Properties

Label 44.2
Level 44
Weight 2
Dimension 25
Nonzero newspaces 4
Newform subspaces 4
Sturm bound 240
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 44 = 2^{2} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 4 \)
Sturm bound: \(240\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(44))\).

Total New Old
Modular forms 85 45 40
Cusp forms 36 25 11
Eisenstein series 49 20 29

Trace form

\( 25 q - 5 q^{2} - 5 q^{4} - 10 q^{5} - 5 q^{6} - 5 q^{7} - 5 q^{8} - 20 q^{9} - 5 q^{11} - 10 q^{12} - 15 q^{13} + 15 q^{16} - 5 q^{17} + 20 q^{18} + 15 q^{19} + 20 q^{20} + 20 q^{21} + 25 q^{22} + 5 q^{23}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(44))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
44.2.a \(\chi_{44}(1, \cdot)\) 44.2.a.a 1 1
44.2.c \(\chi_{44}(43, \cdot)\) 44.2.c.a 4 1
44.2.e \(\chi_{44}(5, \cdot)\) 44.2.e.a 4 4
44.2.g \(\chi_{44}(7, \cdot)\) 44.2.g.a 16 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(44))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(44)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)