Properties

Label 4368.2.a.bq.1.3
Level $4368$
Weight $2$
Character 4368.1
Self dual yes
Analytic conductor $34.879$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4368,2,Mod(1,4368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4368.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.8786556029\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.470683\) of defining polynomial
Character \(\chi\) \(=\) 4368.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.77846 q^{5} +1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} +1.77846 q^{5} +1.00000 q^{7} +1.00000 q^{9} +6.49828 q^{11} -1.00000 q^{13} +1.77846 q^{15} -2.94137 q^{17} +4.83709 q^{19} +1.00000 q^{21} +5.77846 q^{23} -1.83709 q^{25} +1.00000 q^{27} -2.83709 q^{29} -6.27674 q^{31} +6.49828 q^{33} +1.77846 q^{35} +9.55691 q^{37} -1.00000 q^{39} -3.05863 q^{41} -2.71982 q^{43} +1.77846 q^{45} +8.71982 q^{47} +1.00000 q^{49} -2.94137 q^{51} +6.39400 q^{53} +11.5569 q^{55} +4.83709 q^{57} -1.55691 q^{59} +3.88273 q^{61} +1.00000 q^{63} -1.77846 q^{65} -5.67418 q^{67} +5.77846 q^{69} -10.0552 q^{71} -15.8337 q^{73} -1.83709 q^{75} +6.49828 q^{77} +1.28018 q^{79} +1.00000 q^{81} +2.83709 q^{83} -5.23109 q^{85} -2.83709 q^{87} -7.66119 q^{89} -1.00000 q^{91} -6.27674 q^{93} +8.60256 q^{95} -17.7164 q^{97} +6.49828 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 3 q^{5} + 3 q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{3} - 3 q^{5} + 3 q^{7} + 3 q^{9} + 2 q^{11} - 3 q^{13} - 3 q^{15} - 8 q^{17} + 7 q^{19} + 3 q^{21} + 9 q^{23} + 2 q^{25} + 3 q^{27} - q^{29} + 7 q^{31} + 2 q^{33} - 3 q^{35} + 12 q^{37} - 3 q^{39} - 10 q^{41} + q^{43} - 3 q^{45} + 17 q^{47} + 3 q^{49} - 8 q^{51} - 5 q^{53} + 18 q^{55} + 7 q^{57} + 12 q^{59} + 10 q^{61} + 3 q^{63} + 3 q^{65} - 2 q^{67} + 9 q^{69} + 4 q^{71} - 5 q^{73} + 2 q^{75} + 2 q^{77} + 13 q^{79} + 3 q^{81} + q^{83} + 16 q^{85} - q^{87} - 13 q^{89} - 3 q^{91} + 7 q^{93} + 15 q^{95} - 9 q^{97} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.77846 0.795350 0.397675 0.917526i \(-0.369817\pi\)
0.397675 + 0.917526i \(0.369817\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 6.49828 1.95931 0.979653 0.200700i \(-0.0643217\pi\)
0.979653 + 0.200700i \(0.0643217\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 1.77846 0.459196
\(16\) 0 0
\(17\) −2.94137 −0.713386 −0.356693 0.934222i \(-0.616096\pi\)
−0.356693 + 0.934222i \(0.616096\pi\)
\(18\) 0 0
\(19\) 4.83709 1.10970 0.554852 0.831949i \(-0.312775\pi\)
0.554852 + 0.831949i \(0.312775\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 5.77846 1.20489 0.602446 0.798160i \(-0.294193\pi\)
0.602446 + 0.798160i \(0.294193\pi\)
\(24\) 0 0
\(25\) −1.83709 −0.367418
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −2.83709 −0.526834 −0.263417 0.964682i \(-0.584850\pi\)
−0.263417 + 0.964682i \(0.584850\pi\)
\(30\) 0 0
\(31\) −6.27674 −1.12734 −0.563668 0.826002i \(-0.690610\pi\)
