Defining parameters
| Level: | \( N \) | \(=\) | \( 44 = 2^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 44.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(24\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(44))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 21 | 3 | 18 |
| Cusp forms | 15 | 3 | 12 |
| Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(7\) | \(0\) | \(7\) | \(5\) | \(0\) | \(5\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(4\) | \(0\) | \(4\) | \(2\) | \(0\) | \(2\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(5\) | \(1\) | \(4\) | \(4\) | \(1\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(5\) | \(2\) | \(3\) | \(4\) | \(2\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(12\) | \(2\) | \(10\) | \(9\) | \(2\) | \(7\) | \(3\) | \(0\) | \(3\) | ||||
| Minus space | \(-\) | \(9\) | \(1\) | \(8\) | \(6\) | \(1\) | \(5\) | \(3\) | \(0\) | \(3\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(44))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 11 | |||||||
| 44.4.a.a | $1$ | $2.596$ | \(\Q\) | None | \(0\) | \(-5\) | \(-7\) | \(-26\) | $-$ | $+$ | \(q-5q^{3}-7q^{5}-26q^{7}-2q^{9}-11q^{11}+\cdots\) | |
| 44.4.a.b | $2$ | $2.596$ | \(\Q(\sqrt{97}) \) | None | \(0\) | \(9\) | \(11\) | \(10\) | $-$ | $-$ | \(q+(5-\beta )q^{3}+(5+\beta )q^{5}+(2+6\beta )q^{7}+\cdots\) | |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(44))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(44)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 2}\)