Properties

Label 44.3.f.a.17.1
Level $44$
Weight $3$
Character 44.17
Analytic conductor $1.199$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [44,3,Mod(13,44)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("44.13"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 44 = 2^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 44.f (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.19891316319\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 19x^{6} - 37x^{5} + 229x^{4} + 196x^{3} + 1496x^{2} + 2952x + 26896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 17.1
Root \(-1.37056 + 4.21816i\) of defining polynomial
Character \(\chi\) \(=\) 44.17
Dual form 44.3.f.a.13.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.08818 - 2.97024i) q^{3} +(1.46509 - 4.50908i) q^{5} +(-3.91877 - 5.39373i) q^{7} +(5.10976 + 15.7262i) q^{9} +(6.32112 + 9.00241i) q^{11} +(14.3229 - 4.65378i) q^{13} +(-19.3826 + 14.0823i) q^{15} +(-16.9976 - 5.52287i) q^{17} +(19.0249 - 26.1855i) q^{19} +33.6902i q^{21} -3.58879 q^{23} +(2.04012 + 1.48224i) q^{25} +(11.7671 - 36.2153i) q^{27} +(-7.50529 - 10.3301i) q^{29} +(6.76473 + 20.8197i) q^{31} +(0.897408 - 55.5787i) q^{33} +(-30.0621 + 9.76777i) q^{35} +(22.4250 - 16.2927i) q^{37} +(-72.3773 - 23.5168i) q^{39} +(-29.1270 + 40.0899i) q^{41} +16.8760i q^{43} +78.3970 q^{45} +(63.0835 + 45.8328i) q^{47} +(1.40631 - 4.32817i) q^{49} +(53.0852 + 73.0655i) q^{51} +(3.06043 + 9.41904i) q^{53} +(49.8536 - 15.3131i) q^{55} +(-155.554 + 50.5426i) q^{57} +(-29.6620 + 21.5507i) q^{59} +(-26.9171 - 8.74590i) q^{61} +(64.7990 - 89.1881i) q^{63} -71.4011i q^{65} -30.7234 q^{67} +(14.6716 + 10.6595i) q^{69} +(-12.6835 + 39.0359i) q^{71} +(-36.3001 - 49.9628i) q^{73} +(-3.93780 - 12.1193i) q^{75} +(23.7855 - 69.3728i) q^{77} +(118.204 - 38.4068i) q^{79} +(-35.2762 + 25.6296i) q^{81} +(-2.94344 - 0.956381i) q^{83} +(-49.8061 + 68.5522i) q^{85} +64.5240i q^{87} +60.4914 q^{89} +(-81.2293 - 59.0165i) q^{91} +(34.1840 - 105.207i) q^{93} +(-90.1993 - 124.149i) q^{95} +(14.8226 + 45.6193i) q^{97} +(-109.274 + 145.407i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 5 q^{3} - q^{5} + 15 q^{7} - q^{9} + 17 q^{11} - 15 q^{13} - 63 q^{15} - 75 q^{17} - 30 q^{19} + 100 q^{23} + 51 q^{25} + 100 q^{27} + 125 q^{29} + 73 q^{31} - 20 q^{33} - 155 q^{35} - 75 q^{37}+ \cdots - 419 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/44\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.08818 2.97024i −1.36273 0.990079i −0.998266 0.0588599i \(-0.981253\pi\)
−0.364460 0.931219i \(-0.618747\pi\)
\(4\) 0 0
\(5\) 1.46509 4.50908i 0.293018 0.901816i −0.690862 0.722986i \(-0.742769\pi\)
0.983880 0.178829i \(-0.0572310\pi\)
\(6\) 0 0
\(7\) −3.91877 5.39373i −0.559825 0.770533i 0.431479 0.902123i \(-0.357992\pi\)
−0.991304 + 0.131590i \(0.957992\pi\)
\(8\) 0 0
\(9\) 5.10976 + 15.7262i 0.567751 + 1.74736i
\(10\) 0 0
\(11\) 6.32112 + 9.00241i 0.574647 + 0.818401i
\(12\) 0 0
\(13\) 14.3229 4.65378i 1.10176 0.357983i 0.298980 0.954260i \(-0.403354\pi\)
0.802779 + 0.596276i \(0.203354\pi\)
\(14\) 0 0
\(15\) −19.3826 + 14.0823i −1.29217 + 0.938818i
\(16\) 0 0
\(17\) −16.9976 5.52287i −0.999861 0.324874i −0.237051 0.971497i \(-0.576181\pi\)
−0.762810 + 0.646623i \(0.776181\pi\)
\(18\) 0 0
\(19\) 19.0249 26.1855i 1.00131 1.37818i 0.0767906 0.997047i \(-0.475533\pi\)
0.924519 0.381137i \(-0.124467\pi\)
\(20\) 0 0
\(21\) 33.6902i 1.60430i
\(22\) 0 0
\(23\) −3.58879 −0.156034 −0.0780171 0.996952i \(-0.524859\pi\)
−0.0780171 + 0.996952i \(0.524859\pi\)
\(24\) 0 0
\(25\) 2.04012 + 1.48224i 0.0816049 + 0.0592894i
\(26\) 0 0
\(27\) 11.7671 36.2153i 0.435817 1.34131i
\(28\) 0 0
\(29\) −7.50529 10.3301i −0.258803 0.356212i 0.659767 0.751470i \(-0.270655\pi\)
−0.918570 + 0.395258i \(0.870655\pi\)
\(30\) 0 0
\(31\) 6.76473 + 20.8197i 0.218217 + 0.671603i 0.998910 + 0.0466876i \(0.0148665\pi\)
−0.780692 + 0.624915i \(0.785133\pi\)
\(32\) 0 0
\(33\) 0.897408 55.5787i 0.0271942 1.68420i
\(34\) 0 0
\(35\) −30.0621 + 9.76777i −0.858917 + 0.279079i
\(36\) 0 0
\(37\) 22.4250 16.2927i 0.606082 0.440345i −0.241950 0.970289i \(-0.577787\pi\)
0.848033 + 0.529944i \(0.177787\pi\)
\(38\) 0 0
\(39\) −72.3773 23.5168i −1.85583 0.602995i
\(40\) 0 0
\(41\) −29.1270 + 40.0899i −0.710416 + 0.977803i 0.289372 + 0.957217i \(0.406553\pi\)
−0.999788 + 0.0205868i \(0.993447\pi\)
\(42\) 0 0
\(43\) 16.8760i 0.392466i 0.980557 + 0.196233i \(0.0628708\pi\)
−0.980557 + 0.196233i \(0.937129\pi\)
\(44\) 0 0
\(45\) 78.3970 1.74215
\(46\) 0 0
\(47\) 63.0835 + 45.8328i 1.34220 + 0.975166i 0.999360 + 0.0357732i \(0.0113894\pi\)
0.342842 + 0.939393i \(0.388611\pi\)
\(48\) 0 0
\(49\) 1.40631 4.32817i 0.0287001 0.0883299i
\(50\) 0 0
\(51\) 53.0852 + 73.0655i 1.04089 + 1.43266i
\(52\) 0 0
\(53\) 3.06043 + 9.41904i 0.0577440 + 0.177718i 0.975768 0.218806i \(-0.0702163\pi\)
−0.918024 + 0.396524i \(0.870216\pi\)
\(54\) 0 0
\(55\) 49.8536 15.3131i 0.906429 0.278420i
\(56\) 0 0
\(57\) −155.554 + 50.5426i −2.72902 + 0.886713i
\(58\) 0 0
\(59\) −29.6620 + 21.5507i −0.502746 + 0.365267i −0.810065 0.586340i \(-0.800568\pi\)
0.307319 + 0.951607i \(0.400568\pi\)
\(60\) 0 0
\(61\) −26.9171 8.74590i −0.441264 0.143375i 0.0799547 0.996799i \(-0.474522\pi\)
−0.521219 + 0.853423i \(0.674522\pi\)
\(62\) 0 0
\(63\) 64.7990 89.1881i 1.02855 1.41568i
\(64\) 0 0
\(65\) 71.4011i 1.09848i
\(66\) 0 0
\(67\) −30.7234 −0.458558 −0.229279 0.973361i \(-0.573637\pi\)