−0.563668 + 0.826002i \(0.690610\pi\)
\(32\) 0 0
\(33\) 6.49828 1.13121
\(34\) 0 0
\(35\) 1.77846 0.300614
\(36\) 0 0
\(37\) 9.55691 1.57115 0.785574 0.618768i \(-0.212368\pi\)
0.785574 + 0.618768i \(0.212368\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −3.05863 −0.477678 −0.238839 0.971059i \(-0.576767\pi\)
−0.238839 + 0.971059i \(0.576767\pi\)
\(42\) 0 0
\(43\) −2.71982 −0.414769 −0.207385 0.978259i \(-0.566495\pi\)
−0.207385 + 0.978259i \(0.566495\pi\)
\(44\) 0 0
\(45\) 1.77846 0.265117
\(46\) 0 0
\(47\) 8.71982 1.27192 0.635959 0.771723i \(-0.280605\pi\)
0.635959 + 0.771723i \(0.280605\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.94137 −0.411874
\(52\) 0 0
\(53\) 6.39400 0.878284 0.439142 0.898418i \(-0.355282\pi\)
0.439142 + 0.898418i \(0.355282\pi\)
\(54\) 0 0
\(55\) 11.5569 1.55833
\(56\) 0 0
\(57\) 4.83709 0.640688
\(58\) 0 0
\(59\) −1.55691 −0.202693 −0.101346 0.994851i \(-0.532315\pi\)
−0.101346 + 0.994851i \(0.532315\pi\)
\(60\) 0 0
\(61\) 3.88273 0.497133 0.248567 0.968615i \(-0.420041\pi\)
0.248567 + 0.968615i \(0.420041\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) −1.77846 −0.220590
\(66\) 0 0
\(67\) −5.67418 −0.693211 −0.346606 0.938011i \(-0.612666\pi\)
−0.346606 + 0.938011i \(0.612666\pi\)
\(68\) 0 0
\(69\) 5.77846 0.695644
\(70\) 0 0
\(71\) −10.0552 −1.19333 −0.596666 0.802490i \(-0.703508\pi\)
−0.596666 + 0.802490i \(0.703508\pi\)
\(72\) 0 0
\(73\) −15.8337 −1.85319 −0.926594 0.376062i \(-0.877278\pi\)
−0.926594 + 0.376062i \(0.877278\pi\)
\(74\) 0 0
\(75\) −1.83709 −0.212129
\(76\) 0 0
\(77\) 6.49828 0.740548
\(78\) 0 0
\(79\) 1.28018 0.144031 0.0720155 0.997404i \(-0.477057\pi\)
0.0720155 + 0.997404i \(0.477057\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 2.83709 0.311411 0.155706 0.987804i \(-0.450235\pi\)
0.155706 + 0.987804i \(0.450235\pi\)
\(84\) 0 0
\(85\) −5.23109 −0.567392
\(86\) 0 0
\(87\) −2.83709 −0.304168
\(88\) 0 0
\(89\) −7.66119 −0.812085 −0.406042 0.913854i \(-0.633091\pi\)
−0.406042 + 0.913854i \(0.633091\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) −6.27674 −0.650867
\(94\) 0 0
\(95\) 8.60256 0.882604
\(96\) 0 0
\(97\) −17.7164 −1.79883 −0.899413 0.437099i \(-0.856006\pi\)
−0.899413 + 0.437099i \(0.856006\pi\)
\(98\) 0 0
\(99\) 6.49828 0.653102
\(100\) 0 0
\(101\) 6.73281 0.669940 0.334970 0.942229i \(-0.391274\pi\)
0.334970 + 0.942229i \(0.391274\pi\)
\(102\) 0 0
\(103\) −10.8793 −1.07197 −0.535984 0.844228i \(-0.680059\pi\)
−0.535984 + 0.844228i \(0.680059\pi\)
\(104\) 0 0
\(105\) 1.77846 0.173560
\(106\) 0 0
\(107\) 8.49828 0.821560 0.410780 0.911735i \(-0.365256\pi\)
0.410780 + 0.911735i \(0.365256\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 9.55691 0.907102
\(112\) 0 0
\(113\) 14.6026 1.37369 0.686847 0.726802i \(-0.258994\pi\)
0.686847 + 0.726802i \(0.258994\pi\)
\(114\) 0 0
\(115\) 10.2767 0.958311
