Properties

Label 4368.2.a.z.1.1
Level $4368$
Weight $2$
Character 4368.1
Self dual yes
Analytic conductor $34.879$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4368,2,Mod(1,4368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4368.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.8786556029\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4368.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +3.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} +3.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} -1.00000 q^{11} -1.00000 q^{13} +3.00000 q^{15} +7.00000 q^{17} -1.00000 q^{19} +1.00000 q^{21} +7.00000 q^{23} +4.00000 q^{25} +1.00000 q^{27} +3.00000 q^{29} -1.00000 q^{33} +3.00000 q^{35} -5.00000 q^{37} -1.00000 q^{39} +4.00000 q^{41} -11.0000 q^{43} +3.00000 q^{45} +1.00000 q^{49} +7.00000 q^{51} -14.0000 q^{53} -3.00000 q^{55} -1.00000 q^{57} -4.00000 q^{59} +1.00000 q^{61} +1.00000 q^{63} -3.00000 q^{65} +6.00000 q^{67} +7.00000 q^{69} +12.0000 q^{71} +5.00000 q^{73} +4.00000 q^{75} -1.00000 q^{77} +10.0000 q^{79} +1.00000 q^{81} +14.0000 q^{83} +21.0000 q^{85} +3.00000 q^{87} -6.00000 q^{89} -1.00000 q^{91} -3.00000 q^{95} +6.00000 q^{97} -1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 3.00000 0.774597
\(16\) 0 0
\(17\) 7.00000 1.69775 0.848875 0.528594i \(-0.177281\pi\)
0.848875 + 0.528594i \(0.177281\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 7.00000 1.45960 0.729800 0.683660i \(-0.239613\pi\)
0.729800 + 0.683660i \(0.239613\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) −1.00000 −0.174078
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −5.00000 −0.821995 −0.410997 0.911636i \(-0.634819\pi\)
−0.410997 + 0.911636i \(0.634819\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) −11.0000 −1.67748 −0.838742 0.544529i \(-0.816708\pi\)
−0.838742 + 0.544529i \(0.816708\pi\)
\(44\) 0 0
\(45\) 3.00000 0.447214
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 7.00000 0.980196
\(52\) 0 0
\(53\) −14.0000 −1.92305 −0.961524 0.274721i \(-0.911414\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) −3.00000 −0.372104
\(66\) 0 0
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) 0 0
\(69\) 7.00000 0.842701
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 5.00000 0.585206 0.292603 0.956234i \(-0.405479\pi\)
0.292603 + 0.956234i \(0.405479\pi\)
\(74\) 0 0
\(75\) 4.00000 0.461880
\(76\) 0 0
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 14.0000 1.53670 0.768350 0.640030i \(-0.221078\pi\)
0.768350 + 0.640030i \(0.221078\pi\)
\(84\) 0 0
\(85\) 21.0000 2.27777
\(86\) 0 0
\(87\) 3.00000 0.321634
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.00000 −0.307794
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) 7.00000 0.689730 0.344865 0.938652i \(-0.387925\pi\)
0.344865 + 0.938652i \(0.387925\pi\)
\(104\) 0 0
\(105\) 3.00000 0.292770
\(106\) 0 0
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) 0 0
\(111\) −5.00000 −0.474579
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 21.0000 1.95826
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) 7.00000 0.641689
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 4.00000 0.360668
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −10.0000 −0.887357 −0.443678 0.896186i \(-0.646327\pi\)
−0.443678 + 0.896186i \(0.646327\pi\)
\(128\) 0 0
\(129\) −11.0000 −0.968496
\(130\) 0 0
