Newspace parameters
| Level: | \( N \) | \(=\) | \( 44 = 2^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 44.g (of order \(10\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(2.59608404025\) |
| Analytic rank: | \(0\) |
| Dimension: | \(64\) |
| Relative dimension: | \(16\) over \(\Q(\zeta_{10})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 7.1 | −2.82727 | + | 0.0808108i | −8.33696 | − | 2.70884i | 7.98694 | − | 0.456948i | 2.66384 | − | 1.93540i | 23.7898 | + | 6.98492i | 9.36317 | + | 28.8169i | −22.5443 | + | 1.93735i | 40.3236 | + | 29.2968i | −7.37501 | + | 5.68716i |
| 7.2 | −2.61226 | + | 1.08447i | −0.385577 | − | 0.125282i | 5.64784 | − | 5.66586i | −12.5983 | + | 9.15323i | 1.14309 | − | 0.0908796i | −7.49067 | − | 23.0539i | −8.60916 | + | 20.9256i | −21.7105 | − | 15.7736i | 22.9837 | − | 37.5732i |
| 7.3 | −2.52462 | − | 1.27526i | 9.06350 | + | 2.94491i | 4.74744 | + | 6.43908i | −11.2635 | + | 8.18338i | −19.1264 | − | 18.9931i | 4.41947 | + | 13.6017i | −3.77402 | − | 22.3105i | 51.6311 | + | 37.5122i | 38.8719 | − | 6.29616i |
| 7.4 | −2.47419 | − | 1.37055i | −0.359909 | − | 0.116941i | 4.24321 | + | 6.78198i | 8.74268 | − | 6.35193i | 0.730208 | + | 0.782607i | −8.16533 | − | 25.1303i | −1.20348 | − | 22.5954i | −21.7276 | − | 15.7860i | −30.3366 | + | 3.73362i |
| 7.5 | −2.25286 | + | 1.71015i | 5.41384 | + | 1.75906i | 2.15076 | − | 7.70547i | 9.36097 | − | 6.80114i | −15.2049 | + | 5.29557i | 4.13125 | + | 12.7147i | 8.33217 | + | 21.0375i | 4.37190 | + | 3.17637i | −9.45796 | + | 31.3307i |
| 7.6 | −1.36627 | − | 2.47655i | −3.16826 | − | 1.02943i | −4.26660 | + | 6.76728i | −7.20176 | + | 5.23238i | 1.77927 | + | 9.25284i | 4.94145 | + | 15.2082i | 22.5889 | + | 1.32051i | −12.8653 | − | 9.34719i | 22.7978 | + | 10.6867i |
| 7.7 | −0.930280 | + | 2.67106i | −5.41384 | − | 1.75906i | −6.26916 | − | 4.96967i | 9.36097 | − | 6.80114i | 9.73495 | − | 12.8243i | −4.13125 | − | 12.7147i | 19.1064 | − | 12.1221i | 4.37190 | + | 3.17637i | 9.45796 | + | 31.3307i |
| 7.8 | −0.237151 | − | 2.81847i | 5.16645 | + | 1.67868i | −7.88752 | + | 1.33681i | 12.4335 | − | 9.03344i | 3.50608 | − | 14.9596i | −0.106317 | − | 0.327210i | 5.63828 | + | 21.9137i | 2.03079 | + | 1.47545i | −28.4091 | − | 32.9010i |
| 7.9 | −0.224162 | + | 2.81953i | 0.385577 | + | 0.125282i | −7.89950 | − | 1.26406i | −12.5983 | + | 9.15323i | −0.439667 | + | 1.05906i | 7.49067 | + | 23.0539i | 5.33483 | − | 21.9895i | −21.7105 | − | 15.7736i | −22.9837 | − | 37.5732i |
| 7.10 | 0.796820 | + | 2.71387i | 8.33696 | + | 2.70884i | −6.73016 | + | 4.32493i | 2.66384 | − | 1.93540i | −0.708387 | + | 24.7839i | −9.36317 | − | 28.8169i | −17.1000 | − | 14.8186i | 40.3236 | + | 29.2968i | 7.37501 | + | 5.68716i |
| 7.11 | 1.14487 | − | 2.58636i | −5.25156 | − | 1.70634i | −5.37855 | − | 5.92210i | −3.44642 | + | 2.50397i | −10.4256 | + | 11.6289i | −3.17779 | − | 9.78024i | −21.4744 | + | 7.13085i | 2.82388 | + | 2.05167i | 2.53048 | + | 11.7804i |