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) −2.94137 −0.269635
\(120\) 0 0
\(121\) 31.2277 2.83888
\(122\) 0 0
\(123\) −3.05863 −0.275788
\(124\) 0 0
\(125\) −12.1595 −1.08758
\(126\) 0 0
\(127\) 9.88273 0.876951 0.438475 0.898743i \(-0.355519\pi\)
0.438475 + 0.898743i \(0.355519\pi\)
\(128\) 0 0
\(129\) −2.71982 −0.239467
\(130\) 0 0
\(131\) −3.76547 −0.328990 −0.164495 0.986378i \(-0.552600\pi\)
−0.164495 + 0.986378i \(0.552600\pi\)
\(132\) 0 0
\(133\) 4.83709 0.419429
\(134\) 0 0
\(135\) 1.77846 0.153065
\(136\) 0 0
\(137\) −16.9966 −1.45211 −0.726057 0.687634i \(-0.758649\pi\)
−0.726057 + 0.687634i \(0.758649\pi\)
\(138\) 0 0
\(139\) 8.55348 0.725496 0.362748 0.931887i \(-0.381839\pi\)
0.362748 + 0.931887i \(0.381839\pi\)
\(140\) 0 0
\(141\) 8.71982 0.734342
\(142\) 0 0
\(143\) −6.49828 −0.543414
\(144\) 0 0
\(145\) −5.04564 −0.419018
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) −15.5569 −1.27447 −0.637236 0.770669i \(-0.719922\pi\)
−0.637236 + 0.770669i \(0.719922\pi\)
\(150\) 0 0
\(151\) −4.99656 −0.406614 −0.203307 0.979115i \(-0.565169\pi\)
−0.203307 + 0.979115i \(0.565169\pi\)
\(152\) 0 0
\(153\) −2.94137 −0.237795
\(154\) 0 0
\(155\) −11.1629 −0.896626
\(156\) 0 0
\(157\) −18.7880 −1.49945 −0.749723 0.661752i \(-0.769813\pi\)
−0.749723 + 0.661752i \(0.769813\pi\)
\(158\) 0 0
\(159\) 6.39400 0.507078
\(160\) 0 0
\(161\) 5.77846 0.455406
\(162\) 0 0
\(163\) 9.88273 0.774075 0.387038 0.922064i \(-0.373498\pi\)
0.387038 + 0.922064i \(0.373498\pi\)
\(164\) 0 0
\(165\) 11.5569 0.899705
\(166\) 0 0
\(167\) 7.04564 0.545208 0.272604 0.962126i \(-0.412115\pi\)
0.272604 + 0.962126i \(0.412115\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 4.83709 0.369902
\(172\) 0 0
\(173\) −14.2897 −1.08643 −0.543214 0.839594i \(-0.682793\pi\)
−0.543214 + 0.839594i \(0.682793\pi\)
\(174\) 0 0
\(175\) −1.83709 −0.138871
\(176\) 0 0
\(177\) −1.55691 −0.117025
\(178\) 0 0
\(179\) 8.65775 0.647111 0.323555 0.946209i \(-0.395122\pi\)
0.323555 + 0.946209i \(0.395122\pi\)
\(180\) 0 0
\(181\) 26.3449 1.95820 0.979101 0.203373i \(-0.0651904\pi\)
0.979101 + 0.203373i \(0.0651904\pi\)
\(182\) 0 0
\(183\) 3.88273 0.287020
\(184\) 0 0
\(185\) 16.9966 1.24961
\(186\) 0 0
\(187\) −19.1138 −1.39774
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −6.61555 −0.478684 −0.239342 0.970935i \(-0.576932\pi\)
−0.239342 + 0.970935i \(0.576932\pi\)
\(192\) 0 0
\(193\) 11.8827 0.855338 0.427669 0.903935i \(-0.359335\pi\)
0.427669 + 0.903935i \(0.359335\pi\)
\(194\) 0 0
\(195\) −1.77846 −0.127358
\(196\) 0 0
\(197\) 11.5569 0.823396 0.411698 0.911320i \(-0.364936\pi\)
0.411698 + 0.911320i \(0.364936\pi\)
\(198\) 0 0
\(199\) −0.996562 −0.0706444 −0.0353222 0.999376i \(-0.511246\pi\)
−0.0353222 + 0.999376i \(0.511246\pi\)
\(200\) 0 0
\(201\) −5.67418 −0.400226
\(202\) 0 0
\(203\) −2.83709 −0.199125
\(204\) 0 0
\(205\) −5.43965 −0.379921
\(206\) 0 0