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 3.00000 0.258199
\(136\) 0 0
\(137\) 15.0000 1.28154 0.640768 0.767734i \(-0.278616\pi\)
0.640768 + 0.767734i \(0.278616\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) 9.00000 0.747409
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) 16.0000 1.31077 0.655386 0.755295i \(-0.272506\pi\)
0.655386 + 0.755295i \(0.272506\pi\)
\(150\) 0 0
\(151\) −7.00000 −0.569652 −0.284826 0.958579i \(-0.591936\pi\)
−0.284826 + 0.958579i \(0.591936\pi\)
\(152\) 0 0
\(153\) 7.00000 0.565916
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) 0 0
\(159\) −14.0000 −1.11027
\(160\) 0 0
\(161\) 7.00000 0.551677
\(162\) 0 0
\(163\) −10.0000 −0.783260 −0.391630 0.920123i \(-0.628089\pi\)
−0.391630 + 0.920123i \(0.628089\pi\)
\(164\) 0 0
\(165\) −3.00000 −0.233550
\(166\) 0 0
\(167\) −7.00000 −0.541676 −0.270838 0.962625i \(-0.587301\pi\)
−0.270838 + 0.962625i \(0.587301\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) 0 0
\(177\) −4.00000 −0.300658
\(178\) 0 0
\(179\) −8.00000 −0.597948 −0.298974 0.954261i \(-0.596644\pi\)
−0.298974 + 0.954261i \(0.596644\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) 0 0
\(185\) −15.0000 −1.10282
\(186\) 0 0
\(187\) −7.00000 −0.511891
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 15.0000 1.08536 0.542681 0.839939i \(-0.317409\pi\)
0.542681 + 0.839939i \(0.317409\pi\)
\(192\) 0 0
\(193\) −8.00000 −0.575853 −0.287926 0.957653i \(-0.592966\pi\)
−0.287926 + 0.957653i \(0.592966\pi\)
\(194\) 0 0
\(195\) −3.00000 −0.214834
\(196\) 0 0
\(197\) −20.0000 −1.42494 −0.712470 0.701702i \(-0.752424\pi\)
−0.712470 + 0.701702i \(0.752424\pi\)
\(198\) 0 0
\(199\) −3.00000 −0.212664 −0.106332 0.994331i \(-0.533911\pi\)
−0.106332 + 0.994331i \(0.533911\pi\)
\(200\) 0 0
\(201\) 6.00000 0.423207
\(202\) 0 0
\(203\) 3.00000 0.210559
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) 0 0
\(207\) 7.00000 0.486534
\(208\) 0 0
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −25.0000 −1.72107 −0.860535 0.509390i \(-0.829871\pi\)
−0.860535 + 0.509390i \(0.829871\pi\)
\(212\) 0 0
\(213\) 12.0000 0.822226
\(214\) 0 0
\(215\) −33.0000 −2.25058
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 5.00000 0.337869
\(220\) 0 0
\(221\) −7.00000 −0.470871
\(222\) 0 0
\(223\) −14.0000 −0.937509 −0.468755 0.883328i \(-0.655297\pi\)
−0.468755 + 0.883328i \(0.655297\pi\)
\(224\) 0 0
\(225\) 4.00000 0.266667
\(226\) 0 0
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 0 0
\(229\) 18.0000 1.18947 0.594737 0.803921i \(-0.297256\pi\)
0.594737 + 0.803921i \(0.297256\pi\)
\(230\) 0 0
\(231\) −1.00000 −0.0657952
\(232\) 0 0
\(233\) −12.0000 −0.786146 −0.393073 0.919507i \(-0.628588\pi\)
−0.393073 + 0.919507i \(0.628588\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 10.0000 0.649570
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 3.00000 0.191663
\(246\) 0 0
\(247\) 1.00000 0.0636285
\(248\) 0 0
\(249\) 14.0000 0.887214
\(250\) 0 0
\(251\) −3.00000 −0.189358 −0.0946792 0.995508i \(-0.530183\pi\)
−0.0946792 + 0.995508i \(0.530183\pi\)
\(252\) 0 0
\(253\) −7.00000 −0.440086
\(254\) 0 0
\(255\) 21.0000 1.31507
\(256\) 0 0
\(257\) 10.0000 0.623783 0.311891 0.950118i \(-0.399037\pi\)
0.311891 + 0.950118i \(0.399037\pi\)
\(258\) 0 0
\(259\) −5.00000 −0.310685
\(260\) 0 0
\(261\) 3.00000 0.185695
\(262\) 0 0
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 0 0
\(265\) −42.0000 −2.58004