−0.229279 + 0.973361i \(0.573637\pi\)
\(68\) 0 0
\(69\) 14.6716 + 10.6595i 0.212632 + 0.154486i
\(70\) 0 0
\(71\) −12.6835 + 39.0359i −0.178641 + 0.549802i −0.999781 0.0209255i \(-0.993339\pi\)
0.821140 + 0.570727i \(0.193339\pi\)
\(72\) 0 0
\(73\) −36.3001 49.9628i −0.497261 0.684422i 0.484445 0.874822i \(-0.339021\pi\)
−0.981707 + 0.190400i \(0.939021\pi\)
\(74\) 0 0
\(75\) −3.93780 12.1193i −0.0525039 0.161591i
\(76\) 0 0
\(77\) 23.7855 69.3728i 0.308903 0.900946i
\(78\) 0 0
\(79\) 118.204 38.4068i 1.49625 0.486161i 0.557329 0.830292i \(-0.311826\pi\)
0.938922 + 0.344130i \(0.111826\pi\)
\(80\) 0 0
\(81\) −35.2762 + 25.6296i −0.435508 + 0.316415i
\(82\) 0 0
\(83\) −2.94344 0.956381i −0.0354631 0.0115227i 0.291232 0.956653i \(-0.405935\pi\)
−0.326695 + 0.945130i \(0.605935\pi\)
\(84\) 0 0
\(85\) −49.8061 + 68.5522i −0.585954 + 0.806496i
\(86\) 0 0
\(87\) 64.5240i 0.741655i
\(88\) 0 0
\(89\) 60.4914 0.679678 0.339839 0.940484i \(-0.389627\pi\)
0.339839 + 0.940484i \(0.389627\pi\)
\(90\) 0 0
\(91\) −81.2293 59.0165i −0.892630 0.648533i
\(92\) 0 0
\(93\) 34.1840 105.207i 0.367570 1.13126i
\(94\) 0 0
\(95\) −90.1993 124.149i −0.949467 1.30683i
\(96\) 0 0
\(97\) 14.8226 + 45.6193i 0.152810 + 0.470302i 0.997932 0.0642712i \(-0.0204723\pi\)
−0.845122 + 0.534574i \(0.820472\pi\)
\(98\) 0 0
\(99\) −109.274 + 145.407i −1.10378 + 1.46876i
\(100\) 0 0
\(101\) 83.6741 27.1874i 0.828456 0.269182i 0.136061 0.990700i \(-0.456556\pi\)
0.692395 + 0.721519i \(0.256556\pi\)
\(102\) 0 0
\(103\) 10.0570 7.30685i 0.0976409 0.0709403i −0.537894 0.843013i \(-0.680780\pi\)
0.635535 + 0.772072i \(0.280780\pi\)
\(104\) 0 0
\(105\) 151.912 + 49.3591i 1.44678 + 0.470087i
\(106\) 0 0
\(107\) 0.698862 0.961900i 0.00653142 0.00898972i −0.805739 0.592271i \(-0.798231\pi\)
0.812270 + 0.583281i \(0.198231\pi\)
\(108\) 0 0
\(109\) 145.212i 1.33222i 0.745855 + 0.666108i \(0.232041\pi\)
−0.745855 + 0.666108i \(0.767959\pi\)
\(110\) 0 0
\(111\) −140.071 −1.26190
\(112\) 0 0
\(113\) −47.0926 34.2148i −0.416749 0.302786i 0.359580 0.933114i \(-0.382920\pi\)
−0.776328 + 0.630329i \(0.782920\pi\)
\(114\) 0 0
\(115\) −5.25789 + 16.1821i −0.0457208 + 0.140714i
\(116\) 0 0
\(117\) 146.373 + 201.465i 1.25105 + 1.72192i
\(118\) 0 0
\(119\) 36.8210 + 113.323i 0.309420 + 0.952298i
\(120\) 0 0
\(121\) −41.0868 + 113.811i −0.339561 + 0.940584i
\(122\) 0 0
\(123\) 238.153 77.3807i 1.93620 0.629111i
\(124\) 0 0
\(125\) 105.564 76.6966i 0.844510 0.613572i
\(126\) 0 0
\(127\) −37.6191 12.2232i −0.296213 0.0962455i 0.157140 0.987576i \(-0.449772\pi\)
−0.453353 + 0.891331i \(0.649772\pi\)
\(128\) 0 0
\(129\) 50.1258 68.9922i 0.388572 0.534823i
\(130\) 0 0
\(131\) 130.281i 0.994510i −0.867605 0.497255i \(-0.834341\pi\)
0.867605 0.497255i \(-0.165659\pi\)
\(132\) 0 0
\(133\) −215.792 −1.62249
\(134\) 0 0
\(135\) −146.058 106.117i −1.08191 0.786053i
\(136\) 0 0
\(137\) −63.6741 + 195.969i −0.464774 + 1.43043i 0.394492 + 0.918899i \(0.370921\pi\)
−0.859266 + 0.511528i \(0.829079\pi\)
\(138\) 0 0
\(139\) −125.901 173.288i −0.905765 1.24668i −0.968592 0.248655i \(-0.920012\pi\)
0.0628270 0.998024i \(-0.479988\pi\)
\(140\) 0 0
\(141\) −121.762 374.746i −0.863562 2.65777i
\(142\) 0 0
\(143\) 132.432 + 99.5232i 0.926097 + 0.695967i
\(144\) 0 0
\(145\) −57.5753 + 18.7074i −0.397071 + 0.129016i
\(146\) 0 0
\(147\) −18.6049 + 13.5173i −0.126564 + 0.0919542i
\(148\) 0 0
\(149\) 57.1220 + 18.5601i 0.383369 + 0.124564i 0.494360 0.869257i \(-0.335402\pi\)
−0.110991 + 0.993821i \(0.535402\pi\)
\(150\) 0 0
\(151\) −75.8544 + 104.405i −0.502347 + 0.691422i −0.982605 0.185706i \(-0.940543\pi\)
0.480258 + 0.877127i \(0.340543\pi\)
\(152\) 0 0
\(153\) 295.529i 1.93156i
\(154\) 0 0
\(155\) 103.789 0.669604
\(156\) 0 0
\(157\) 220.735 + 160.374i 1.40596 + 1.02149i 0.993895 + 0.110332i \(0.0351913\pi\)
0.412062 + 0.911156i \(0.364809\pi\)
\(158\) 0 0
\(159\) 15.4652 47.5969i 0.0972653 0.299352i
\(160\) 0 0
\(161\) 14.0636 + 19.3569i 0.0873518 + 0.120229i
\(162\) 0 0
\(163\) −4.45141 13.7000i −0.0273093 0.0840492i 0.936473 0.350740i \(-0.114070\pi\)
−0.963782 + 0.266691i \(0.914070\pi\)
\(164\) 0 0
\(165\) −249.294 85.4742i −1.51087 0.518025i
\(166\) 0 0
\(167\) −154.632 + 50.2429i −0.925938 + 0.300855i −0.732900 0.680336i \(-0.761834\pi\)
−0.193037 + 0.981191i \(0.561834\pi\)
\(168\) 0 0
\(169\) 46.7629 33.9752i 0.276704 0.201037i
\(170\) 0 0
\(171\) 509.011 + 165.388i 2.97667 + 0.967180i
\(172\) 0 0
\(173\) −65.8448 + 90.6276i −0.380606 + 0.523859i −0.955745 0.294197i \(-0.904948\pi\)
0.575139 + 0.818056i \(0.304948\pi\)
\(174\) 0 0
\(175\) 16.8124i 0.0960709i
\(176\) 0 0
\(177\) 185.275 1.04675
\(178\) 0 0
\(179\) −127.140 92.3729i −0.710281 0.516050i 0.172983 0.984925i \(-0.444659\pi\)
−0.883264 + 0.468875i \(0.844659\pi\)
\(180\) 0 0
\(181\) −105.272 + 323.994i −0.581614 + 1.79002i 0.0308474 + 0.999524i \(0.490179\pi\)
−0.612462 + 0.790500i \(0.709821\pi\)
\(182\) 0 0
\(183\) 84.0646 + 115.705i 0.459369 + 0.632268i
\(184\) 0 0
\(185\) −40.6106 124.987i −0.219517 0.675603i
\(186\) 0 0
\(187\) −57.7250 187.930i −0.308690 1.00498i
\(188\) 0 0
\(189\) −241.448 + 78.4512i −1.27750 + 0.415085i
\(190\) 0 0
\(191\) −25.1761 + 18.2915i −0.131812 + 0.0957671i −0.651738 0.758444i \(-0.725960\pi\)
0.519926 + 0.854212i \(0.325960\pi\)
\(192\) 0 0
\(193\) −47.6999 15.4986i −0.247150 0.0803038i 0.182822 0.983146i \(-0.441477\pi\)
−0.429972 + 0.902842i \(0.641477\pi\)
\(194\) 0 0
\(195\) −212.078 + 291.901i −1.08758 + 1.49693i