\(207\) 5.77846 0.401631
\(208\) 0 0
\(209\) 31.4328 2.17425
\(210\) 0 0
\(211\) −26.8302 −1.84707 −0.923534 0.383516i \(-0.874713\pi\)
−0.923534 + 0.383516i \(0.874713\pi\)
\(212\) 0 0
\(213\) −10.0552 −0.688971
\(214\) 0 0
\(215\) −4.83709 −0.329887
\(216\) 0 0
\(217\) −6.27674 −0.426093
\(218\) 0 0
\(219\) −15.8337 −1.06994
\(220\) 0 0
\(221\) 2.94137 0.197858
\(222\) 0 0
\(223\) 2.92838 0.196099 0.0980493 0.995182i \(-0.468740\pi\)
0.0980493 + 0.995182i \(0.468740\pi\)
\(224\) 0 0
\(225\) −1.83709 −0.122473
\(226\) 0 0
\(227\) 9.79145 0.649881 0.324941 0.945734i \(-0.394656\pi\)
0.324941 + 0.945734i \(0.394656\pi\)
\(228\) 0 0
\(229\) 3.88273 0.256578 0.128289 0.991737i \(-0.459051\pi\)
0.128289 + 0.991737i \(0.459051\pi\)
\(230\) 0 0
\(231\) 6.49828 0.427556
\(232\) 0 0
\(233\) −15.8337 −1.03730 −0.518649 0.854988i \(-0.673565\pi\)
−0.518649 + 0.854988i \(0.673565\pi\)
\(234\) 0 0
\(235\) 15.5078 1.01162
\(236\) 0 0
\(237\) 1.28018 0.0831564
\(238\) 0 0
\(239\) 6.94137 0.449000 0.224500 0.974474i \(-0.427925\pi\)
0.224500 + 0.974474i \(0.427925\pi\)
\(240\) 0 0
\(241\) 7.28018 0.468957 0.234479 0.972121i \(-0.424662\pi\)
0.234479 + 0.972121i \(0.424662\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 1.77846 0.113621
\(246\) 0 0
\(247\) −4.83709 −0.307777
\(248\) 0 0
\(249\) 2.83709 0.179793
\(250\) 0 0
\(251\) −23.3224 −1.47210 −0.736048 0.676930i \(-0.763310\pi\)
−0.736048 + 0.676930i \(0.763310\pi\)
\(252\) 0 0
\(253\) 37.5500 2.36075
\(254\) 0 0
\(255\) −5.23109 −0.327584
\(256\) 0 0
\(257\) 15.4948 0.966542 0.483271 0.875471i \(-0.339449\pi\)
0.483271 + 0.875471i \(0.339449\pi\)
\(258\) 0 0
\(259\) 9.55691 0.593838
\(260\) 0 0
\(261\) −2.83709 −0.175611
\(262\) 0 0
\(263\) −3.42666 −0.211297 −0.105648 0.994404i \(-0.533692\pi\)
−0.105648 + 0.994404i \(0.533692\pi\)
\(264\) 0 0
\(265\) 11.3715 0.698543
\(266\) 0 0
\(267\) −7.66119 −0.468857
\(268\) 0 0
\(269\) −0.172462 −0.0105152 −0.00525759 0.999986i \(-0.501674\pi\)
−0.00525759 + 0.999986i \(0.501674\pi\)
\(270\) 0 0
\(271\) 25.9931 1.57897 0.789485 0.613770i \(-0.210348\pi\)
0.789485 + 0.613770i \(0.210348\pi\)
\(272\) 0 0
\(273\) −1.00000 −0.0605228
\(274\) 0 0
\(275\) −11.9379 −0.719884
\(276\) 0 0
\(277\) 3.72326 0.223709 0.111855 0.993725i \(-0.464321\pi\)
0.111855 + 0.993725i \(0.464321\pi\)
\(278\) 0 0
\(279\) −6.27674 −0.375778
\(280\) 0 0
\(281\) −21.5500 −1.28557 −0.642784 0.766048i \(-0.722221\pi\)
−0.642784 + 0.766048i \(0.722221\pi\)
\(282\) 0 0
\(283\) 31.8759 1.89482 0.947412 0.320018i \(-0.103689\pi\)
0.947412 + 0.320018i \(0.103689\pi\)
\(284\) 0 0
\(285\) 8.60256 0.509572
\(286\) 0 0
\(287\) −3.05863 −0.180545
\(288\) 0 0
\(289\) −8.34836 −0.491080
\(290\) 0 0
\(291\) −17.7164 −1.03855
\(292\) 0 0
\(293\) 3.42666 0.200188 0.100094 0.994978i \(-0.468086\pi\)
0.100094 + 0.994978i \(0.468086\pi\)
\(294\) 0 0
\(295\) −2.76891 −0.161212
\(296\) 0 0
\(297\) 6.49828 0.377069