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) 2.00000 0.121942 0.0609711 0.998140i \(-0.480580\pi\)
0.0609711 + 0.998140i \(0.480580\pi\)
\(270\) 0 0
\(271\) 30.0000 1.82237 0.911185 0.411997i \(-0.135169\pi\)
0.911185 + 0.411997i \(0.135169\pi\)
\(272\) 0 0
\(273\) −1.00000 −0.0605228
\(274\) 0 0
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) 0 0
\(285\) −3.00000 −0.177705
\(286\) 0 0
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) 6.00000 0.351726
\(292\) 0 0
\(293\) 30.0000 1.75262 0.876309 0.481749i \(-0.159998\pi\)
0.876309 + 0.481749i \(0.159998\pi\)
\(294\) 0 0
\(295\) −12.0000 −0.698667
\(296\) 0 0
\(297\) −1.00000 −0.0580259
\(298\) 0 0
\(299\) −7.00000 −0.404820
\(300\) 0 0
\(301\) −11.0000 −0.634029
\(302\) 0 0
\(303\) −12.0000 −0.689382
\(304\) 0 0
\(305\) 3.00000 0.171780
\(306\) 0 0
\(307\) 32.0000 1.82634 0.913168 0.407583i \(-0.133628\pi\)
0.913168 + 0.407583i \(0.133628\pi\)
\(308\) 0 0
\(309\) 7.00000 0.398216
\(310\) 0 0
\(311\) −2.00000 −0.113410 −0.0567048 0.998391i \(-0.518059\pi\)
−0.0567048 + 0.998391i \(0.518059\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 3.00000 0.169031
\(316\) 0 0
\(317\) −28.0000 −1.57264 −0.786318 0.617822i \(-0.788015\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) −3.00000 −0.167968
\(320\) 0 0
\(321\) 18.0000 1.00466
\(322\) 0 0
\(323\) −7.00000 −0.389490
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) −7.00000 −0.387101
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 14.0000 0.769510 0.384755 0.923019i \(-0.374286\pi\)
0.384755 + 0.923019i \(0.374286\pi\)
\(332\) 0 0
\(333\) −5.00000 −0.273998
\(334\) 0 0
\(335\) 18.0000 0.983445
\(336\) 0 0
\(337\) 3.00000 0.163420 0.0817102 0.996656i \(-0.473962\pi\)
0.0817102 + 0.996656i \(0.473962\pi\)
\(338\) 0 0
\(339\) −14.0000 −0.760376
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 21.0000 1.13060
\(346\) 0 0
\(347\) −32.0000 −1.71785 −0.858925 0.512101i \(-0.828867\pi\)
−0.858925 + 0.512101i \(0.828867\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −10.0000 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(354\) 0 0
\(355\) 36.0000 1.91068
\(356\) 0 0
\(357\) 7.00000 0.370479
\(358\) 0 0
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) −10.0000 −0.524864
\(364\) 0 0
\(365\) 15.0000 0.785136
\(366\) 0 0
\(367\) −32.0000 −1.67039 −0.835193 0.549957i \(-0.814644\pi\)
−0.835193 + 0.549957i \(0.814644\pi\)
\(368\) 0 0
\(369\) 4.00000 0.208232
\(370\) 0 0
\(371\) −14.0000 −0.726844
\(372\) 0 0
\(373\) 12.0000 0.621336 0.310668 0.950518i \(-0.399447\pi\)
0.310668 + 0.950518i \(0.399447\pi\)
\(374\) 0 0
\(375\) −3.00000 −0.154919
\(376\) 0 0
\(377\) −3.00000 −0.154508
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) −10.0000 −0.512316
\(382\) 0 0
\(383\) 1.00000 0.0510976 0.0255488 0.999674i \(-0.491867\pi\)
0.0255488 + 0.999674i \(0.491867\pi\)
\(384\) 0 0
\(385\) −3.00000 −0.152894
\(386\) 0 0
\(387\) −11.0000 −0.559161
\(388\) 0 0
\(389\) 34.0000 1.72387 0.861934 0.507020i \(-0.169253\pi\)
0.861934 + 0.507020i \(0.169253\pi\)
\(390\) 0 0
\(391\) 49.0000 2.47804
\(392\) 0 0
\(393\) −15.0000 −0.756650
\(394\) 0 0
\(395\) 30.0000 1.50946
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 0 0
\(399\) −1.00000 −0.0500626
\(400\) 0 0
\(401\) −2.00000 −0.0998752 −0.0499376 0.998752i \(-0.515902\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 3.00000 0.149071
\(406\) 0 0
