Properties

Label 4368.2.h.b
Level $4368$
Weight $2$
Character orbit 4368.h
Analytic conductor $34.879$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4368.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(34.8786556029\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + 3 i q^{5} + i q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} + 3 i q^{5} + i q^{7} + q^{9} - 5 i q^{11} + (2 i - 3) q^{13} - 3 i q^{15} + 3 q^{17} - i q^{19} - i q^{21} + q^{23} - 4 q^{25} - q^{27} + 5 q^{29} + 5 i q^{33} - 3 q^{35} + 7 i q^{37} + ( - 2 i + 3) q^{39} + q^{43} + 3 i q^{45} + 8 i q^{47} - q^{49} - 3 q^{51} + 14 q^{53} + 15 q^{55} + i q^{57} + 14 i q^{59} - 3 q^{61} + i q^{63} + ( - 9 i - 6) q^{65} + 8 i q^{67} - q^{69} - 10 i q^{71} - 11 i q^{73} + 4 q^{75} + 5 q^{77} + q^{81} + 6 i q^{83} + 9 i q^{85} - 5 q^{87} + 16 i q^{89} + ( - 3 i - 2) q^{91} + 3 q^{95} + 2 i q^{97} - 5 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{9} - 6 q^{13} + 6 q^{17} + 2 q^{23} - 8 q^{25} - 2 q^{27} + 10 q^{29} - 6 q^{35} + 6 q^{39} + 2 q^{43} - 2 q^{49} - 6 q^{51} + 28 q^{53} + 30 q^{55} - 6 q^{61} - 12 q^{65} - 2 q^{69} + 8 q^{75} + 10 q^{77} + 2 q^{81} - 10 q^{87} - 4 q^{91} + 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4368\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(1457\) \(2017\) \(3823\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.00000i
1.00000i
0 −1.00000 0 3.00000i 0 1.00000i 0 1.00000 0
337.2 0 −1.00000 0 3.00000i 0 1.00000i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4368.2.h.b 2
4.b odd 2 1 546.2.c.d 2
12.b even 2 1 1638.2.c.g 2
13.b even 2 1 inner 4368.2.h.b 2
28.d even 2 1 3822.2.c.a 2
52.b odd 2 1 546.2.c.d 2
52.f even 4 1 7098.2.a.p 1
52.f even 4 1 7098.2.a.x 1
156.h even 2 1 1638.2.c.g 2
364.h even 2 1 3822.2.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.c.d 2 4.b odd 2 1
546.2.c.d 2 52.b odd 2 1
1638.2.c.g 2 12.b even 2 1
1638.2.c.g 2 156.h even 2 1
3822.2.c.a 2 28.d even 2 1
3822.2.c.a 2 364.h even 2 1
4368.2.h.b 2 1.a even 1 1 trivial
4368.2.h.b 2 13.b even 2 1 inner
7098.2.a.p 1 52.f even 4 1
7098.2.a.x 1 52.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4368, [\chi])\):

\( T_{5}^{2} + 9 \) Copy content Toggle raw display
\( T_{11}^{2} + 25 \) Copy content Toggle raw display
\( T_{17} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 9 \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} + 25 \) Copy content Toggle raw display
$13$ \( T^{2} + 6T + 13 \) Copy content Toggle raw display
$17$ \( (T - 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 1 \) Copy content Toggle raw display
$23$ \( (T - 1)^{2} \) Copy content Toggle raw display
$29$ \( (T - 5)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 49 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( (T - 14)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 196 \) Copy content Toggle raw display
$61$ \( (T + 3)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 64 \) Copy content Toggle raw display
$71$ \( T^{2} + 100 \) Copy content Toggle raw display
$73$ \( T^{2} + 121 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 36 \) Copy content Toggle raw display
$89$ \( T^{2} + 256 \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less