Properties

Label 44.2.a
Level $44$
Weight $2$
Character orbit 44.a
Rep. character $\chi_{44}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $12$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 44 = 2^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 44.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(44))\).

Total New Old
Modular forms 9 1 8
Cusp forms 4 1 3
Eisenstein series 5 0 5

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(11\)FrickeDim
\(-\)\(+\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(1\)

Trace form

\( q + q^{3} - 3 q^{5} + 2 q^{7} - 2 q^{9} - q^{11} - 4 q^{13} - 3 q^{15} + 6 q^{17} + 8 q^{19} + 2 q^{21} - 3 q^{23} + 4 q^{25} - 5 q^{27} + 5 q^{31} - q^{33} - 6 q^{35} - q^{37} - 4 q^{39} - 10 q^{43}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(44))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 11
44.2.a.a 44.a 1.a $1$ $0.351$ \(\Q\) None 44.2.a.a \(0\) \(1\) \(-3\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{5}+2q^{7}-2q^{9}-q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(44))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(44)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 3}\)