Defining parameters
Level: | \( N \) | \(=\) | \( 440 = 2^{3} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 440.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(440))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 10 | 70 |
Cusp forms | 65 | 10 | 55 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(6\) | \(1\) | \(5\) | \(5\) | \(1\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(13\) | \(2\) | \(11\) | \(11\) | \(2\) | \(9\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(14\) | \(2\) | \(12\) | \(12\) | \(2\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(7\) | \(0\) | \(7\) | \(5\) | \(0\) | \(5\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(10\) | \(2\) | \(8\) | \(8\) | \(2\) | \(6\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(11\) | \(1\) | \(10\) | \(9\) | \(1\) | \(8\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(10\) | \(0\) | \(10\) | \(8\) | \(0\) | \(8\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(9\) | \(2\) | \(7\) | \(7\) | \(2\) | \(5\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(34\) | \(2\) | \(32\) | \(27\) | \(2\) | \(25\) | \(7\) | \(0\) | \(7\) | |||||
Minus space | \(-\) | \(46\) | \(8\) | \(38\) | \(38\) | \(8\) | \(30\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(440))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(440))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(440)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 2}\)