\(298\) 0 0
\(299\) −5.77846 −0.334177
\(300\) 0 0
\(301\) −2.71982 −0.156768
\(302\) 0 0
\(303\) 6.73281 0.386790
\(304\) 0 0
\(305\) 6.90528 0.395395
\(306\) 0 0
\(307\) 3.39744 0.193902 0.0969511 0.995289i \(-0.469091\pi\)
0.0969511 + 0.995289i \(0.469091\pi\)
\(308\) 0 0
\(309\) −10.8793 −0.618902
\(310\) 0 0
\(311\) 0.443086 0.0251251 0.0125625 0.999921i \(-0.496001\pi\)
0.0125625 + 0.999921i \(0.496001\pi\)
\(312\) 0 0
\(313\) −19.8827 −1.12384 −0.561919 0.827192i \(-0.689937\pi\)
−0.561919 + 0.827192i \(0.689937\pi\)
\(314\) 0 0
\(315\) 1.77846 0.100205
\(316\) 0 0
\(317\) 9.46563 0.531643 0.265821 0.964022i \(-0.414357\pi\)
0.265821 + 0.964022i \(0.414357\pi\)
\(318\) 0 0
\(319\) −18.4362 −1.03223
\(320\) 0 0
\(321\) 8.49828 0.474328
\(322\) 0 0
\(323\) −14.2277 −0.791648
\(324\) 0 0
\(325\) 1.83709 0.101903
\(326\) 0 0
\(327\) 10.0000 0.553001
\(328\) 0 0
\(329\) 8.71982 0.480739
\(330\) 0 0
\(331\) 27.4328 1.50784 0.753921 0.656965i \(-0.228160\pi\)
0.753921 + 0.656965i \(0.228160\pi\)
\(332\) 0 0
\(333\) 9.55691 0.523716
\(334\) 0 0
\(335\) −10.0913 −0.551346
\(336\) 0 0
\(337\) −20.2767 −1.10454 −0.552272 0.833664i \(-0.686239\pi\)
−0.552272 + 0.833664i \(0.686239\pi\)
\(338\) 0 0
\(339\) 14.6026 0.793102
\(340\) 0 0
\(341\) −40.7880 −2.20879
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 10.2767 0.553281
\(346\) 0 0
\(347\) −16.7328 −0.898265 −0.449132 0.893465i \(-0.648267\pi\)
−0.449132 + 0.893465i \(0.648267\pi\)
\(348\) 0 0
\(349\) 22.3940 1.19872 0.599362 0.800478i \(-0.295421\pi\)
0.599362 + 0.800478i \(0.295421\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −27.1690 −1.44606 −0.723031 0.690816i \(-0.757251\pi\)
−0.723031 + 0.690816i \(0.757251\pi\)
\(354\) 0 0
\(355\) −17.8827 −0.949117
\(356\) 0 0
\(357\) −2.94137 −0.155674
\(358\) 0 0
\(359\) 29.0586 1.53366 0.766828 0.641853i \(-0.221834\pi\)
0.766828 + 0.641853i \(0.221834\pi\)
\(360\) 0 0
\(361\) 4.39744 0.231444
\(362\) 0 0
\(363\) 31.2277 1.63903
\(364\) 0 0
\(365\) −28.1595 −1.47393
\(366\) 0 0
\(367\) 4.44309 0.231927 0.115964 0.993253i \(-0.463004\pi\)
0.115964 + 0.993253i \(0.463004\pi\)
\(368\) 0 0
\(369\) −3.05863 −0.159226
\(370\) 0 0
\(371\) 6.39400 0.331960
\(372\) 0 0
\(373\) 31.3415 1.62280 0.811400 0.584491i \(-0.198706\pi\)
0.811400 + 0.584491i \(0.198706\pi\)
\(374\) 0 0
\(375\) −12.1595 −0.627912
\(376\) 0 0
\(377\) 2.83709 0.146118
\(378\) 0 0
\(379\) 11.5569 0.593639 0.296819 0.954934i \(-0.404074\pi\)
0.296819 + 0.954934i \(0.404074\pi\)
\(380\) 0 0
\(381\) 9.88273 0.506308
\(382\) 0 0
\(383\) 25.6673 1.31154 0.655769 0.754962i \(-0.272345\pi\)
0.655769 + 0.754962i \(0.272345\pi\)
\(384\) 0 0
\(385\) 11.5569 0.588995
\(386\) 0 0
\(387\) −2.71982 −0.138256
\(388\) 0 0
\(389\) −24.2277 −1.22839 −0.614195 0.789154i \(-0.710519\pi\)
−0.614195 + 0.789154i \(0.710519\pi\)
\(390\) 0 0
\(391\) −16.9966 −0.859553
\(392\) 0 0