| 7.12 | 1.99299 | + | 2.00698i | −9.06350 | − | 2.94491i | −0.0559633 | + | 7.99980i | −11.2635 | + | 8.18338i | −12.1531 | − | 24.0595i | −4.41947 | − | 13.6017i | −16.1670 | + | 15.8312i | 51.6311 | + | 37.5122i | −38.8719 | − | 6.29616i |
| 7.13 | 2.06803 | + | 1.92957i | 0.359909 | + | 0.116941i | 0.553518 | + | 7.98083i | 8.74268 | − | 6.35193i | 0.518657 | + | 0.936308i | 8.16533 | + | 25.1303i | −14.2549 | + | 17.5727i | −21.7276 | − | 15.7860i | 30.3366 | + | 3.73362i |
| 7.14 | 2.10599 | − | 1.88807i | 5.25156 | + | 1.70634i | 0.870417 | − | 7.95251i | −3.44642 | + | 2.50397i | 14.2814 | − | 6.32176i | 3.17779 | + | 9.78024i | −13.1818 | − | 18.3913i | 2.82388 | + | 2.05167i | −2.53048 | + | 11.7804i |
| 7.15 | 2.75381 | − | 0.645410i | −5.16645 | − | 1.67868i | 7.16689 | − | 3.55467i | 12.4335 | − | 9.03344i | −15.3108 | − | 1.28828i | 0.106317 | + | 0.327210i | 17.4420 | − | 14.4144i | 2.03079 | + | 1.47545i | 28.4091 | − | 32.9010i |
| 7.16 | 2.77754 | + | 0.534106i | 3.16826 | + | 1.02943i | 7.42946 | + | 2.96700i | −7.20176 | + | 5.23238i | 8.25015 | + | 4.55147i | −4.94145 | − | 15.2082i | 19.0509 | + | 12.2091i | −12.8653 | − | 9.34719i | −22.7978 | + | 10.6867i |
| 19.1 | −2.82727 | − | 0.0808108i | −8.33696 | + | 2.70884i | 7.98694 | + | 0.456948i | 2.66384 | + | 1.93540i | 23.7898 | − | 6.98492i | 9.36317 | − | 28.8169i | −22.5443 | − | 1.93735i | 40.3236 | − | 29.2968i | −7.37501 | − | 5.68716i |
| 19.2 | −2.61226 | − | 1.08447i | −0.385577 | + | 0.125282i | 5.64784 | + | 5.66586i | −12.5983 | − | 9.15323i | 1.14309 | + | 0.0908796i | −7.49067 | + | 23.0539i | −8.60916 | − | 20.9256i | −21.7105 | + | 15.7736i | 22.9837 | + | 37.5732i |
| 19.3 | −2.52462 | + | 1.27526i | 9.06350 | − | 2.94491i | 4.74744 | − | 6.43908i | −11.2635 | − | 8.18338i | −19.1264 | + | 18.9931i | 4.41947 | − | 13.6017i | −3.77402 | + | 22.3105i | 51.6311 | − | 37.5122i | 38.8719 | + | 6.29616i |
| 19.4 | −2.47419 | + | 1.37055i | −0.359909 | + | 0.116941i | 4.24321 | − | 6.78198i | 8.74268 | + | 6.35193i | 0.730208 | − | 0.782607i | −8.16533 | + | 25.1303i | −1.20348 | + | 22.5954i | −21.7276 | + | 15.7860i | −30.3366 | − | 3.73362i |
| See all 64 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 4.b | odd | 2 | 1 | inner |
| 11.d | odd | 10 | 1 | inner |
| 44.g | even | 10 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 44.4.g.a | ✓ | 64 |
| 4.b | odd | 2 | 1 | inner | 44.4.g.a | ✓ | 64 |
| 11.d | odd | 10 | 1 | inner | 44.4.g.a | ✓ | 64 |
| 44.g | even | 10 | 1 | inner | 44.4.g.a | ✓ | 64 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 44.4.g.a | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
| 44.4.g.a | ✓ | 64 | 4.b | odd | 2 | 1 | inner |
| 44.4.g.a | ✓ | 64 | 11.d | odd | 10 | 1 | inner |
| 44.4.g.a | ✓ | 64 | 44.g | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(44, [\chi])\).