# Properties

 Label 44.1.d.a.21.1 Level $44$ Weight $1$ Character 44.21 Self dual yes Analytic conductor $0.022$ Analytic rank $0$ Dimension $1$ Projective image $D_{3}$ CM discriminant -11 Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [44,1,Mod(21,44)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(44, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("44.21");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$44 = 2^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 44.d (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.0219588605559$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Projective image: $$D_{3}$$ Projective field: Galois closure of 3.1.44.1 Artin image: $S_3$ Artin field: Galois closure of 3.1.44.1

## Embedding invariants

 Embedding label 21.1 Character $$\chi$$ $$=$$ 44.21

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.00000 q^{3} -1.00000 q^{5} +O(q^{10})$$ $$q-1.00000 q^{3} -1.00000 q^{5} +1.00000 q^{11} +1.00000 q^{15} -1.00000 q^{23} +1.00000 q^{27} -1.00000 q^{31} -1.00000 q^{33} -1.00000 q^{37} +2.00000 q^{47} +1.00000 q^{49} +2.00000 q^{53} -1.00000 q^{55} -1.00000 q^{59} -1.00000 q^{67} +1.00000 q^{69} -1.00000 q^{71} -1.00000 q^{81} -1.00000 q^{89} +1.00000 q^{93} -1.00000 q^{97} +O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/44\mathbb{Z}\right)^\times$$.

 $$n$$ $$13$$ $$23$$ $$\chi(n)$$ $$-1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$4$$ 0 0
$$5$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$6$$ 0 0
$$7$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 1.00000 1.00000
$$12$$ 0 0
$$13$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$14$$ 0 0
$$15$$ 1.00000 1.00000
$$16$$ 0 0
$$17$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$18$$ 0 0
$$19$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 1.00000 1.00000
$$28$$ 0 0
$$29$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$30$$ 0 0
$$31$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$32$$ 0 0
$$33$$ −1.00000 −1.00000
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$42$$ 0 0
$$43$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$48$$ 0 0
$$49$$ 1.00000 1.00000
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$54$$ 0 0
$$55$$ −1.00000 −1.00000
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$60$$ 0 0
$$61$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$68$$ 0 0
$$69$$ 1.00000 1.00000
$$70$$ 0 0
$$71$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$72$$ 0 0
$$73$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$80$$ 0 0
$$81$$ −1.00000 −1.00000
$$82$$ 0 0
$$83$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 1.00000 1.00000
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$102$$ 0 0
$$103$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$108$$ 0 0
$$109$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$110$$ 0 0
$$111$$ 1.00000 1.00000
$$112$$ 0 0
$$113$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$114$$ 0 0
$$115$$ 1.00000 1.00000
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 1.00000 1.00000
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 1.00000 1.00000
$$126$$ 0 0
$$127$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ −1.00000 −1.00000
$$136$$ 0 0
$$137$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$138$$ 0 0
$$139$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$140$$ 0 0
$$141$$ −2.00000 −2.00000
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ −1.00000 −1.00000
$$148$$ 0 0
$$149$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$150$$ 0 0
$$151$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 1.00000 1.00000
$$156$$ 0 0
$$157$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$158$$ 0 0
$$159$$ −2.00000 −2.00000
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$164$$ 0 0
$$165$$ 1.00000 1.00000
$$166$$ 0 0
$$167$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$168$$ 0 0
$$169$$ 1.00000 1.00000
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 1.00000 1.00000
$$178$$ 0 0