\(407\) 5.00000 0.247841
\(408\) 0 0
\(409\) 23.0000 1.13728 0.568638 0.822588i \(-0.307470\pi\)
0.568638 + 0.822588i \(0.307470\pi\)
\(410\) 0 0
\(411\) 15.0000 0.739895
\(412\) 0 0
\(413\) −4.00000 −0.196827
\(414\) 0 0
\(415\) 42.0000 2.06170
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) −29.0000 −1.41674 −0.708371 0.705840i \(-0.750570\pi\)
−0.708371 + 0.705840i \(0.750570\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 28.0000 1.35820
\(426\) 0 0
\(427\) 1.00000 0.0483934
\(428\) 0 0
\(429\) 1.00000 0.0482805
\(430\) 0 0
\(431\) 10.0000 0.481683 0.240842 0.970564i \(-0.422577\pi\)
0.240842 + 0.970564i \(0.422577\pi\)
\(432\) 0 0
\(433\) −8.00000 −0.384455 −0.192228 0.981350i \(-0.561571\pi\)
−0.192228 + 0.981350i \(0.561571\pi\)
\(434\) 0 0
\(435\) 9.00000 0.431517
\(436\) 0 0
\(437\) −7.00000 −0.334855
\(438\) 0 0
\(439\) 19.0000 0.906821 0.453410 0.891302i \(-0.350207\pi\)
0.453410 + 0.891302i \(0.350207\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −26.0000 −1.23530 −0.617649 0.786454i \(-0.711915\pi\)
−0.617649 + 0.786454i \(0.711915\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) 0 0
\(447\) 16.0000 0.756774
\(448\) 0 0
\(449\) 19.0000 0.896665 0.448333 0.893867i \(-0.352018\pi\)
0.448333 + 0.893867i \(0.352018\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) 0 0
\(453\) −7.00000 −0.328889
\(454\) 0 0
\(455\) −3.00000 −0.140642
\(456\) 0 0
\(457\) −40.0000 −1.87112 −0.935561 0.353166i \(-0.885105\pi\)
−0.935561 + 0.353166i \(0.885105\pi\)
\(458\) 0 0
\(459\) 7.00000 0.326732
\(460\) 0 0
\(461\) −23.0000 −1.07122 −0.535608 0.844466i \(-0.679918\pi\)
−0.535608 + 0.844466i \(0.679918\pi\)
\(462\) 0 0
\(463\) −23.0000 −1.06890 −0.534450 0.845200i \(-0.679481\pi\)
−0.534450 + 0.845200i \(0.679481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.00000 −0.138823 −0.0694117 0.997588i \(-0.522112\pi\)
−0.0694117 + 0.997588i \(0.522112\pi\)
\(468\) 0 0
\(469\) 6.00000 0.277054
\(470\) 0 0
\(471\) 5.00000 0.230388
\(472\) 0 0
\(473\) 11.0000 0.505781
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) −14.0000 −0.641016
\(478\) 0 0
\(479\) 11.0000 0.502603 0.251301 0.967909i \(-0.419141\pi\)
0.251301 + 0.967909i \(0.419141\pi\)
\(480\) 0 0
\(481\) 5.00000 0.227980
\(482\) 0 0
\(483\) 7.00000 0.318511
\(484\) 0 0
\(485\) 18.0000 0.817338
\(486\) 0 0
\(487\) 32.0000 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(488\) 0 0
\(489\) −10.0000 −0.452216
\(490\) 0 0
\(491\) −2.00000 −0.0902587 −0.0451294 0.998981i \(-0.514370\pi\)
−0.0451294 + 0.998981i \(0.514370\pi\)
\(492\) 0 0
\(493\) 21.0000 0.945792
\(494\) 0 0
\(495\) −3.00000 −0.134840
\(496\) 0 0
\(497\) 12.0000 0.538274
\(498\) 0 0
\(499\) −16.0000 −0.716258 −0.358129 0.933672i \(-0.616585\pi\)
−0.358129 + 0.933672i \(0.616585\pi\)
\(500\) 0 0
\(501\) −7.00000 −0.312737
\(502\) 0 0
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) −36.0000 −1.60198
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) −39.0000 −1.72864 −0.864322 0.502938i \(-0.832252\pi\)
−0.864322 + 0.502938i \(0.832252\pi\)
\(510\) 0 0
\(511\) 5.00000 0.221187
\(512\) 0 0
\(513\) −1.00000 −0.0441511
\(514\) 0 0
\(515\) 21.0000 0.925371
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 2.00000 0.0877903
\(520\) 0 0
\(521\) −11.0000 −0.481919 −0.240959 0.970535i \(-0.577462\pi\)
−0.240959 + 0.970535i \(0.577462\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 0 0