\(393\) −3.76547 −0.189943
\(394\) 0 0
\(395\) 2.27674 0.114555
\(396\) 0 0
\(397\) −14.3680 −0.721111 −0.360555 0.932738i \(-0.617413\pi\)
−0.360555 + 0.932738i \(0.617413\pi\)
\(398\) 0 0
\(399\) 4.83709 0.242157
\(400\) 0 0
\(401\) −21.8827 −1.09277 −0.546386 0.837534i \(-0.683997\pi\)
−0.546386 + 0.837534i \(0.683997\pi\)
\(402\) 0 0
\(403\) 6.27674 0.312667
\(404\) 0 0
\(405\) 1.77846 0.0883722
\(406\) 0 0
\(407\) 62.1035 3.07836
\(408\) 0 0
\(409\) 7.39057 0.365440 0.182720 0.983165i \(-0.441510\pi\)
0.182720 + 0.983165i \(0.441510\pi\)
\(410\) 0 0
\(411\) −16.9966 −0.838379
\(412\) 0 0
\(413\) −1.55691 −0.0766107
\(414\) 0 0
\(415\) 5.04564 0.247681
\(416\) 0 0
\(417\) 8.55348 0.418866
\(418\) 0 0
\(419\) −33.7846 −1.65048 −0.825242 0.564779i \(-0.808961\pi\)
−0.825242 + 0.564779i \(0.808961\pi\)
\(420\) 0 0
\(421\) −35.5500 −1.73260 −0.866301 0.499522i \(-0.833509\pi\)
−0.866301 + 0.499522i \(0.833509\pi\)
\(422\) 0 0
\(423\) 8.71982 0.423972
\(424\) 0 0
\(425\) 5.40356 0.262111
\(426\) 0 0
\(427\) 3.88273 0.187899
\(428\) 0 0
\(429\) −6.49828 −0.313740
\(430\) 0 0
\(431\) −23.7294 −1.14300 −0.571502 0.820601i \(-0.693639\pi\)
−0.571502 + 0.820601i \(0.693639\pi\)
\(432\) 0 0
\(433\) −5.55691 −0.267048 −0.133524 0.991046i \(-0.542629\pi\)
−0.133524 + 0.991046i \(0.542629\pi\)
\(434\) 0 0
\(435\) −5.04564 −0.241920
\(436\) 0 0
\(437\) 27.9509 1.33707
\(438\) 0 0
\(439\) −5.32926 −0.254352 −0.127176 0.991880i \(-0.540591\pi\)
−0.127176 + 0.991880i \(0.540591\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −5.33537 −0.253491 −0.126746 0.991935i \(-0.540453\pi\)
−0.126746 + 0.991935i \(0.540453\pi\)
\(444\) 0 0
\(445\) −13.6251 −0.645892
\(446\) 0 0
\(447\) −15.5569 −0.735817
\(448\) 0 0
\(449\) 26.2277 1.23776 0.618880 0.785486i \(-0.287587\pi\)
0.618880 + 0.785486i \(0.287587\pi\)
\(450\) 0 0
\(451\) −19.8759 −0.935918
\(452\) 0 0
\(453\) −4.99656 −0.234759
\(454\) 0 0
\(455\) −1.77846 −0.0833754
\(456\) 0 0
\(457\) 11.4396 0.535124 0.267562 0.963541i \(-0.413782\pi\)
0.267562 + 0.963541i \(0.413782\pi\)
\(458\) 0 0
\(459\) −2.94137 −0.137291
\(460\) 0 0
\(461\) −28.0552 −1.30666 −0.653330 0.757073i \(-0.726629\pi\)
−0.653330 + 0.757073i \(0.726629\pi\)
\(462\) 0 0
\(463\) 10.5604 0.490781 0.245391 0.969424i \(-0.421084\pi\)
0.245391 + 0.969424i \(0.421084\pi\)
\(464\) 0 0
\(465\) −11.1629 −0.517668
\(466\) 0 0
\(467\) −16.6776 −0.771748 −0.385874 0.922551i \(-0.626100\pi\)
−0.385874 + 0.922551i \(0.626100\pi\)
\(468\) 0 0
\(469\) −5.67418 −0.262009
\(470\) 0 0
\(471\) −18.7880 −0.865706
\(472\) 0 0
\(473\) −17.6742 −0.812660
\(474\) 0 0
\(475\) −8.88617 −0.407726
\(476\) 0 0
\(477\) 6.39400 0.292761
\(478\) 0 0
\(479\) −4.06819 −0.185880 −0.0929401 0.995672i \(-0.529626\pi\)
−0.0929401 + 0.995672i \(0.529626\pi\)
\(480\) 0 0
\(481\) −9.55691 −0.435758
\(482\) 0 0
\(483\) 5.77846 0.262929
\(484\) 0 0
\(485\) −31.5078 −1.43070