$$179$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$180$$ 0 0
$$181$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 1.00000 1.00000
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$192$$ 0 0
$$193$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$198$$ 0 0
$$199$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$200$$ 0 0
$$201$$ 1.00000 1.00000
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$212$$ 0 0
$$213$$ 1.00000 1.00000
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$228$$ 0 0
$$229$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$234$$ 0 0
$$235$$ −2.00000 −2.00000
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$240$$ 0 0
$$241$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ −1.00000 −1.00000
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$252$$ 0 0
$$253$$ −1.00000 −1.00000
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$264$$ 0 0
$$265$$ −2.00000 −2.00000
$$266$$ 0 0
$$267$$ 1.00000 1.00000
$$268$$ 0 0
$$269$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$270$$ 0 0
$$271$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$282$$ 0 0
$$283$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 1.00000 1.00000
$$290$$ 0 0
$$291$$ 1.00000 1.00000
$$292$$ 0 0
$$293$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$294$$ 0 0
$$295$$ 1.00000 1.00000
$$296$$ 0 0
$$297$$ 1.00000 1.00000
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$308$$ 0 0
$$309$$ −2.00000 −2.00000
$$310$$ 0 0
$$311$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$312$$ 0 0
$$313$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 1.00000 1.00000
$$336$$ 0 0
$$337$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$338$$ 0 0
$$339$$ 1.00000 1.00000
$$340$$ 0 0
$$341$$ −1.00000 −1.00000
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ −1.00000 −1.00000
$$346$$ 0 0
$$347$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$348$$ 0 0
$$349$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$354$$ 0 0
$$355$$ 1.00000 1.00000
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$360$$ 0 0
$$361$$ 1.00000 1.00000
$$362$$ 0 0
$$363$$ −1.00000 −1.00000
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$374$$ 0 0
$$375$$ −1.00000 −1.00000
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ 1.00000 1.00000
$$406$$ 0 0
$$407$$ −1.00000 −1.00000
$$408$$ 0 0
$$409$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$410$$ 0 0
$$411$$ 1.00000 1.00000
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$420$$ 0 0
$$421$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$432$$ 0 0
$$433$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$444$$ 0 0
$$445$$ 1.00000 1.00000
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$462$$ 0 0
$$463$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$464$$ 0 0
$$465$$ −1.00000 −1.00000
$$466$$ 0 0
$$467$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 1.00000 1.00000
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 1.00000 1.00000
$$486$$ 0 0
$$487$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$488$$ 0 0
$$489$$ −2.00000 −2.00000
$$490$$ 0 0
$$491$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ −1.00000 −1.00000
$$508$$ 0 0
$$509$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ −2.00000 −2.00000
$$516$$ 0 0
$$517$$ 2.00000 2.00000
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$522$$ 0 0
$$523$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 0 0
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 1.00000 1.00000
$$538$$ 0 0
$$539$$ 1.00000 1.00000
$$540$$ 0 0
$$541$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$542$$ 0 0
$$543$$ 1.00000 1.00000
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ −1.00000 −1.00000
$$556$$ 0 0
$$557$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$564$$ 0 0
$$565$$ 1.00000 1.00000
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$570$$ 0 0
$$571$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$572$$ 0 0
$$573$$ 1.00000 1.00000
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 2.00000 2.00000