\(196\) 0 0
\(197\) 225.831i 1.14635i −0.819432 0.573176i \(-0.805711\pi\)
0.819432 0.573176i \(-0.194289\pi\)
\(198\) 0 0
\(199\) 46.4242 0.233287 0.116644 0.993174i \(-0.462786\pi\)
0.116644 + 0.993174i \(0.462786\pi\)
\(200\) 0 0
\(201\) 125.603 + 91.2558i 0.624889 + 0.454009i
\(202\) 0 0
\(203\) −26.3065 + 80.9630i −0.129589 + 0.398832i
\(204\) 0 0
\(205\) 138.095 + 190.071i 0.673634 + 0.927178i
\(206\) 0 0
\(207\) −18.3378 56.4380i −0.0885885 0.272648i
\(208\) 0 0
\(209\) 355.991 + 5.74805i 1.70331 + 0.0275026i
\(210\) 0 0
\(211\) 101.556 32.9975i 0.481307 0.156386i −0.0583069 0.998299i \(-0.518570\pi\)
0.539614 + 0.841913i \(0.318570\pi\)
\(212\) 0 0
\(213\) 167.799 121.913i 0.787787 0.572361i
\(214\) 0 0
\(215\) 76.0953 + 24.7249i 0.353932 + 0.114999i
\(216\) 0 0
\(217\) 85.7863 118.075i 0.395329 0.544123i
\(218\) 0 0
\(219\) 312.077i 1.42501i
\(220\) 0 0
\(221\) −269.157 −1.21791
\(222\) 0 0
\(223\) 108.118 + 78.5527i 0.484836 + 0.352254i 0.803195 0.595716i \(-0.203132\pi\)
−0.318359 + 0.947970i \(0.603132\pi\)
\(224\) 0 0
\(225\) −12.8854 + 39.6573i −0.0572685 + 0.176254i
\(226\) 0 0
\(227\) −106.721 146.889i −0.470137 0.647088i 0.506436 0.862278i \(-0.330963\pi\)
−0.976572 + 0.215190i \(0.930963\pi\)
\(228\) 0 0
\(229\) −81.2785 250.150i −0.354928 1.09236i −0.956051 0.293200i \(-0.905280\pi\)
0.601123 0.799156i \(-0.294720\pi\)
\(230\) 0 0
\(231\) −303.293 + 212.960i −1.31296 + 0.921905i
\(232\) 0 0
\(233\) −156.952 + 50.9968i −0.673614 + 0.218870i −0.625797 0.779986i \(-0.715226\pi\)
−0.0478167 + 0.998856i \(0.515226\pi\)
\(234\) 0 0
\(235\) 299.087 217.299i 1.27271 0.924677i
\(236\) 0 0
\(237\) −597.316 194.080i −2.52032 0.818901i
\(238\) 0 0
\(239\) 178.104 245.140i 0.745207 1.02569i −0.253096 0.967441i \(-0.581449\pi\)
0.998302 0.0582476i \(-0.0185513\pi\)
\(240\) 0 0
\(241\) 289.642i 1.20183i −0.799311 0.600917i \(-0.794802\pi\)
0.799311 0.600917i \(-0.205198\pi\)
\(242\) 0 0
\(243\) −122.370 −0.503579
\(244\) 0 0
\(245\) −17.4557 12.6823i −0.0712477 0.0517645i
\(246\) 0 0
\(247\) 150.629 463.589i 0.609835 1.87688i
\(248\) 0 0
\(249\) 9.19263 + 12.6526i 0.0369182 + 0.0508135i
\(250\) 0 0
\(251\) 83.2179 + 256.118i 0.331545 + 1.02039i 0.968399 + 0.249407i \(0.0802356\pi\)
−0.636853 + 0.770985i \(0.719764\pi\)
\(252\) 0 0
\(253\) −22.6852 32.3077i −0.0896647 0.127699i
\(254\) 0 0
\(255\) 407.232 132.318i 1.59699 0.518893i
\(256\) 0 0
\(257\) −406.941 + 295.660i −1.58343 + 1.15043i −0.670795 + 0.741643i \(0.734047\pi\)
−0.912631 + 0.408784i \(0.865953\pi\)
\(258\) 0 0
\(259\) −175.757 57.1070i −0.678600 0.220490i
\(260\) 0 0
\(261\) 124.104 170.814i 0.475494 0.654461i
\(262\) 0 0
\(263\) 178.603i 0.679099i 0.940588 + 0.339550i \(0.110275\pi\)
−0.940588 + 0.339550i \(0.889725\pi\)
\(264\) 0 0
\(265\) 46.9550 0.177189
\(266\) 0 0
\(267\) −247.300 179.674i −0.926215 0.672935i
\(268\) 0 0
\(269\) 32.5941 100.314i 0.121168 0.372916i −0.872016 0.489478i \(-0.837187\pi\)
0.993183 + 0.116562i \(0.0371874\pi\)
\(270\) 0 0
\(271\) 86.3298 + 118.823i 0.318560 + 0.438460i 0.938027 0.346563i \(-0.112651\pi\)
−0.619467 + 0.785023i \(0.712651\pi\)
\(272\) 0 0
\(273\) 156.787 + 482.540i 0.574311 + 1.76755i
\(274\) 0 0
\(275\) −0.447833 + 27.7354i −0.00162848 + 0.100856i
\(276\) 0 0
\(277\) 247.480 80.4113i 0.893431 0.290293i 0.173908 0.984762i \(-0.444360\pi\)
0.719523 + 0.694469i \(0.244360\pi\)
\(278\) 0 0
\(279\) −292.849 + 212.767i −1.04964 + 0.762606i
\(280\) 0 0
\(281\) 487.119 + 158.275i 1.73352 + 0.563255i 0.993951 0.109824i \(-0.0350288\pi\)
0.739570 + 0.673080i \(0.235029\pi\)
\(282\) 0 0
\(283\) −105.155 + 144.733i −0.371572 + 0.511425i −0.953327 0.301939i \(-0.902366\pi\)
0.581755 + 0.813364i \(0.302366\pi\)
\(284\) 0 0
\(285\) 775.456i 2.72090i
\(286\) 0 0
\(287\) 330.377 1.15114
\(288\) 0 0
\(289\) 24.6116 + 17.8814i 0.0851613 + 0.0618733i
\(290\) 0 0
\(291\) 74.9027 230.527i 0.257397 0.792188i
\(292\) 0 0
\(293\) −305.694 420.752i −1.04332 1.43601i −0.894456 0.447155i \(-0.852437\pi\)
−0.148867 0.988857i \(-0.547563\pi\)
\(294\) 0 0
\(295\) 53.7164 + 165.322i 0.182090 + 0.560414i
\(296\) 0 0
\(297\) 400.406 122.989i 1.34817 0.414105i
\(298\) 0 0
\(299\) −51.4017 + 16.7014i −0.171912 + 0.0558576i
\(300\) 0 0
\(301\) 91.0247 66.1333i 0.302408 0.219712i
\(302\) 0 0
\(303\) −422.828 137.385i −1.39547 0.453416i
\(304\) 0 0
\(305\) −78.8719 + 108.558i −0.258596 + 0.355927i
\(306\) 0 0
\(307\) 453.784i 1.47812i 0.673638 + 0.739061i \(0.264731\pi\)
−0.673638 + 0.739061i \(0.735269\pi\)
\(308\) 0 0
\(309\) −62.8180 −0.203294
\(310\) 0 0
\(311\) −328.234 238.476i −1.05541 0.766803i −0.0821789 0.996618i \(-0.526188\pi\)
−0.973234 + 0.229815i \(0.926188\pi\)
\(312\) 0 0
\(313\) 5.16035 15.8819i 0.0164867 0.0507409i −0.942475 0.334277i \(-0.891508\pi\)
0.958961 + 0.283537i \(0.0915077\pi\)
\(314\) 0 0
\(315\) −307.220 422.852i −0.975301 1.34239i
\(316\) 0 0
\(317\) 173.836 + 535.013i 0.548380 + 1.68774i 0.712815 + 0.701352i \(0.247420\pi\)
−0.164436 + 0.986388i \(0.552580\pi\)
\(318\) 0 0
\(319\) 45.5544 132.864i 0.142804 0.416501i
\(320\) 0 0
\(321\) −5.71414 + 1.85664i −0.0178011 + 0.00578392i
\(322\) 0 0
\(323\) −467.997 + 340.020i −1.44891 + 1.05269i
\(324\) 0 0
\(325\) 36.1184 + 11.7356i 0.111134 + 0.0361095i
\(326\) 0 0
\(327\) 431.313 593.651i 1.31900 1.81545i
\(328\) 0 0
\(329\) 519.864i 1.58013i
\(330\) 0 0
\(331\) 167.684 0.506597 0.253298 0.967388i \(-0.418485\pi\)
0.253298 + 0.967388i \(0.418485\pi\)