\(486\) 0 0
\(487\) 0.443086 0.0200781 0.0100391 0.999950i \(-0.496804\pi\)
0.0100391 + 0.999950i \(0.496804\pi\)
\(488\) 0 0
\(489\) 9.88273 0.446913
\(490\) 0 0
\(491\) −20.7328 −0.935659 −0.467829 0.883819i \(-0.654964\pi\)
−0.467829 + 0.883819i \(0.654964\pi\)
\(492\) 0 0
\(493\) 8.34492 0.375836
\(494\) 0 0
\(495\) 11.5569 0.519445
\(496\) 0 0
\(497\) −10.0552 −0.451037
\(498\) 0 0
\(499\) 13.9931 0.626418 0.313209 0.949684i \(-0.398596\pi\)
0.313209 + 0.949684i \(0.398596\pi\)
\(500\) 0 0
\(501\) 7.04564 0.314776
\(502\) 0 0
\(503\) −5.67418 −0.252999 −0.126500 0.991967i \(-0.540374\pi\)
−0.126500 + 0.991967i \(0.540374\pi\)
\(504\) 0 0
\(505\) 11.9740 0.532837
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) −6.22154 −0.275765 −0.137883 0.990449i \(-0.544030\pi\)
−0.137883 + 0.990449i \(0.544030\pi\)
\(510\) 0 0
\(511\) −15.8337 −0.700440
\(512\) 0 0
\(513\) 4.83709 0.213563
\(514\) 0 0
\(515\) −19.3484 −0.852591
\(516\) 0 0
\(517\) 56.6639 2.49207
\(518\) 0 0
\(519\) −14.2897 −0.627249
\(520\) 0 0
\(521\) −10.2897 −0.450801 −0.225401 0.974266i \(-0.572369\pi\)
−0.225401 + 0.974266i \(0.572369\pi\)
\(522\) 0 0
\(523\) 2.32582 0.101701 0.0508505 0.998706i \(-0.483807\pi\)
0.0508505 + 0.998706i \(0.483807\pi\)
\(524\) 0 0
\(525\) −1.83709 −0.0801772
\(526\) 0 0
\(527\) 18.4622 0.804226
\(528\) 0 0
\(529\) 10.3906 0.451764
\(530\) 0 0
\(531\) −1.55691 −0.0675643
\(532\) 0 0
\(533\) 3.05863 0.132484
\(534\) 0 0
\(535\) 15.1138 0.653428
\(536\) 0 0
\(537\) 8.65775 0.373610
\(538\) 0 0
\(539\) 6.49828 0.279901
\(540\) 0 0
\(541\) 5.55691 0.238910 0.119455 0.992840i \(-0.461885\pi\)
0.119455 + 0.992840i \(0.461885\pi\)
\(542\) 0 0
\(543\) 26.3449 1.13057
\(544\) 0 0
\(545\) 17.7846 0.761807
\(546\) 0 0
\(547\) 5.48873 0.234681 0.117341 0.993092i \(-0.462563\pi\)
0.117341 + 0.993092i \(0.462563\pi\)
\(548\) 0 0
\(549\) 3.88273 0.165711
\(550\) 0 0
\(551\) −13.7233 −0.584631
\(552\) 0 0
\(553\) 1.28018 0.0544386
\(554\) 0 0
\(555\) 16.9966 0.721464
\(556\) 0 0
\(557\) −22.9897 −0.974104 −0.487052 0.873373i \(-0.661928\pi\)
−0.487052 + 0.873373i \(0.661928\pi\)
\(558\) 0 0
\(559\) 2.71982 0.115036
\(560\) 0 0
\(561\) −19.1138 −0.806986
\(562\) 0 0
\(563\) 32.7620 1.38075 0.690377 0.723449i \(-0.257444\pi\)
0.690377 + 0.723449i \(0.257444\pi\)
\(564\) 0 0
\(565\) 25.9700 1.09257
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 36.1526 1.51560 0.757798 0.652489i \(-0.226275\pi\)
0.757798 + 0.652489i \(0.226275\pi\)
\(570\) 0 0
\(571\) −6.48529 −0.271401 −0.135700 0.990750i \(-0.543328\pi\)
−0.135700 + 0.990750i \(0.543328\pi\)
\(572\) 0 0
\(573\) −6.61555 −0.276368
\(574\) 0 0
\(575\) −10.6155 −0.442699
\(576\) 0 0
\(577\) 3.99312 0.166236 0.0831180 0.996540i \(-0.473512\pi\)
0.0831180 + 0.996540i \(0.473512\pi\)
\(578\) 0 0
\(579\) 11.8827 0.493830
\(580\) 0 0
\(581\) 2.83709 0.117702
\(582\) 0 0
\(583\) 41.5500 1.72083