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ −2.00000 −2.00000
$$598$$ 0 0
$$599$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$600$$ 0 0
$$601$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ −1.00000 −1.00000
$$606$$ 0 0
$$607$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$618$$ 0 0
$$619$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$620$$ 0 0
$$621$$ −1.00000 −1.00000
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −1.00000 −1.00000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$642$$ 0 0
$$643$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$648$$ 0 0
$$649$$ −1.00000 −1.00000
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$660$$ 0 0
$$661$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 1.00000 1.00000
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$684$$ 0 0
$$685$$ 1.00000 1.00000
$$686$$ 0 0
$$687$$ 1.00000 1.00000
$$688$$ 0 0
$$689$$ 0 0
$$690$$ 0 0
$$691$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 2.00000 2.00000
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 1.00000 1.00000
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$728$$ 0 0
$$729$$ 1.00000 1.00000
$$730$$ 0 0
$$731$$ 0 0
$$732$$ 0 0
$$733$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$734$$ 0 0
$$735$$ 1.00000 1.00000
$$736$$ 0 0
$$737$$ −1.00000 −1.00000
$$738$$ 0 0
$$739$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$752$$ 0 0
$$753$$ 1.00000 1.00000
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$758$$ 0 0
$$759$$ 1.00000 1.00000
$$760$$ 0 0
$$761$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$770$$ 0 0
$$771$$ −2.00000 −2.00000
$$772$$ 0 0
$$773$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ −1.00000 −1.00000
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 1.00000 1.00000
$$786$$ 0 0
$$787$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0 0
$$795$$ 2.00000 2.00000
$$796$$ 0 0
$$797$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 0 0
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ −2.00000 −2.00000
$$808$$ 0 0
$$809$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$810$$ 0 0
$$811$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ −2.00000 −2.00000
$$816$$ 0 0
$$817$$ 0 0
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$822$$ 0 0
$$823$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$828$$ 0 0
$$829$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 0 0
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ −1.00000 −1.00000
$$838$$ 0 0
$$839$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$840$$ 0 0
$$841$$ 1.00000 1.00000
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ −1.00000 −1.00000
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 1.00000 1.00000
$$852$$ 0 0
$$853$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$858$$ 0 0
$$859$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ −1.00000 −1.00000
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 0 0
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$882$$ 0 0
$$883$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$884$$ 0 0
$$885$$ −1.00000 −1.00000
$$886$$ 0 0
$$887$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ −1.00000 −1.00000
$$892$$ 0 0
$$893$$ 0 0
$$894$$ 0 0
$$895$$ 1.00000 1.00000
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ 0 0
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 1.00000 1.00000
$$906$$ 0 0
$$907$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$930$$ 0 0
$$931$$ 0 0
$$932$$ 0 0
$$933$$ −2.00000 −2.00000
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$938$$ 0 0
$$939$$ 1.00000 1.00000
$$940$$ 0 0
$$941$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$948$$ 0 0
$$949$$ 0 0
$$950$$ 0 0
$$951$$ 1.00000 1.00000
$$952$$ 0 0
$$953$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$954$$ 0 0
$$955$$ 1.00000 1.00000
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ 0 0
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$978$$ 0 0
$$979$$ −1.00000 −1.00000