\(332\) 0 0
\(333\) 370.810 + 269.409i 1.11354 + 0.809036i
\(334\) 0 0
\(335\) −45.0125 + 138.534i −0.134366 + 0.413535i
\(336\) 0 0
\(337\) 103.280 + 142.152i 0.306467 + 0.421816i 0.934276 0.356552i \(-0.116048\pi\)
−0.627808 + 0.778368i \(0.716048\pi\)
\(338\) 0 0
\(339\) 90.8971 + 279.752i 0.268133 + 0.825228i
\(340\) 0 0
\(341\) −144.667 + 192.503i −0.424243 + 0.564524i
\(342\) 0 0
\(343\) −339.551 + 110.327i −0.989944 + 0.321652i
\(344\) 0 0
\(345\) 69.5599 50.5382i 0.201623 0.146488i
\(346\) 0 0
\(347\) −459.695 149.364i −1.32477 0.430443i −0.440639 0.897685i \(-0.645248\pi\)
−0.884130 + 0.467241i \(0.845248\pi\)
\(348\) 0 0
\(349\) 94.6593 130.287i 0.271230 0.373316i −0.651574 0.758585i \(-0.725891\pi\)
0.922804 + 0.385269i \(0.125891\pi\)
\(350\) 0 0
\(351\) 573.468i 1.63381i
\(352\) 0 0
\(353\) 522.647 1.48059 0.740294 0.672284i \(-0.234687\pi\)
0.740294 + 0.672284i \(0.234687\pi\)
\(354\) 0 0
\(355\) 157.434 + 114.382i 0.443475 + 0.322203i
\(356\) 0 0
\(357\) 186.067 572.654i 0.521195 1.60407i
\(358\) 0 0
\(359\) 336.373 + 462.978i 0.936972 + 1.28963i 0.957077 + 0.289833i \(0.0935999\pi\)
−0.0201051 + 0.999798i \(0.506400\pi\)
\(360\) 0 0
\(361\) −212.179 653.020i −0.587754 1.80892i
\(362\) 0 0
\(363\) 506.015 343.241i 1.39398 0.945567i
\(364\) 0 0
\(365\) −278.469 + 90.4800i −0.762928 + 0.247890i
\(366\) 0 0
\(367\) −136.244 + 98.9867i −0.371236 + 0.269719i −0.757723 0.652576i \(-0.773688\pi\)
0.386487 + 0.922295i \(0.373688\pi\)
\(368\) 0 0
\(369\) −779.295 253.208i −2.11191 0.686201i
\(370\) 0 0
\(371\) 38.8106 53.4182i 0.104611 0.143984i
\(372\) 0 0
\(373\) 500.543i 1.34194i 0.741486 + 0.670969i \(0.234122\pi\)
−0.741486 + 0.670969i \(0.765878\pi\)
\(374\) 0 0
\(375\) −659.370 −1.75832
\(376\) 0 0
\(377\) −155.571 113.029i −0.412656 0.299812i
\(378\) 0 0
\(379\) 16.1149 49.5966i 0.0425195 0.130862i −0.927543 0.373716i \(-0.878084\pi\)
0.970063 + 0.242854i \(0.0780836\pi\)
\(380\) 0 0
\(381\) 117.488 + 161.708i 0.308367 + 0.424431i
\(382\) 0 0
\(383\) −76.3632 235.022i −0.199382 0.613634i −0.999897 0.0143222i \(-0.995441\pi\)
0.800516 0.599312i \(-0.204559\pi\)
\(384\) 0 0
\(385\) −277.960 208.888i −0.721973 0.542567i
\(386\) 0 0
\(387\) −265.396 + 86.2324i −0.685778 + 0.222823i
\(388\) 0 0
\(389\) 199.368 144.850i 0.512515 0.372364i −0.301262 0.953542i \(-0.597408\pi\)
0.813777 + 0.581177i \(0.197408\pi\)
\(390\) 0 0
\(391\) 61.0009 + 19.8204i 0.156013 + 0.0506915i
\(392\) 0 0
\(393\) −386.965 + 532.611i −0.984643 + 1.35524i
\(394\) 0 0
\(395\) 589.260i 1.49180i
\(396\) 0 0
\(397\) 50.7517 0.127838 0.0639191 0.997955i \(-0.479640\pi\)
0.0639191 + 0.997955i \(0.479640\pi\)
\(398\) 0 0
\(399\) 882.195 + 640.952i 2.21102 + 1.60640i
\(400\) 0 0
\(401\) 14.8571 45.7254i 0.0370501 0.114028i −0.930821 0.365475i \(-0.880906\pi\)
0.967871 + 0.251447i \(0.0809064\pi\)
\(402\) 0 0
\(403\) 193.781 + 266.716i 0.480845 + 0.661827i
\(404\) 0 0
\(405\) 63.8833 + 196.613i 0.157737 + 0.485463i
\(406\) 0 0
\(407\) 288.425 + 98.8910i 0.708662 + 0.242976i
\(408\) 0 0
\(409\) −486.442 + 158.055i −1.18934 + 0.386441i −0.835830 0.548988i \(-0.815013\pi\)
−0.353514 + 0.935429i \(0.615013\pi\)
\(410\) 0 0
\(411\) 842.384 612.028i 2.04960 1.48912i
\(412\) 0 0
\(413\) 232.478 + 75.5366i 0.562900 + 0.182897i
\(414\) 0 0
\(415\) −8.62479 + 11.8710i −0.0207826 + 0.0286048i
\(416\) 0 0
\(417\) 1082.39i 2.59566i
\(418\) 0 0
\(419\) 790.955 1.88772 0.943860 0.330345i \(-0.107165\pi\)
0.943860 + 0.330345i \(0.107165\pi\)
\(420\) 0 0
\(421\) −333.136 242.038i −0.791297 0.574911i 0.117051 0.993126i \(-0.462656\pi\)
−0.908348 + 0.418215i \(0.862656\pi\)
\(422\) 0 0
\(423\) −398.436 + 1226.26i −0.941928 + 2.89896i
\(424\) 0 0
\(425\) −26.4911 36.4618i −0.0623319 0.0857925i
\(426\) 0 0
\(427\) 58.3090 + 179.457i 0.136555 + 0.420274i
\(428\) 0 0
\(429\) −245.798 800.223i −0.572955 1.86532i
\(430\) 0 0
\(431\) −268.338 + 87.1884i −0.622595 + 0.202293i −0.603292 0.797520i \(-0.706145\pi\)
−0.0193028 + 0.999814i \(0.506145\pi\)
\(432\) 0 0
\(433\) 44.9013 32.6227i 0.103698 0.0753411i −0.534728 0.845024i \(-0.679586\pi\)
0.638426 + 0.769683i \(0.279586\pi\)
\(434\) 0 0
\(435\) 290.944 + 94.5333i 0.668836 + 0.217318i
\(436\) 0 0
\(437\) −68.2762 + 93.9742i −0.156239 + 0.215044i
\(438\) 0 0
\(439\) 232.914i 0.530556i 0.964172 + 0.265278i \(0.0854638\pi\)
−0.964172 + 0.265278i \(0.914536\pi\)
\(440\) 0 0
\(441\) 75.2516 0.170638
\(442\) 0 0
\(443\) 344.202 + 250.077i 0.776979 + 0.564508i 0.904071 0.427383i \(-0.140564\pi\)
−0.127092 + 0.991891i \(0.540564\pi\)
\(444\) 0 0
\(445\) 88.6252 272.760i 0.199158 0.612944i
\(446\) 0 0
\(447\) −178.397 245.543i −0.399099 0.549313i
\(448\) 0 0
\(449\) 14.2766 + 43.9388i 0.0317964 + 0.0978592i 0.965695 0.259678i \(-0.0836165\pi\)
−0.933899 + 0.357537i \(0.883616\pi\)
\(450\) 0 0
\(451\) −545.022 8.80026i −1.20847 0.0195128i
\(452\) 0 0
\(453\) 620.213 201.519i 1.36912 0.444855i
\(454\) 0 0
\(455\) −385.118 + 279.805i −0.846414 + 0.614956i
\(456\) 0 0
\(457\) 147.110 + 47.7990i 0.321904 + 0.104593i 0.465512 0.885042i \(-0.345870\pi\)
−0.143608 + 0.989635i \(0.545870\pi\)
\(458\) 0 0
\(459\) −400.024 + 550.586i −0.871513 + 1.19953i
\(460\) 0 0
\(461\) 775.943i 1.68317i −0.540123 0.841586i \(-0.681622\pi\)
0.540123 0.841586i \(-0.318378\pi\)
\(462\) 0 0
\(463\) −829.285 −1.79111 −0.895557 0.444948i \(-0.853222\pi\)
−0.895557 + 0.444948i \(0.853222\pi\)
\(464\) 0 0
\(465\) −424.306 308.277i −0.912487 0.662960i