\(525\) 4.00000 0.174574
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 26.0000 1.13043
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) −4.00000 −0.173259
\(534\) 0 0
\(535\) 54.0000 2.33462
\(536\) 0 0
\(537\) −8.00000 −0.345225
\(538\) 0 0
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) 25.0000 1.07483 0.537417 0.843317i \(-0.319400\pi\)
0.537417 + 0.843317i \(0.319400\pi\)
\(542\) 0 0
\(543\) 22.0000 0.944110
\(544\) 0 0
\(545\) −21.0000 −0.899541
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) 1.00000 0.0426790
\(550\) 0 0
\(551\) −3.00000 −0.127804
\(552\) 0 0
\(553\) 10.0000 0.425243
\(554\) 0 0
\(555\) −15.0000 −0.636715
\(556\) 0 0
\(557\) −12.0000 −0.508456 −0.254228 0.967144i \(-0.581821\pi\)
−0.254228 + 0.967144i \(0.581821\pi\)
\(558\) 0 0
\(559\) 11.0000 0.465250
\(560\) 0 0
\(561\) −7.00000 −0.295540
\(562\) 0 0
\(563\) −39.0000 −1.64365 −0.821827 0.569737i \(-0.807045\pi\)
−0.821827 + 0.569737i \(0.807045\pi\)
\(564\) 0 0
\(565\) −42.0000 −1.76695
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 14.0000 0.586911 0.293455 0.955973i \(-0.405195\pi\)
0.293455 + 0.955973i \(0.405195\pi\)
\(570\) 0 0
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 0 0
\(573\) 15.0000 0.626634
\(574\) 0 0
\(575\) 28.0000 1.16768
\(576\) 0 0
\(577\) −26.0000 −1.08239 −0.541197 0.840896i \(-0.682029\pi\)
−0.541197 + 0.840896i \(0.682029\pi\)
\(578\) 0 0
\(579\) −8.00000 −0.332469
\(580\) 0 0
\(581\) 14.0000 0.580818
\(582\) 0 0
\(583\) 14.0000 0.579821
\(584\) 0 0
\(585\) −3.00000 −0.124035
\(586\) 0 0
\(587\) −42.0000 −1.73353 −0.866763 0.498721i \(-0.833803\pi\)
−0.866763 + 0.498721i \(0.833803\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −20.0000 −0.822690
\(592\) 0 0
\(593\) −42.0000 −1.72473 −0.862367 0.506284i \(-0.831019\pi\)
−0.862367 + 0.506284i \(0.831019\pi\)
\(594\) 0 0
\(595\) 21.0000 0.860916
\(596\) 0 0
\(597\) −3.00000 −0.122782
\(598\) 0 0
\(599\) 1.00000 0.0408589 0.0204294 0.999791i \(-0.493497\pi\)
0.0204294 + 0.999791i \(0.493497\pi\)
\(600\) 0 0
\(601\) 16.0000 0.652654 0.326327 0.945257i \(-0.394189\pi\)
0.326327 + 0.945257i \(0.394189\pi\)
\(602\) 0 0
\(603\) 6.00000 0.244339
\(604\) 0 0
\(605\) −30.0000 −1.21967
\(606\) 0 0
\(607\) −13.0000 −0.527654 −0.263827 0.964570i \(-0.584985\pi\)
−0.263827 + 0.964570i \(0.584985\pi\)
\(608\) 0 0
\(609\) 3.00000 0.121566
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −7.00000 −0.282727 −0.141364 0.989958i \(-0.545149\pi\)
−0.141364 + 0.989958i \(0.545149\pi\)
\(614\) 0 0
\(615\) 12.0000 0.483887
\(616\) 0 0
\(617\) −27.0000 −1.08698 −0.543490 0.839416i \(-0.682897\pi\)
−0.543490 + 0.839416i \(0.682897\pi\)
\(618\) 0 0
\(619\) −1.00000 −0.0401934 −0.0200967 0.999798i \(-0.506397\pi\)
−0.0200967 + 0.999798i \(0.506397\pi\)
\(620\) 0 0
\(621\) 7.00000 0.280900
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 1.00000 0.0399362
\(628\) 0 0
\(629\) −35.0000 −1.39554
\(630\) 0 0
\(631\) 37.0000 1.47295 0.736473 0.676467i \(-0.236490\pi\)
0.736473 + 0.676467i \(0.236490\pi\)
\(632\) 0 0
\(633\) −25.0000 −0.993661
\(634\) 0 0
\(635\) −30.0000 −1.19051
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) 42.0000 1.65890 0.829450 0.558581i \(-0.188654\pi\)
0.829450 + 0.558581i \(0.188654\pi\)
\(642\) 0 0
\(643\) 9.00000 0.354925 0.177463 0.984128i \(-0.443211\pi\)
0.177463 + 0.984128i \(0.443211\pi\)
\(644\) 0 0
\(645\) −33.0000 −1.29937
