.a 1.a $1$ $3.513$ \(\Q\) None 440.2.a.c \(0\) \(0\) \(1\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+4q^{7}-3q^{9}-q^{11}+6q^{13}+\cdots\)
440.2.a.d 440.a 1.a $1$ $3.513$ \(\Q\) None 440.2.a.d \(0\) \(3\) \(1\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+q^{5}+q^{7}+6q^{9}-q^{11}-6q^{13}+\cdots\)
440.2.a.e 440.a 1.a $2$ $3.513$ \(\Q(\sqrt{17}) \) None 440.2.a.e \(0\) \(-1\) \(2\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+q^{5}-\beta q^{7}+(1+\beta )q^{9}+q^{11}+\cdots\)
440.2.a.f 440.a 1.a $2$ $3.513$ \(\Q(\sqrt{17}) \) None 440.2.a.f \(0\) \(1\) \(-2\) \(3\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-q^{5}+(2-\beta )q^{7}+(1+\beta )q^{9}+\cdots\)
440.2.a.g 440.a 1.a $2$ $3.513$ \(\Q(\sqrt{17}) \) None 440.2.a.g \(0\) \(1\) \(-2\) \(5\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-q^{5}+(2+\beta )q^{7}+(1+\beta )q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(440))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(440)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 2}\)