\(466\) 0 0
\(467\) 241.774 744.104i 0.517718 1.59337i −0.260565 0.965456i \(-0.583909\pi\)
0.778282 0.627914i \(-0.216091\pi\)
\(468\) 0 0
\(469\) 120.398 + 165.714i 0.256712 + 0.353334i
\(470\) 0 0
\(471\) −426.058 1311.27i −0.904582 2.78402i
\(472\) 0 0
\(473\) −151.925 + 106.675i −0.321194 + 0.225529i
\(474\) 0 0
\(475\) 77.6261 25.2223i 0.163423 0.0530995i
\(476\) 0 0
\(477\) −132.488 + 96.2580i −0.277752 + 0.201799i
\(478\) 0 0
\(479\) 77.2103 + 25.0872i 0.161191 + 0.0523740i 0.388501 0.921448i \(-0.372993\pi\)
−0.227310 + 0.973822i \(0.572993\pi\)
\(480\) 0 0
\(481\) 245.368 337.720i 0.510121 0.702121i
\(482\) 0 0
\(483\) 120.907i 0.250325i
\(484\) 0 0
\(485\) 227.418 0.468902
\(486\) 0 0
\(487\) 235.675 + 171.228i 0.483933 + 0.351598i 0.802846 0.596186i \(-0.203318\pi\)
−0.318913 + 0.947784i \(0.603318\pi\)
\(488\) 0 0
\(489\) −22.4942 + 69.2299i −0.0460003 + 0.141574i
\(490\) 0 0
\(491\) 176.504 + 242.937i 0.359479 + 0.494780i 0.950003 0.312239i \(-0.101079\pi\)
−0.590524 + 0.807020i \(0.701079\pi\)
\(492\) 0 0
\(493\) 70.5202 + 217.039i 0.143043 + 0.440241i
\(494\) 0 0
\(495\) 495.557 + 705.762i 1.00112 + 1.42578i
\(496\) 0 0
\(497\) 260.253 84.5614i 0.523648 0.170144i
\(498\) 0 0
\(499\) −248.898 + 180.835i −0.498794 + 0.362395i −0.808556 0.588419i \(-0.799750\pi\)
0.309762 + 0.950814i \(0.399750\pi\)
\(500\) 0 0
\(501\) 781.395 + 253.891i 1.55967 + 0.506768i
\(502\) 0 0
\(503\) 470.986 648.257i 0.936354 1.28878i −0.0209742 0.999780i \(-0.506677\pi\)
0.957329 0.289001i \(-0.0933232\pi\)
\(504\) 0 0
\(505\) 417.125i 0.825990i
\(506\) 0 0
\(507\) −292.090 −0.576114
\(508\) 0 0
\(509\) −438.219 318.385i −0.860941 0.625510i 0.0671999 0.997740i \(-0.478593\pi\)
−0.928141 + 0.372229i \(0.878593\pi\)
\(510\) 0 0
\(511\) −127.234 + 391.586i −0.248990 + 0.766312i
\(512\) 0 0
\(513\) −724.448 997.117i −1.41218 1.94370i
\(514\) 0 0
\(515\) −18.2127 56.0531i −0.0353645 0.108841i
\(516\) 0 0
\(517\) −13.8476 + 857.618i −0.0267846 + 1.65884i
\(518\) 0 0
\(519\) 538.371 174.927i 1.03732 0.337047i
\(520\) 0 0
\(521\) −577.263 + 419.406i −1.10799 + 0.805002i −0.982346 0.187073i \(-0.940100\pi\)
−0.125644 + 0.992075i \(0.540100\pi\)
\(522\) 0 0
\(523\) −432.518 140.534i −0.826994 0.268707i −0.135215 0.990816i \(-0.543173\pi\)
−0.691779 + 0.722110i \(0.743173\pi\)
\(524\) 0 0
\(525\) −49.9368 + 68.7321i −0.0951178 + 0.130918i
\(526\) 0 0
\(527\) 391.246i 0.742403i
\(528\) 0 0
\(529\) −516.121 −0.975653
\(530\) 0 0
\(531\) −490.477 356.353i −0.923686 0.671097i
\(532\) 0 0
\(533\) −230.613 + 709.754i −0.432670 + 1.33162i
\(534\) 0 0
\(535\) −3.31339 4.56049i −0.00619325 0.00852428i
\(536\) 0 0
\(537\) 245.403 + 755.274i 0.456989 + 1.40647i
\(538\) 0 0
\(539\) 47.8534 14.6987i 0.0887818 0.0272704i
\(540\) 0 0
\(541\) 768.411 249.672i 1.42035 0.461500i 0.504638 0.863331i \(-0.331626\pi\)
0.915714 + 0.401830i \(0.131626\pi\)
\(542\) 0 0
\(543\) 1392.71 1011.86i 2.56485 1.86347i
\(544\) 0 0
\(545\) 654.771 + 212.748i 1.20141 + 0.390363i
\(546\) 0 0
\(547\) 100.382 138.164i 0.183514 0.252585i −0.707342 0.706872i \(-0.750106\pi\)
0.890856 + 0.454287i \(0.150106\pi\)
\(548\) 0 0
\(549\) 467.994i 0.852447i
\(550\) 0 0
\(551\) −413.287 −0.750067
\(552\) 0 0
\(553\) −670.370 487.052i −1.21224 0.880745i
\(554\) 0 0
\(555\) −205.216 + 631.591i −0.369759 + 1.13800i
\(556\) 0 0
\(557\) −13.9618 19.2168i −0.0250661 0.0345005i 0.796300 0.604902i \(-0.206788\pi\)
−0.821366 + 0.570401i \(0.806788\pi\)
\(558\) 0 0
\(559\) 78.5373 + 241.713i 0.140496 + 0.432402i
\(560\) 0 0
\(561\) −322.208 + 939.750i −0.574345 + 1.67513i
\(562\) 0 0
\(563\) −568.487 + 184.713i −1.00975 + 0.328086i −0.766753 0.641942i \(-0.778129\pi\)
−0.242993 + 0.970028i \(0.578129\pi\)
\(564\) 0 0
\(565\) −223.272 + 162.217i −0.395172 + 0.287109i
\(566\) 0 0
\(567\) 276.478 + 89.8333i 0.487616 + 0.158436i
\(568\) 0 0
\(569\) −239.476 + 329.610i −0.420871 + 0.579279i −0.965828 0.259185i \(-0.916546\pi\)
0.544957 + 0.838464i \(0.316546\pi\)
\(570\) 0 0
\(571\) 1036.11i 1.81456i 0.420530 + 0.907279i \(0.361844\pi\)
−0.420530 + 0.907279i \(0.638156\pi\)
\(572\) 0 0
\(573\) 157.255 0.274441
\(574\) 0 0
\(575\) −7.32156 5.31943i −0.0127332 0.00925118i
\(576\) 0 0
\(577\) 212.646 654.458i 0.368538 1.13424i −0.579198 0.815187i \(-0.696634\pi\)
0.947736 0.319056i \(-0.103366\pi\)
\(578\) 0 0
\(579\) 148.971 + 205.041i 0.257290 + 0.354130i
\(580\) 0 0
\(581\) 6.37621 + 19.6239i 0.0109745 + 0.0337762i
\(582\) 0 0
\(583\) −65.4487 + 87.0902i −0.112262 + 0.149383i
\(584\) 0 0
\(585\) 1122.87 364.842i 1.91943 0.623662i
\(586\) 0 0
\(587\) −485.538 + 352.764i −0.827152 + 0.600961i −0.918752 0.394835i \(-0.870802\pi\)
0.0915999 + 0.995796i \(0.470802\pi\)
\(588\) 0 0
\(589\) 673.872 + 218.954i 1.14410 + 0.371739i
\(590\) 0 0
\(591\) −670.773 + 923.239i −1.13498 + 1.56216i
\(592\) 0 0
\(593\) 468.857i 0.790652i 0.918541 + 0.395326i \(0.129368\pi\)
−0.918541 + 0.395326i \(0.870632\pi\)
\(594\) 0 0
\(595\) 564.931 0.949463
\(596\) 0 0
\(597\) −189.790 137.891i −0.317907 0.230973i
\(598\) 0 0
\(599\) 158.477 487.741i 0.264569 0.814259i −0.727224 0.686400i \(-0.759190\pi\)
0.991792 0.127858i \(-0.0408102\pi\)
\(600\) 0 0
\(601\) 298.113 + 410.318i 0.496028 + 0.682725i 0.981486 0.191536i \(-0.0613468\pi\)
−0.485457 + 0.874260i \(0.661347\pi\)
\(602\) 0 0
\(603\) −156.989 483.163i −0.260347 0.801265i
\(604\) 0 0
\(605\) 452.985 + 352.006i 0.748736 + 0.581829i
\(606\) 0 0