\(646\) 0 0
\(647\) 36.0000 1.41531 0.707653 0.706560i \(-0.249754\pi\)
0.707653 + 0.706560i \(0.249754\pi\)
\(648\) 0 0
\(649\) 4.00000 0.157014
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −43.0000 −1.68272 −0.841360 0.540475i \(-0.818245\pi\)
−0.841360 + 0.540475i \(0.818245\pi\)
\(654\) 0 0
\(655\) −45.0000 −1.75830
\(656\) 0 0
\(657\) 5.00000 0.195069
\(658\) 0 0
\(659\) 18.0000 0.701180 0.350590 0.936529i \(-0.385981\pi\)
0.350590 + 0.936529i \(0.385981\pi\)
\(660\) 0 0
\(661\) 38.0000 1.47803 0.739014 0.673690i \(-0.235292\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) 0 0
\(663\) −7.00000 −0.271857
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 0 0
\(667\) 21.0000 0.813123
\(668\) 0 0
\(669\) −14.0000 −0.541271
\(670\) 0 0
\(671\) −1.00000 −0.0386046
\(672\) 0 0
\(673\) 7.00000 0.269830 0.134915 0.990857i \(-0.456924\pi\)
0.134915 + 0.990857i \(0.456924\pi\)
\(674\) 0 0
\(675\) 4.00000 0.153960
\(676\) 0 0
\(677\) −38.0000 −1.46046 −0.730229 0.683202i \(-0.760587\pi\)
−0.730229 + 0.683202i \(0.760587\pi\)
\(678\) 0 0
\(679\) 6.00000 0.230259
\(680\) 0 0
\(681\) 18.0000 0.689761
\(682\) 0 0
\(683\) 13.0000 0.497431 0.248716 0.968577i \(-0.419992\pi\)
0.248716 + 0.968577i \(0.419992\pi\)
\(684\) 0 0
\(685\) 45.0000 1.71936
\(686\) 0 0
\(687\) 18.0000 0.686743
\(688\) 0 0
\(689\) 14.0000 0.533358
\(690\) 0 0
\(691\) 4.00000 0.152167 0.0760836 0.997101i \(-0.475758\pi\)
0.0760836 + 0.997101i \(0.475758\pi\)
\(692\) 0 0
\(693\) −1.00000 −0.0379869
\(694\) 0 0
\(695\) −12.0000 −0.455186
\(696\) 0 0
\(697\) 28.0000 1.06058
\(698\) 0 0
\(699\) −12.0000 −0.453882
\(700\) 0 0
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 0 0
\(703\) 5.00000 0.188579
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.0000 −0.451306
\(708\) 0 0
\(709\) 50.0000 1.87779 0.938895 0.344204i \(-0.111851\pi\)
0.938895 + 0.344204i \(0.111851\pi\)
\(710\) 0 0
\(711\) 10.0000 0.375029
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 3.00000 0.112194
\(716\) 0 0
\(717\) −20.0000 −0.746914
\(718\) 0 0
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) 7.00000 0.260694
\(722\) 0 0
\(723\) −18.0000 −0.669427
\(724\) 0 0
\(725\) 12.0000 0.445669
\(726\) 0 0
\(727\) −37.0000 −1.37225 −0.686127 0.727482i \(-0.740691\pi\)
−0.686127 + 0.727482i \(0.740691\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −77.0000 −2.84795
\(732\) 0 0
\(733\) −4.00000 −0.147743 −0.0738717 0.997268i \(-0.523536\pi\)
−0.0738717 + 0.997268i \(0.523536\pi\)
\(734\) 0 0
\(735\) 3.00000 0.110657
\(736\) 0 0
\(737\) −6.00000 −0.221013
\(738\) 0 0
\(739\) −38.0000 −1.39785 −0.698926 0.715194i \(-0.746338\pi\)
−0.698926 + 0.715194i \(0.746338\pi\)
\(740\) 0 0
\(741\) 1.00000 0.0367359
\(742\) 0 0
\(743\) 26.0000 0.953847 0.476924 0.878945i \(-0.341752\pi\)
0.476924 + 0.878945i \(0.341752\pi\)
\(744\) 0 0
\(745\) 48.0000 1.75858
\(746\) 0 0
\(747\) 14.0000 0.512233
\(748\) 0 0
\(749\) 18.0000 0.657706
\(750\) 0 0
\(751\) −8.00000 −0.291924 −0.145962 0.989290i \(-0.546628\pi\)
−0.145962 + 0.989290i \(0.546628\pi\)
\(752\) 0 0
\(753\) −3.00000 −0.109326
\(754\) 0 0
\(755\) −21.0000 −0.764268
\(756\) 0 0
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 0 0
\(759\) −7.00000 −0.254084
\(760\) 0 0
\(761\) −32.0000 −1.16000 −0.580000 0.814617i \(-0.696947\pi\)
−0.580000 + 0.814617i \(0.696947\pi\)
\(762\) 0 0
\(763\) −7.00000 −0.253417
\(764\) 0 0