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$992$$ 0 0
$$993$$ 1.00000 1.00000
$$994$$ 0 0
$$995$$ −2.00000 −2.00000
$$996$$ 0 0
$$997$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$998$$ 0 0
$$999$$ −1.00000 −1.00000
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 44.1.d.a.21.1 1
3.2 odd 2 396.1.f.a.109.1 1
4.3 odd 2 176.1.h.a.65.1 1
5.2 odd 4 1100.1.e.a.549.2 2
5.3 odd 4 1100.1.e.a.549.1 2
5.4 even 2 1100.1.f.a.901.1 1
7.2 even 3 2156.1.k.b.1341.1 2
7.3 odd 6 2156.1.k.a.373.1 2
7.4 even 3 2156.1.k.b.373.1 2
7.5 odd 6 2156.1.k.a.1341.1 2
7.6 odd 2 2156.1.h.a.197.1 1
8.3 odd 2 704.1.h.a.65.1 1
8.5 even 2 704.1.h.b.65.1 1
9.2 odd 6 3564.1.m.a.109.1 2
9.4 even 3 3564.1.m.b.2485.1 2
9.5 odd 6 3564.1.m.a.2485.1 2
9.7 even 3 3564.1.m.b.109.1 2
11.2 odd 10 484.1.f.a.161.1 4
11.3 even 5 484.1.f.a.233.1 4
11.4 even 5 484.1.f.a.457.1 4
11.5 even 5 484.1.f.a.481.1 4
11.6 odd 10 484.1.f.a.481.1 4
11.7 odd 10 484.1.f.a.457.1 4
11.8 odd 10 484.1.f.a.233.1 4
11.9 even 5 484.1.f.a.161.1 4
11.10 odd 2 CM 44.1.d.a.21.1 1
12.11 even 2 1584.1.j.a.1297.1 1
16.3 odd 4 2816.1.b.a.2177.2 2
16.5 even 4 2816.1.b.b.2177.2 2
16.11 odd 4 2816.1.b.a.2177.1 2
16.13 even 4 2816.1.b.b.2177.1 2
33.32 even 2 396.1.f.a.109.1 1
44.3 odd 10 1936.1.n.a.1201.1 4
44.7 even 10 1936.1.n.a.1425.1 4
44.15 odd 10 1936.1.n.a.1425.1 4
44.19 even 10 1936.1.n.a.1201.1 4
44.27 odd 10 1936.1.n.a.481.1 4
44.31 odd 10 1936.1.n.a.161.1 4
44.35 even 10 1936.1.n.a.161.1 4
44.39 even 10 1936.1.n.a.481.1 4
44.43 even 2 176.1.h.a.65.1 1
55.32 even 4 1100.1.e.a.549.2 2
55.43 even 4 1100.1.e.a.549.1 2
55.54 odd 2 1100.1.f.a.901.1 1
77.10 even 6 2156.1.k.a.373.1 2
77.32 odd 6 2156.1.k.b.373.1 2
77.54 even 6 2156.1.k.a.1341.1 2
77.65 odd 6 2156.1.k.b.1341.1 2
77.76 even 2 2156.1.h.a.197.1 1
88.21 odd 2 704.1.h.b.65.1 1
88.43 even 2 704.1.h.a.65.1 1
99.32 even 6 3564.1.m.a.2485.1 2
99.43 odd 6 3564.1.m.b.109.1 2
99.65 even 6 3564.1.m.a.109.1 2
99.76 odd 6 3564.1.m.b.2485.1 2
132.131 odd 2 1584.1.j.a.1297.1 1
176.21 odd 4 2816.1.b.b.2177.2 2
176.43 even 4 2816.1.b.a.2177.1 2
176.109 odd 4 2816.1.b.b.2177.1 2
176.131 even 4 2816.1.b.a.2177.2 2

By twisted newform
Twist Min Dim Char Parity Ord Type
44.1.d.a.21.1 1 1.1 even 1 trivial
44.1.d.a.21.1 1 11.10 odd 2 CM
176.1.h.a.65.1 1 4.3 odd 2
176.1.h.a.65.1 1 44.43 even 2
396.1.f.a.109.1 1 3.2 odd 2
396.1.f.a.109.1 1 33.32 even 2
484.1.f.a.161.1 4 11.2 odd 10
484.1.f.a.161.1 4 11.9 even 5
484.1.f.a.233.1 4 11.3 even 5
484.1.f.a.233.1 4 11.8 odd 10
484.1.f.a.457.1 4 11.4 even 5
484.1.f.a.457.1 4 11.7 odd 10
484.1.f.a.481.1 4 11.5 even 5
484.1.f.a.481.1 4 11.6 odd 10
704.1.h.a.65.1 1 8.3 odd 2
704.1.h.a.65.1 1 88.43 even 2
704.1.h.b.65.1 1 8.5 even 2
704.1.h.b.65.1 1 88.21 odd 2
1100.1.e.a.549.1 2 5.3 odd 4
1100.1.e.a.549.1 2 55.43 even 4
1100.1.e.a.549.2 2 5.2 odd 4
1100.1.e.a.549.2 2 55.32 even 4
1100.1.f.a.901.1 1 5.4 even 2
1100.1.f.a.901.1 1 55.54 odd 2
1584.1.j.a.1297.1 1 12.11 even 2
1584.1.j.a.1297.1 1 132.131 odd 2
1936.1.n.a.161.1 4 44.31 odd 10
1936.1.n.a.161.1 4 44.35 even 10
1936.1.n.a.481.1 4 44.27 odd 10
1936.1.n.a.481.1 4 44.39 even 10
1936.1.n.a.1201.1 4 44.3 odd 10
1936.1.n.a.1201.1 4 44.19 even 10
1936.1.n.a.1425.1 4 44.7 even 10
1936.1.n.a.1425.1 4 44.15 odd 10
2156.1.h.a.197.1 1 7.6 odd 2
2156.1.h.a.197.1 1 77.76 even 2
2156.1.k.a.373.1 2 7.3 odd 6
2156.1.k.a.373.1 2 77.10 even 6
2156.1.k.a.1341.1 2 7.5 odd 6
2156.1.k.a.1341.1 2 77.54 even 6
2156.1.k.b.373.1 2 7.4 even 3
2156.1.k.b.373.1 2 77.32 odd 6
2156.1.k.b.1341.1 2 7.2 even 3
2156.1.k.b.1341.1 2 77.65 odd 6
2816.1.b.a.2177.1 2 16.11 odd 4
2816.1.b.a.2177.1 2 176.43 even 4
2816.1.b.a.2177.2 2 16.3 odd 4
2816.1.b.a.2177.2 2 176.131 even 4
2816.1.b.b.2177.1 2 16.13 even 4
2816.1.b.b.2177.1 2 176.109 odd 4
2816.1.b.b.2177.2 2 16.5 even 4
2816.1.b.b.2177.2 2 176.21 odd 4
3564.1.m.a.109.1 2 9.2 odd 6
3564.1.m.a.109.1 2 99.65 even 6
3564.1.m.a.2485.1 2 9.5 odd 6
3564.1.m.a.2485.1 2 99.32 even 6
3564.1.m.b.109.1 2 9.7 even 3
3564.1.m.b.109.1 2 99.43 odd 6
3564.1.m.b.2485.1 2 9.4 even 3
3564.1.m.b.2485.1 2 99.76 odd 6