\(607\) 320.774 104.226i 0.528458 0.171707i −0.0326221 0.999468i \(-0.510386\pi\)
0.561081 + 0.827761i \(0.310386\pi\)
\(608\) 0 0
\(609\) 348.025 252.855i 0.571469 0.415197i
\(610\) 0 0
\(611\) 1116.83 + 362.881i 1.82788 + 0.593913i
\(612\) 0 0
\(613\) −198.216 + 272.820i −0.323353 + 0.445058i −0.939487 0.342584i \(-0.888698\pi\)
0.616134 + 0.787641i \(0.288698\pi\)
\(614\) 0 0
\(615\) 1187.22i 1.93044i
\(616\) 0 0
\(617\) −269.856 −0.437369 −0.218684 0.975796i \(-0.570177\pi\)
−0.218684 + 0.975796i \(0.570177\pi\)
\(618\) 0 0
\(619\) −439.905 319.610i −0.710671 0.516333i 0.172719 0.984971i \(-0.444745\pi\)
−0.883390 + 0.468639i \(0.844745\pi\)
\(620\) 0 0
\(621\) −42.2295 + 129.969i −0.0680024 + 0.209290i
\(622\) 0 0
\(623\) −237.052 326.274i −0.380501 0.523714i
\(624\) 0 0
\(625\) −171.689 528.405i −0.274703 0.845448i
\(626\) 0 0
\(627\) −1438.28 1080.88i −2.29391 1.72389i
\(628\) 0 0
\(629\) −471.155 + 153.088i −0.749055 + 0.243383i
\(630\) 0 0
\(631\) −91.5704 + 66.5298i −0.145119 + 0.105435i −0.657976 0.753039i \(-0.728587\pi\)
0.512857 + 0.858474i \(0.328587\pi\)
\(632\) 0 0
\(633\) −513.189 166.745i −0.810724 0.263420i
\(634\) 0 0
\(635\) −110.230 + 151.719i −0.173591 + 0.238928i
\(636\) 0 0
\(637\) 68.5364i 0.107592i
\(638\) 0 0
\(639\) −678.697 −1.06212
\(640\) 0 0
\(641\) 426.791 + 310.082i 0.665821 + 0.483747i 0.868624 0.495472i \(-0.165005\pi\)
−0.202803 + 0.979220i \(0.565005\pi\)
\(642\) 0 0
\(643\) 90.5922 278.814i 0.140890 0.433614i −0.855570 0.517688i \(-0.826793\pi\)
0.996460 + 0.0840733i \(0.0267930\pi\)
\(644\) 0 0
\(645\) −237.653 327.101i −0.368454 0.507133i
\(646\) 0 0
\(647\) −205.130 631.325i −0.317048 0.975773i −0.974903 0.222629i \(-0.928536\pi\)
0.657855 0.753144i \(-0.271464\pi\)
\(648\) 0 0
\(649\) −381.506 130.805i −0.587837 0.201549i
\(650\) 0 0
\(651\) −701.420 + 227.905i −1.07745 + 0.350085i
\(652\) 0 0
\(653\) 642.435 466.756i 0.983821 0.714788i 0.0252618 0.999681i \(-0.491958\pi\)
0.958559 + 0.284893i \(0.0919581\pi\)
\(654\) 0 0
\(655\) −587.446 190.873i −0.896864 0.291409i
\(656\) 0 0
\(657\) 600.241 826.160i 0.913608 1.25747i
\(658\) 0 0
\(659\) 187.489i 0.284505i −0.989830 0.142253i \(-0.954565\pi\)
0.989830 0.142253i \(-0.0454346\pi\)
\(660\) 0 0
\(661\) 74.1929 0.112243 0.0561217 0.998424i \(-0.482127\pi\)
0.0561217 + 0.998424i \(0.482127\pi\)
\(662\) 0 0
\(663\) 1100.36 + 799.460i 1.65967 + 1.20582i
\(664\) 0 0
\(665\) −316.154 + 973.021i −0.475419 + 1.46319i
\(666\) 0 0
\(667\) 26.9349 + 37.0727i 0.0403821 + 0.0555812i
\(668\) 0 0
\(669\) −208.688 642.275i −0.311940 0.960052i
\(670\) 0 0
\(671\) −91.4122 297.603i −0.136233 0.443521i
\(672\) 0 0
\(673\) 898.412 291.912i 1.33494 0.433747i 0.447338 0.894365i \(-0.352372\pi\)
0.887598 + 0.460618i \(0.152372\pi\)
\(674\) 0 0
\(675\) 77.6858 56.4420i 0.115090 0.0836178i
\(676\) 0 0
\(677\) −688.441 223.688i −1.01690 0.330411i −0.247301 0.968939i \(-0.579544\pi\)
−0.769599 + 0.638528i \(0.779544\pi\)
\(678\) 0 0
\(679\) 187.972 258.721i 0.276836 0.381032i
\(680\) 0 0
\(681\) 917.495i 1.34728i
\(682\) 0 0
\(683\) 660.998 0.967787 0.483893 0.875127i \(-0.339222\pi\)
0.483893 + 0.875127i \(0.339222\pi\)
\(684\) 0 0
\(685\) 790.350 + 574.223i 1.15380 + 0.838281i
\(686\) 0 0
\(687\) −410.722 + 1264.07i −0.597849 + 1.83999i
\(688\) 0 0
\(689\) 87.6683 + 120.665i 0.127240 + 0.175131i
\(690\) 0 0
\(691\) −124.898 384.395i −0.180749 0.556288i 0.819100 0.573650i \(-0.194473\pi\)
−0.999849 + 0.0173622i \(0.994473\pi\)
\(692\) 0 0
\(693\) 1212.51 + 19.5779i 1.74965 + 0.0282510i
\(694\) 0 0
\(695\) −965.827 + 313.816i −1.38968 + 0.451534i
\(696\) 0 0
\(697\) 716.502 520.569i 1.02798 0.746871i
\(698\) 0 0
\(699\) 793.121 + 257.701i 1.13465 + 0.368670i
\(700\) 0 0
\(701\) 233.239 321.027i 0.332724 0.457955i −0.609575 0.792729i \(-0.708660\pi\)
0.942299 + 0.334773i \(0.108660\pi\)
\(702\) 0 0
\(703\) 897.178i 1.27621i
\(704\) 0 0
\(705\) −1868.15 −2.64986
\(706\) 0 0
\(707\) −474.541 344.774i −0.671204 0.487658i
\(708\) 0 0
\(709\) −4.25048 + 13.0816i −0.00599503 + 0.0184508i −0.954009 0.299777i \(-0.903088\pi\)
0.948014 + 0.318228i \(0.103088\pi\)
\(710\) 0 0
\(711\) 1207.99 + 1662.65i 1.69900 + 2.33847i
\(712\) 0 0
\(713\) −24.2772 74.7174i −0.0340493 0.104793i
\(714\) 0 0
\(715\) 642.782 451.335i 0.898996 0.631238i
\(716\) 0 0
\(717\) −1456.25 + 473.163i −2.03103 + 0.659920i
\(718\) 0 0
\(719\) −84.0118 + 61.0381i −0.116845 + 0.0848931i −0.644673 0.764458i \(-0.723007\pi\)
0.527828 + 0.849351i \(0.323007\pi\)
\(720\) 0 0
\(721\) −78.8223 25.6109i −0.109324 0.0355214i
\(722\) 0 0
\(723\) −860.306 + 1184.11i −1.18991 + 1.63777i
\(724\) 0 0
\(725\) 32.1994i 0.0444129i
\(726\) 0 0
\(727\) 1381.61 1.90043 0.950214 0.311599i \(-0.100864\pi\)
0.950214 + 0.311599i \(0.100864\pi\)
\(728\) 0 0
\(729\) 817.755 + 594.134i 1.12175 + 0.814998i
\(730\) 0 0
\(731\) 93.2040 286.852i 0.127502 0.392411i
\(732\) 0 0
\(733\) −418.254 575.678i −0.570606 0.785372i 0.422020 0.906586i \(-0.361321\pi\)
−0.992626 + 0.121214i \(0.961321\pi\)
\(734\) 0 0
\(735\) 33.6925 + 103.695i 0.0458402 + 0.141082i
\(736\) 0 0
\(737\) −194.206 276.585i −0.263509 0.375284i
\(738\) 0 0
\(739\) −339.005 + 110.149i −0.458734 + 0.149052i −0.529263 0.848458i \(-0.677531\pi\)
0.0705286 + 0.997510i \(0.477531\pi\)
\(740\) 0 0
\(741\) −1992.77 + 1447.83i −2.68930 + 1.95389i
\(742\) 0 0
\(743\) −204.751 66.5275i −0.275573 0.0895391i 0.167970 0.985792i \(-0.446279\pi\)
−0.443543 + 0.896253i \(0.646279\pi\)