\(765\) 21.0000 0.759257
\(766\) 0 0
\(767\) 4.00000 0.144432
\(768\) 0 0
\(769\) −49.0000 −1.76699 −0.883493 0.468445i \(-0.844814\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 0 0
\(771\) 10.0000 0.360141
\(772\) 0 0
\(773\) −7.00000 −0.251773 −0.125886 0.992045i \(-0.540177\pi\)
−0.125886 + 0.992045i \(0.540177\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −5.00000 −0.179374
\(778\) 0 0
\(779\) −4.00000 −0.143315
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 3.00000 0.107211
\(784\) 0 0
\(785\) 15.0000 0.535373
\(786\) 0 0
\(787\) 31.0000 1.10503 0.552515 0.833503i \(-0.313668\pi\)
0.552515 + 0.833503i \(0.313668\pi\)
\(788\) 0 0
\(789\) 4.00000 0.142404
\(790\) 0 0
\(791\) −14.0000 −0.497783
\(792\) 0 0
\(793\) −1.00000 −0.0355110
\(794\) 0 0
\(795\) −42.0000 −1.48959
\(796\) 0 0
\(797\) 36.0000 1.27519 0.637593 0.770374i \(-0.279930\pi\)
0.637593 + 0.770374i \(0.279930\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) −5.00000 −0.176446
\(804\) 0 0
\(805\) 21.0000 0.740153
\(806\) 0 0
\(807\) 2.00000 0.0704033
\(808\) 0 0
\(809\) −50.0000 −1.75791 −0.878953 0.476908i \(-0.841757\pi\)
−0.878953 + 0.476908i \(0.841757\pi\)
\(810\) 0 0
\(811\) −21.0000 −0.737410 −0.368705 0.929547i \(-0.620199\pi\)
−0.368705 + 0.929547i \(0.620199\pi\)
\(812\) 0 0
\(813\) 30.0000 1.05215
\(814\) 0 0
\(815\) −30.0000 −1.05085
\(816\) 0 0
\(817\) 11.0000 0.384841
\(818\) 0 0
\(819\) −1.00000 −0.0349428
\(820\) 0 0
\(821\) −32.0000 −1.11681 −0.558404 0.829569i \(-0.688586\pi\)
−0.558404 + 0.829569i \(0.688586\pi\)
\(822\) 0 0
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) −9.00000 −0.312961 −0.156480 0.987681i \(-0.550015\pi\)
−0.156480 + 0.987681i \(0.550015\pi\)
\(828\) 0 0
\(829\) 49.0000 1.70184 0.850920 0.525295i \(-0.176045\pi\)
0.850920 + 0.525295i \(0.176045\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) 0 0
\(833\) 7.00000 0.242536
\(834\) 0 0
\(835\) −21.0000 −0.726735
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 4.00000 0.138095 0.0690477 0.997613i \(-0.478004\pi\)
0.0690477 + 0.997613i \(0.478004\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 6.00000 0.206651
\(844\) 0 0
\(845\) 3.00000 0.103203
\(846\) 0 0
\(847\) −10.0000 −0.343604
\(848\) 0 0
\(849\) 16.0000 0.549119
\(850\) 0 0
\(851\) −35.0000 −1.19978
\(852\) 0 0
\(853\) 44.0000 1.50653 0.753266 0.657716i \(-0.228477\pi\)
0.753266 + 0.657716i \(0.228477\pi\)
\(854\) 0 0
\(855\) −3.00000 −0.102598
\(856\) 0 0
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) −40.0000 −1.36478 −0.682391 0.730987i \(-0.739060\pi\)
−0.682391 + 0.730987i \(0.739060\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) 42.0000 1.42970 0.714848 0.699280i \(-0.246496\pi\)
0.714848 + 0.699280i \(0.246496\pi\)
\(864\) 0 0
\(865\) 6.00000 0.204006
\(866\) 0 0
\(867\) 32.0000 1.08678
\(868\) 0 0
\(869\) −10.0000 −0.339227
\(870\) 0 0
\(871\) −6.00000 −0.203302
\(872\) 0 0
\(873\) 6.00000 0.203069
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) 18.0000 0.607817 0.303908 0.952701i \(-0.401708\pi\)
0.303908 + 0.952701i \(0.401708\pi\)
\(878\) 0 0
\(879\) 30.0000 1.01187
\(880\) 0 0
\(881\) −17.0000 −0.572745 −0.286372 0.958118i \(-0.592449\pi\)
−0.286372 + 0.958118i \(0.592449\pi\)
\(882\) 0 0
\(883\) −35.0000 −1.17784 −0.588922 0.808190i \(-0.700447\pi\)
−0.588922 + 0.808190i \(0.700447\pi\)
\(884\) 0 0
\(885\) −12.0000 −0.403376
\(886\) 0 0
