Properties

Label 4368.2.h.n
Level $4368$
Weight $2$
Character orbit 4368.h
Analytic conductor $34.879$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4368.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(34.8786556029\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Defining polynomial: \(x^{4} + 9 x^{2} + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + ( \beta_{1} - \beta_{2} ) q^{5} -\beta_{2} q^{7} + q^{9} +O(q^{10})\) \( q + q^{3} + ( \beta_{1} - \beta_{2} ) q^{5} -\beta_{2} q^{7} + q^{9} + ( -\beta_{1} + 3 \beta_{2} ) q^{11} + ( 2 - \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{13} + ( \beta_{1} - \beta_{2} ) q^{15} + ( -2 + 3 \beta_{3} ) q^{17} + ( \beta_{1} + \beta_{2} ) q^{19} -\beta_{2} q^{21} + ( 2 - 3 \beta_{3} ) q^{23} + ( -3 + 3 \beta_{3} ) q^{25} + q^{27} -\beta_{3} q^{29} + ( 4 \beta_{1} + 4 \beta_{2} ) q^{31} + ( -\beta_{1} + 3 \beta_{2} ) q^{33} + ( -2 + \beta_{3} ) q^{35} + ( 3 \beta_{1} - 3 \beta_{2} ) q^{37} + ( 2 - \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{39} -4 \beta_{2} q^{41} + ( 8 + \beta_{3} ) q^{43} + ( \beta_{1} - \beta_{2} ) q^{45} + 4 \beta_{1} q^{47} - q^{49} + ( -2 + 3 \beta_{3} ) q^{51} + ( 8 + 2 \beta_{3} ) q^{53} + ( 12 - 5 \beta_{3} ) q^{55} + ( \beta_{1} + \beta_{2} ) q^{57} + ( -4 \beta_{1} - 6 \beta_{2} ) q^{59} + \beta_{3} q^{61} -\beta_{2} q^{63} + ( 2 + 3 \beta_{1} - 5 \beta_{2} ) q^{65} + ( 2 \beta_{1} + 4 \beta_{2} ) q^{67} + ( 2 - 3 \beta_{3} ) q^{69} + ( -6 \beta_{1} - 6 \beta_{2} ) q^{71} + ( \beta_{1} - 9 \beta_{2} ) q^{73} + ( -3 + 3 \beta_{3} ) q^{75} + ( 4 - \beta_{3} ) q^{77} -16 q^{79} + q^{81} -2 \beta_{2} q^{83} + ( -5 \beta_{1} + 11 \beta_{2} ) q^{85} -\beta_{3} q^{87} + 8 \beta_{2} q^{89} + ( -1 + \beta_{1} - \beta_{2} - \beta_{3} ) q^{91} + ( 4 \beta_{1} + 4 \beta_{2} ) q^{93} + ( -4 + \beta_{3} ) q^{95} -10 \beta_{2} q^{97} + ( -\beta_{1} + 3 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 4q^{3} + 4q^{9} + O(q^{10}) \) \( 4q + 4q^{3} + 4q^{9} + 6q^{13} - 2q^{17} + 2q^{23} - 6q^{25} + 4q^{27} - 2q^{29} - 6q^{35} + 6q^{39} + 34q^{43} - 4q^{49} - 2q^{51} + 36q^{53} + 38q^{55} + 2q^{61} + 8q^{65} + 2q^{69} - 6q^{75} + 14q^{77} - 64q^{79} + 4q^{81} - 2q^{87} - 6q^{91} - 14q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 9 x^{2} + 16\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 5 \nu \)\()/4\)
\(\beta_{3}\)\(=\)\( \nu^{2} + 5 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} - 5\)
\(\nu^{3}\)\(=\)\(4 \beta_{2} - 5 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4368\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(1457\) \(2017\) \(3823\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
2.56155i
1.56155i
1.56155i
2.56155i
0 1.00000 0 3.56155i 0 1.00000i 0 1.00000 0
337.2 0 1.00000 0 0.561553i 0 1.00000i 0 1.00000 0
337.3 0 1.00000 0 0.561553i 0 1.00000i 0 1.00000 0
337.4 0 1.00000 0 3.56155i 0 1.00000i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4368.2.h.n 4
4.b odd 2 1 546.2.c.e 4
12.b even 2 1 1638.2.c.h 4
13.b even 2 1 inner 4368.2.h.n 4
28.d even 2 1 3822.2.c.h 4
52.b odd 2 1 546.2.c.e 4
52.f even 4 1 7098.2.a.bg 2
52.f even 4 1 7098.2.a.bv 2
156.h even 2 1 1638.2.c.h 4
364.h even 2 1 3822.2.c.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.c.e 4 4.b odd 2 1
546.2.c.e 4 52.b odd 2 1
1638.2.c.h 4 12.b even 2 1
1638.2.c.h 4 156.h even 2 1
3822.2.c.h 4 28.d even 2 1
3822.2.c.h 4 364.h even 2 1
4368.2.h.n 4 1.a even 1 1 trivial
4368.2.h.n 4 13.b even 2 1 inner
7098.2.a.bg 2 52.f even 4 1
7098.2.a.bv 2 52.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4368, [\chi])\):

\( T_{5}^{4} + 13 T_{5}^{2} + 4 \)
\( T_{11}^{4} + 33 T_{11}^{2} + 64 \)
\( T_{17}^{2} + T_{17} - 38 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( ( -1 + T )^{4} \)
$5$ \( 4 + 13 T^{2} + T^{4} \)
$7$ \( ( 1 + T^{2} )^{2} \)
$11$ \( 64 + 33 T^{2} + T^{4} \)
$13$ \( 169 - 78 T + 18 T^{2} - 6 T^{3} + T^{4} \)
$17$ \( ( -38 + T + T^{2} )^{2} \)
$19$ \( 16 + 9 T^{2} + T^{4} \)
$23$ \( ( -38 - T + T^{2} )^{2} \)
$29$ \( ( -4 + T + T^{2} )^{2} \)
$31$ \( 4096 + 144 T^{2} + T^{4} \)
$37$ \( 324 + 117 T^{2} + T^{4} \)
$41$ \( ( 16 + T^{2} )^{2} \)
$43$ \( ( 68 - 17 T + T^{2} )^{2} \)
$47$ \( 4096 + 144 T^{2} + T^{4} \)
$53$ \( ( 64 - 18 T + T^{2} )^{2} \)
$59$ \( 2704 + 168 T^{2} + T^{4} \)
$61$ \( ( -4 - T + T^{2} )^{2} \)
$67$ \( 64 + 52 T^{2} + T^{4} \)
$71$ \( 20736 + 324 T^{2} + T^{4} \)
$73$ \( 7396 + 189 T^{2} + T^{4} \)
$79$ \( ( 16 + T )^{4} \)
$83$ \( ( 4 + T^{2} )^{2} \)
$89$ \( ( 64 + T^{2} )^{2} \)
$97$ \( ( 100 + T^{2} )^{2} \)
show more
show less