Properties

Label 4368.2.h.k
Level $4368$
Weight $2$
Character orbit 4368.h
Analytic conductor $34.879$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4368.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(34.8786556029\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + i q^{5} + i q^{7} + q^{9} +O(q^{10})\) \( q + q^{3} + i q^{5} + i q^{7} + q^{9} -i q^{11} + ( 3 + 2 i ) q^{13} + i q^{15} + q^{17} + i q^{19} + i q^{21} -3 q^{23} + 4 q^{25} + q^{27} + 9 q^{29} + 4 i q^{31} -i q^{33} - q^{35} -9 i q^{37} + ( 3 + 2 i ) q^{39} + 8 i q^{41} -7 q^{43} + i q^{45} -8 i q^{47} - q^{49} + q^{51} -10 q^{53} + q^{55} + i q^{57} + 6 i q^{59} + 11 q^{61} + i q^{63} + ( -2 + 3 i ) q^{65} + 12 i q^{67} -3 q^{69} -6 i q^{71} + 11 i q^{73} + 4 q^{75} + q^{77} + 12 q^{79} + q^{81} -6 i q^{83} + i q^{85} + 9 q^{87} + 12 i q^{89} + ( -2 + 3 i ) q^{91} + 4 i q^{93} - q^{95} -2 i q^{97} -i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{3} + 2q^{9} + O(q^{10}) \) \( 2q + 2q^{3} + 2q^{9} + 6q^{13} + 2q^{17} - 6q^{23} + 8q^{25} + 2q^{27} + 18q^{29} - 2q^{35} + 6q^{39} - 14q^{43} - 2q^{49} + 2q^{51} - 20q^{53} + 2q^{55} + 22q^{61} - 4q^{65} - 6q^{69} + 8q^{75} + 2q^{77} + 24q^{79} + 2q^{81} + 18q^{87} - 4q^{91} - 2q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4368\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(1457\) \(2017\) \(3823\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.00000i
1.00000i
0 1.00000 0 1.00000i 0 1.00000i 0 1.00000 0
337.2 0 1.00000 0 1.00000i 0 1.00000i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4368.2.h.k 2
4.b odd 2 1 546.2.c.a 2
12.b even 2 1 1638.2.c.f 2
13.b even 2 1 inner 4368.2.h.k 2
28.d even 2 1 3822.2.c.e 2
52.b odd 2 1 546.2.c.a 2
52.f even 4 1 7098.2.a.d 1
52.f even 4 1 7098.2.a.s 1
156.h even 2 1 1638.2.c.f 2
364.h even 2 1 3822.2.c.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.c.a 2 4.b odd 2 1
546.2.c.a 2 52.b odd 2 1
1638.2.c.f 2 12.b even 2 1
1638.2.c.f 2 156.h even 2 1
3822.2.c.e 2 28.d even 2 1
3822.2.c.e 2 364.h even 2 1
4368.2.h.k 2 1.a even 1 1 trivial
4368.2.h.k 2 13.b even 2 1 inner
7098.2.a.d 1 52.f even 4 1
7098.2.a.s 1 52.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4368, [\chi])\):

\( T_{5}^{2} + 1 \)
\( T_{11}^{2} + 1 \)
\( T_{17} - 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( ( -1 + T )^{2} \)
$5$ \( 1 + T^{2} \)
$7$ \( 1 + T^{2} \)
$11$ \( 1 + T^{2} \)
$13$ \( 13 - 6 T + T^{2} \)
$17$ \( ( -1 + T )^{2} \)
$19$ \( 1 + T^{2} \)
$23$ \( ( 3 + T )^{2} \)
$29$ \( ( -9 + T )^{2} \)
$31$ \( 16 + T^{2} \)
$37$ \( 81 + T^{2} \)
$41$ \( 64 + T^{2} \)
$43$ \( ( 7 + T )^{2} \)
$47$ \( 64 + T^{2} \)
$53$ \( ( 10 + T )^{2} \)
$59$ \( 36 + T^{2} \)
$61$ \( ( -11 + T )^{2} \)
$67$ \( 144 + T^{2} \)
$71$ \( 36 + T^{2} \)
$73$ \( 121 + T^{2} \)
$79$ \( ( -12 + T )^{2} \)
$83$ \( 36 + T^{2} \)
$89$ \( 144 + T^{2} \)
$97$ \( 4 + T^{2} \)
show more
show less