\(744\) 0 0
\(745\) 167.378 230.376i 0.224668 0.309229i
\(746\) 0 0
\(747\) 51.1760i 0.0685087i
\(748\) 0 0
\(749\) −7.92691 −0.0105833
\(750\) 0 0
\(751\) −15.0409 10.9279i −0.0200279 0.0145511i 0.577726 0.816231i \(-0.303940\pi\)
−0.597754 + 0.801679i \(0.703940\pi\)
\(752\) 0 0
\(753\) 420.522 1294.23i 0.558463 1.71877i
\(754\) 0 0
\(755\) 359.635 + 494.996i 0.476338 + 0.655623i
\(756\) 0 0
\(757\) 99.0402 + 304.814i 0.130833 + 0.402661i 0.994919 0.100683i \(-0.0321028\pi\)
−0.864086 + 0.503344i \(0.832103\pi\)
\(758\) 0 0
\(759\) −3.22061 + 199.460i −0.00424322 + 0.262793i
\(760\) 0 0
\(761\) −7.81819 + 2.54029i −0.0102736 + 0.00333809i −0.314149 0.949374i \(-0.601719\pi\)
0.303876 + 0.952712i \(0.401719\pi\)
\(762\) 0 0
\(763\) 783.232 569.051i 1.02652 0.745808i
\(764\) 0 0
\(765\) −1332.56 432.976i −1.74191 0.565982i
\(766\) 0 0
\(767\) −324.553 + 446.709i −0.423146 + 0.582411i
\(768\) 0 0
\(769\) 32.0029i 0.0416162i −0.999783 0.0208081i \(-0.993376\pi\)
0.999783 0.0208081i \(-0.00662391\pi\)
\(770\) 0 0
\(771\) 2541.83 3.29679
\(772\) 0 0
\(773\) −730.274 530.575i −0.944728 0.686385i 0.00482645 0.999988i \(-0.498464\pi\)
−0.949554 + 0.313604i \(0.898464\pi\)
\(774\) 0 0
\(775\) −17.0588 + 52.5016i −0.0220114 + 0.0677440i
\(776\) 0 0
\(777\) 548.906 + 755.505i 0.706443 + 0.972335i
\(778\) 0 0
\(779\) 495.637 + 1525.41i 0.636247 + 1.95817i
\(780\) 0 0
\(781\) −431.592 + 132.568i −0.552614 + 0.169742i
\(782\) 0 0
\(783\) −462.424 + 150.251i −0.590580 + 0.191891i
\(784\) 0 0
\(785\) 1046.53 760.351i 1.33316 0.968600i
\(786\) 0 0
\(787\) 803.354 + 261.026i 1.02078 + 0.331672i 0.771139 0.636667i \(-0.219687\pi\)
0.249641 + 0.968338i \(0.419687\pi\)
\(788\) 0 0
\(789\) 530.493 730.161i 0.672362 0.925426i
\(790\) 0 0
\(791\) 388.085i 0.490626i
\(792\) 0 0
\(793\) −426.232 −0.537493
\(794\) 0 0
\(795\) −191.960 139.467i −0.241460 0.175431i
\(796\) 0 0
\(797\) −132.202 + 406.875i −0.165874 + 0.510508i −0.999100 0.0424253i \(-0.986492\pi\)
0.833226 + 0.552933i \(0.186492\pi\)
\(798\) 0 0
\(799\) −819.141 1127.45i −1.02521 1.41108i
\(800\) 0 0
\(801\) 309.096 + 951.300i 0.385888 + 1.18764i
\(802\) 0 0
\(803\) 220.328 642.609i 0.274381 0.800260i
\(804\) 0 0
\(805\) 107.886 35.0544i 0.134020 0.0435459i
\(806\) 0 0
\(807\) −431.208 + 313.291i −0.534334 + 0.388217i
\(808\) 0 0
\(809\) −633.173 205.731i −0.782662 0.254302i −0.109686 0.993966i \(-0.534984\pi\)
−0.672976 + 0.739664i \(0.734984\pi\)
\(810\) 0 0
\(811\) −382.500 + 526.466i −0.471640 + 0.649156i −0.976871 0.213828i \(-0.931407\pi\)
0.505232 + 0.862984i \(0.331407\pi\)
\(812\) 0 0
\(813\) 742.189i 0.912901i
\(814\) 0 0
\(815\) −68.2962 −0.0837990
\(816\) 0 0
\(817\) 441.907 + 321.064i 0.540890 + 0.392979i
\(818\) 0 0
\(819\) 513.045 1578.99i 0.626428 1.92795i
\(820\) 0 0
\(821\) −725.856 999.055i −0.884112 1.21688i −0.975265 0.221039i \(-0.929055\pi\)
0.0911526 0.995837i \(-0.470945\pi\)
\(822\) 0 0
\(823\) 210.770 + 648.683i 0.256100 + 0.788193i 0.993611 + 0.112859i \(0.0360008\pi\)
−0.737512 + 0.675335i \(0.763999\pi\)
\(824\) 0 0
\(825\) 84.2115 112.057i 0.102075 0.135827i
\(826\) 0 0
\(827\) 207.534 67.4319i 0.250948 0.0815379i −0.180842 0.983512i \(-0.557882\pi\)
0.431790 + 0.901974i \(0.357882\pi\)
\(828\) 0 0
\(829\) −1026.39 + 745.718i −1.23811 + 0.899539i −0.997471 0.0710752i \(-0.977357\pi\)
−0.240639 + 0.970615i \(0.577357\pi\)
\(830\) 0 0
\(831\) −1250.58 406.340i −1.50492 0.488977i
\(832\) 0 0
\(833\) −47.8078 + 65.8018i −0.0573923 + 0.0789937i
\(834\) 0 0
\(835\) 770.856i 0.923181i
\(836\) 0 0
\(837\) 833.592 0.995928
\(838\) 0 0
\(839\) −734.509 533.652i −0.875458 0.636058i 0.0565879 0.998398i \(-0.481978\pi\)
−0.932046 + 0.362340i \(0.881978\pi\)
\(840\) 0 0
\(841\) 209.501 644.777i 0.249109 0.766679i
\(842\) 0 0
\(843\) −1521.32 2093.92i −1.80465 2.48389i
\(844\) 0 0
\(845\) −84.6852 260.634i −0.100219 0.308443i
\(846\) 0 0
\(847\) 774.874 224.387i 0.914845 0.264920i
\(848\) 0 0
\(849\) 859.784 279.361i 1.01270 0.329047i
\(850\) 0 0
\(851\) −80.4787 + 58.4712i −0.0945696 + 0.0687088i
\(852\) 0 0
\(853\) 18.1669 + 5.90278i 0.0212976 + 0.00692003i 0.319646 0.947537i \(-0.396436\pi\)
−0.298349 + 0.954457i \(0.596436\pi\)
\(854\) 0 0
\(855\) 1491.49 2052.86i 1.74444 2.40101i
\(856\) 0 0
\(857\) 488.737i 0.570289i 0.958485 + 0.285144i \(0.0920415\pi\)
−0.958485 + 0.285144i \(0.907958\pi\)
\(858\) 0 0
\(859\) −1449.51 −1.68744 −0.843721 0.536782i \(-0.819640\pi\)
−0.843721 + 0.536782i \(0.819640\pi\)
\(860\) 0 0
\(861\) −1350.64 981.297i −1.56869 1.13972i
\(862\) 0 0
\(863\) 10.0403 30.9007i 0.0116341 0.0358062i −0.945071 0.326865i \(-0.894008\pi\)
0.956705 + 0.291059i \(0.0940076\pi\)
\(864\) 0 0
\(865\) 312.178 + 429.677i 0.360900 + 0.496736i
\(866\) 0 0
\(867\) −47.5048 146.205i −0.0547921 0.168633i
\(868\) 0 0
\(869\) 1092.93 + 821.346i 1.25769 + 0.945162i
\(870\) 0 0
\(871\) −440.047 + 142.980i −0.505221 + 0.164156i
\(872\) 0 0
\(873\) −641.679 + 466.207i −0.735028 + 0.534029i
\(874\) 0 0
\(875\) −827.361 268.826i −0.945555 0.307230i
\(876\) 0 0
\(877\) −71.7460 + 98.7499i −0.0818084 + 0.112600i −0.847960 0.530060i \(-0.822169\pi\)
0.766151 + 0.642660i \(0.222169\pi\)
\(878\) 0 0
\(879\) 2628.09i 2.98986i
\(880\) 0 0
\(881\) −545.388 −0.619055 −0.309528 0.950890i \(-0.600171\pi\)
−0.309528 + 0.950890i \(0.600171\pi\)
\(882\) 0 0
\(883\) 823.342 + 598.193i 0.932438 + 0.677456i 0.946588 0.322444i \(-0.104505\pi\)
−0.0141509 + 0.999900i \(0.504505\pi\)