\(887\) 24.0000 0.805841 0.402921 0.915235i \(-0.367995\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(888\) 0 0
\(889\) −10.0000 −0.335389
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) 0 0
\(897\) −7.00000 −0.233723
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −98.0000 −3.26485
\(902\) 0 0
\(903\) −11.0000 −0.366057
\(904\) 0 0
\(905\) 66.0000 2.19391
\(906\) 0 0
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 0 0
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) −15.0000 −0.496972 −0.248486 0.968635i \(-0.579933\pi\)
−0.248486 + 0.968635i \(0.579933\pi\)
\(912\) 0 0
\(913\) −14.0000 −0.463332
\(914\) 0 0
\(915\) 3.00000 0.0991769
\(916\) 0 0
\(917\) −15.0000 −0.495344
\(918\) 0 0
\(919\) 50.0000 1.64935 0.824674 0.565608i \(-0.191359\pi\)
0.824674 + 0.565608i \(0.191359\pi\)
\(920\) 0 0
\(921\) 32.0000 1.05444
\(922\) 0 0
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) −20.0000 −0.657596
\(926\) 0 0
\(927\) 7.00000 0.229910
\(928\) 0 0
\(929\) 48.0000 1.57483 0.787414 0.616424i \(-0.211419\pi\)
0.787414 + 0.616424i \(0.211419\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) −2.00000 −0.0654771
\(934\) 0 0
\(935\) −21.0000 −0.686773
\(936\) 0 0
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 34.0000 1.10837 0.554184 0.832394i \(-0.313030\pi\)
0.554184 + 0.832394i \(0.313030\pi\)
\(942\) 0 0
\(943\) 28.0000 0.911805
\(944\) 0 0
\(945\) 3.00000 0.0975900
\(946\) 0 0
\(947\) 11.0000 0.357452 0.178726 0.983899i \(-0.442802\pi\)
0.178726 + 0.983899i \(0.442802\pi\)
\(948\) 0 0
\(949\) −5.00000 −0.162307
\(950\) 0 0
\(951\) −28.0000 −0.907962
\(952\) 0 0
\(953\) 36.0000 1.16615 0.583077 0.812417i \(-0.301849\pi\)
0.583077 + 0.812417i \(0.301849\pi\)
\(954\) 0 0
\(955\) 45.0000 1.45617
\(956\) 0 0
\(957\) −3.00000 −0.0969762
\(958\) 0 0
\(959\) 15.0000 0.484375
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 18.0000 0.580042
\(964\) 0 0
\(965\) −24.0000 −0.772587
\(966\) 0 0
\(967\) −13.0000 −0.418052 −0.209026 0.977910i \(-0.567029\pi\)
−0.209026 + 0.977910i \(0.567029\pi\)
\(968\) 0 0
\(969\) −7.00000 −0.224872
\(970\) 0 0
\(971\) −48.0000 −1.54039 −0.770197 0.637806i \(-0.779842\pi\)
−0.770197 + 0.637806i \(0.779842\pi\)
\(972\) 0 0
\(973\) −4.00000 −0.128234
\(974\) 0 0
\(975\) −4.00000 −0.128103
\(976\) 0 0
\(977\) −7.00000 −0.223950 −0.111975 0.993711i \(-0.535718\pi\)
−0.111975 + 0.993711i \(0.535718\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) 0 0
\(981\) −7.00000 −0.223493
\(982\) 0 0
\(983\) 19.0000 0.606006 0.303003 0.952990i \(-0.402011\pi\)
0.303003 + 0.952990i \(0.402011\pi\)
\(984\) 0 0
\(985\) −60.0000 −1.91176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −77.0000 −2.44846
\(990\) 0 0
\(991\) −34.0000 −1.08005 −0.540023 0.841650i \(-0.681584\pi\)
−0.540023 + 0.841650i \(0.681584\pi\)
\(992\) 0 0
\(993\) 14.0000 0.444277
\(994\) 0 0
\(995\) −9.00000 −0.285319
\(996\) 0 0
\(997\) 54.0000 1.71020 0.855099 0.518465i \(-0.173497\pi\)
0.855099 + 0.518465i \(0.173497\pi\)
\(998\) 0 0
\(999\) −5.00000 −0.158193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4368.2.a.z.1.1 1
4.3 odd 2 546.2.a.e.1.1 1
12.11 even 2 1638.2.a.a.1.1 1
28.27 even 2 3822.2.a.bc.1.1 1
52.51 odd 2 7098.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.a.e.1.1 1 4.3 odd 2
1638.2.a.a.1.1 1 12.11 even 2
3822.2.a.bc.1.1 1 28.27 even 2
4368.2.a.z.1.1 1 1.1 even 1 trivial
7098.2.a.b.1.1 1 52.51 odd 2