\(884\) 0 0
\(885\) 271.444 835.417i 0.306716 0.943974i
\(886\) 0 0
\(887\) 894.768 + 1231.54i 1.00876 + 1.38844i 0.919794 + 0.392401i \(0.128355\pi\)
0.0889633 + 0.996035i \(0.471645\pi\)
\(888\) 0 0
\(889\) 81.4921 + 250.807i 0.0916671 + 0.282122i
\(890\) 0 0
\(891\) −453.713 155.562i −0.509218 0.174593i
\(892\) 0 0
\(893\) 2400.31 779.908i 2.68792 0.873357i
\(894\) 0 0
\(895\) −602.788 + 437.951i −0.673507 + 0.489331i
\(896\) 0 0
\(897\) 259.747 + 84.3968i 0.289573 + 0.0940879i
\(898\) 0 0
\(899\) 164.299 226.138i 0.182758 0.251544i
\(900\) 0 0
\(901\) 177.004i 0.196453i
\(902\) 0 0
\(903\) −568.557 −0.629631
\(904\) 0 0
\(905\) 1306.68 + 949.361i 1.44385 + 1.04902i
\(906\) 0 0
\(907\) −193.968 + 596.971i −0.213856 + 0.658182i 0.785377 + 0.619018i \(0.212469\pi\)
−0.999233 + 0.0391635i \(0.987531\pi\)
\(908\) 0 0
\(909\) 855.109 + 1176.96i 0.940713 + 1.29478i
\(910\) 0 0
\(911\) 221.708 + 682.348i 0.243368 + 0.749010i 0.995901 + 0.0904550i \(0.0288321\pi\)
−0.752532 + 0.658555i \(0.771168\pi\)
\(912\) 0 0
\(913\) −9.99610 32.5434i −0.0109486 0.0356445i
\(914\) 0 0
\(915\) 644.885 209.536i 0.704792 0.229001i
\(916\) 0 0
\(917\) −702.699 + 510.541i −0.766302 + 0.556751i
\(918\) 0 0
\(919\) −847.124 275.247i −0.921789 0.299507i −0.190588 0.981670i \(-0.561040\pi\)
−0.731200 + 0.682163i \(0.761040\pi\)
\(920\) 0 0
\(921\) 1347.84 1855.15i 1.46346 2.01428i
\(922\) 0 0
\(923\) 618.133i 0.669700i
\(924\) 0 0
\(925\) 69.8995 0.0755670
\(926\) 0 0
\(927\) 166.298 + 120.823i 0.179394 + 0.130337i
\(928\) 0 0
\(929\) −250.632 + 771.367i −0.269787 + 0.830320i 0.720765 + 0.693180i \(0.243791\pi\)
−0.990552 + 0.137140i \(0.956209\pi\)
\(930\) 0 0
\(931\) −86.5804 119.168i −0.0929972 0.128000i
\(932\) 0 0
\(933\) 633.549 + 1949.86i 0.679045 + 2.08988i
\(934\) 0 0
\(935\) −931.965 15.0481i −0.996754 0.0160942i
\(936\) 0 0
\(937\) −1399.40 + 454.693i −1.49349 + 0.485265i −0.938112 0.346331i \(-0.887427\pi\)
−0.555380 + 0.831596i \(0.687427\pi\)
\(938\) 0 0
\(939\) −68.2695 + 49.6007i −0.0727044 + 0.0528229i
\(940\) 0 0
\(941\) −130.287 42.3328i −0.138456 0.0449871i 0.238969 0.971027i \(-0.423190\pi\)
−0.377425 + 0.926040i \(0.623190\pi\)
\(942\) 0 0
\(943\) 104.531 143.874i 0.110849 0.152571i
\(944\) 0 0
\(945\) 1203.65i 1.27370i
\(946\) 0 0
\(947\) −862.357 −0.910620 −0.455310 0.890333i \(-0.650472\pi\)
−0.455310 + 0.890333i \(0.650472\pi\)
\(948\) 0 0
\(949\) −752.437 546.677i −0.792873 0.576056i
\(950\) 0 0
\(951\) 878.442 2703.57i 0.923703 2.84287i
\(952\) 0 0
\(953\) −875.727 1205.33i −0.918916 1.26478i −0.964029 0.265797i \(-0.914365\pi\)
0.0451134 0.998982i \(-0.485635\pi\)
\(954\) 0 0
\(955\) 45.5926 + 140.320i 0.0477410 + 0.146932i
\(956\) 0 0
\(957\) −580.871 + 407.864i −0.606971 + 0.426190i
\(958\) 0 0
\(959\) 1306.53 424.516i 1.36238 0.442665i
\(960\) 0 0
\(961\) 389.767 283.183i 0.405585 0.294675i
\(962\) 0 0
\(963\) 18.6981 + 6.07537i 0.0194165 + 0.00630879i
\(964\) 0 0
\(965\) −139.769 + 192.376i −0.144838 + 0.199353i
\(966\) 0 0
\(967\) 961.962i 0.994790i −0.867524 0.497395i \(-0.834290\pi\)
0.867524 0.497395i \(-0.165710\pi\)
\(968\) 0 0
\(969\) 2923.19 3.01671
\(970\) 0 0
\(971\) 827.337 + 601.095i 0.852046 + 0.619048i 0.925709 0.378235i \(-0.123469\pi\)
−0.0736633 + 0.997283i \(0.523469\pi\)
\(972\) 0 0
\(973\) −441.292 + 1358.16i −0.453537 + 1.39584i
\(974\) 0 0
\(975\) −112.801 155.257i −0.115693 0.159238i
\(976\) 0 0
\(977\) −363.804 1119.67i −0.372368 1.14603i −0.945237 0.326384i \(-0.894170\pi\)
0.572869 0.819647i \(-0.305830\pi\)
\(978\) 0 0
\(979\) 382.373 + 544.568i 0.390575 + 0.556249i
\(980\) 0 0
\(981\) −2283.63 + 741.996i −2.32786 + 0.756367i
\(982\) 0 0
\(983\) 287.961 209.216i 0.292941 0.212834i −0.431601 0.902065i \(-0.642051\pi\)
0.724542 + 0.689230i \(0.242051\pi\)
\(984\) 0 0
\(985\) −1018.29 330.863i −1.03380 0.335901i
\(986\) 0 0
\(987\) −1544.12 + 2125.30i −1.56446 + 2.15329i
\(988\) 0 0
\(989\) 60.5645i 0.0612381i
\(990\) 0 0
\(991\) −370.283 −0.373646 −0.186823 0.982394i \(-0.559819\pi\)
−0.186823 + 0.982394i \(0.559819\pi\)
\(992\) 0 0
\(993\) −685.521 498.060i −0.690353 0.501571i
\(994\) 0 0
\(995\) 68.0155 209.330i 0.0683573 0.210382i
\(996\) 0 0
\(997\) 16.4378 + 22.6247i 0.0164872 + 0.0226927i 0.817181 0.576381i \(-0.195536\pi\)
−0.800694 + 0.599074i \(0.795536\pi\)
\(998\) 0 0
\(999\) −326.170 1003.85i −0.326496 1.00485i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 44.3.f.a.17.1 yes 8
3.2 odd 2 396.3.t.a.325.1 8
4.3 odd 2 176.3.n.c.17.2 8
11.2 odd 10 inner 44.3.f.a.13.1 8
11.3 even 5 484.3.d.c.241.8 8
11.4 even 5 484.3.f.e.481.2 8
11.5 even 5 484.3.f.d.161.2 8
11.6 odd 10 484.3.f.e.161.2 8
11.7 odd 10 484.3.f.d.481.2 8
11.8 odd 10 484.3.d.c.241.7 8
11.9 even 5 484.3.f.a.233.1 8
11.10 odd 2 484.3.f.a.457.1 8
33.2 even 10 396.3.t.a.145.1 8
33.8 even 10 4356.3.f.g.1693.3 8
33.14 odd 10 4356.3.f.g.1693.4 8
44.35 even 10 176.3.n.c.145.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.3.f.a.13.1 8 11.2 odd 10 inner
44.3.f.a.17.1 yes 8 1.1 even 1 trivial
176.3.n.c.17.2 8 4.3 odd 2
176.3.n.c.145.2 8 44.35 even 10
396.3.t.a.145.1 8 33.2 even 10
396.3.t.a.325.1 8 3.2 odd 2
484.3.d.c.241.7 8 11.8 odd 10
484.3.d.c.241.8 8 11.3 even 5
484.3.f.a.233.1 8 11.9 even 5
484.3.f.a.457.1 8 11.10 odd 2
484.3.f.d.161.2 8 11.5 even 5
484.3.f.d.481.2 8 11.7 odd 10
484.3.f.e.161.2 8 11.6 odd 10
484.3.f.e.481.2 8 11.4 even 5
4356.3.f.g.1693.3 8 33.8 even 10
4356.3.f.g.1693.4 8 33.14 odd 10