\(584\) 0 0
\(585\) −1.77846 −0.0735302
\(586\) 0 0
\(587\) −4.16635 −0.171964 −0.0859818 0.996297i \(-0.527403\pi\)
−0.0859818 + 0.996297i \(0.527403\pi\)
\(588\) 0 0
\(589\) −30.3611 −1.25101
\(590\) 0 0
\(591\) 11.5569 0.475388
\(592\) 0 0
\(593\) 16.1303 0.662390 0.331195 0.943562i \(-0.392548\pi\)
0.331195 + 0.943562i \(0.392548\pi\)
\(594\) 0 0
\(595\) −5.23109 −0.214454
\(596\) 0 0
\(597\) −0.996562 −0.0407866
\(598\) 0 0
\(599\) 33.2372 1.35804 0.679018 0.734122i \(-0.262406\pi\)
0.679018 + 0.734122i \(0.262406\pi\)
\(600\) 0 0
\(601\) −28.9897 −1.18251 −0.591257 0.806483i \(-0.701368\pi\)
−0.591257 + 0.806483i \(0.701368\pi\)
\(602\) 0 0
\(603\) −5.67418 −0.231070
\(604\) 0 0
\(605\) 55.5370 2.25790
\(606\) 0 0
\(607\) 25.7846 1.04656 0.523282 0.852160i \(-0.324708\pi\)
0.523282 + 0.852160i \(0.324708\pi\)
\(608\) 0 0
\(609\) −2.83709 −0.114965
\(610\) 0 0
\(611\) −8.71982 −0.352766
\(612\) 0 0
\(613\) −7.43965 −0.300485 −0.150242 0.988649i \(-0.548005\pi\)
−0.150242 + 0.988649i \(0.548005\pi\)
\(614\) 0 0
\(615\) −5.43965 −0.219348
\(616\) 0 0
\(617\) −2.67074 −0.107520 −0.0537600 0.998554i \(-0.517121\pi\)
−0.0537600 + 0.998554i \(0.517121\pi\)
\(618\) 0 0
\(619\) 4.46907 0.179627 0.0898134 0.995959i \(-0.471373\pi\)
0.0898134 + 0.995959i \(0.471373\pi\)
\(620\) 0 0
\(621\) 5.77846 0.231881
\(622\) 0 0
\(623\) −7.66119 −0.306939
\(624\) 0 0
\(625\) −12.4396 −0.497586
\(626\) 0 0
\(627\) 31.4328 1.25530
\(628\) 0 0
\(629\) −28.1104 −1.12083
\(630\) 0 0
\(631\) −23.0878 −0.919113 −0.459556 0.888149i \(-0.651992\pi\)
−0.459556 + 0.888149i \(0.651992\pi\)
\(632\) 0 0
\(633\) −26.8302 −1.06641
\(634\) 0 0
\(635\) 17.5760 0.697483
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) −10.0552 −0.397777
\(640\) 0 0
\(641\) 41.8268 1.65206 0.826029 0.563627i \(-0.190595\pi\)
0.826029 + 0.563627i \(0.190595\pi\)
\(642\) 0 0
\(643\) −3.11383 −0.122797 −0.0613987 0.998113i \(-0.519556\pi\)
−0.0613987 + 0.998113i \(0.519556\pi\)
\(644\) 0 0
\(645\) −4.83709 −0.190460
\(646\) 0 0
\(647\) −30.4362 −1.19657 −0.598285 0.801283i \(-0.704151\pi\)
−0.598285 + 0.801283i \(0.704151\pi\)
\(648\) 0 0
\(649\) −10.1173 −0.397137
\(650\) 0 0
\(651\) −6.27674 −0.246005
\(652\) 0 0
\(653\) 3.99312 0.156263 0.0781315 0.996943i \(-0.475105\pi\)
0.0781315 + 0.996943i \(0.475105\pi\)
\(654\) 0 0
\(655\) −6.69672 −0.261663
\(656\) 0 0
\(657\) −15.8337 −0.617730
\(658\) 0 0
\(659\) −32.6578 −1.27217 −0.636083 0.771621i \(-0.719446\pi\)
−0.636083 + 0.771621i \(0.719446\pi\)
\(660\) 0 0
\(661\) 43.7355 1.70111 0.850557 0.525883i \(-0.176265\pi\)
0.850557 + 0.525883i \(0.176265\pi\)
\(662\) 0 0
\(663\) 2.94137 0.114233
\(664\) 0 0
\(665\) 8.60256 0.333593
\(666\) 0 0
\(667\) −16.3940 −0.634778
\(668\) 0 0
\(669\) 2.92838 0.113218
\(670\) 0 0
\(671\) 25.2311 0.974036
\(672\) 0 0
\(673\) −9.63198 −0.371285 −0.185643 0.982617i \(-0.559437\pi\)
−0.185643 + 0.982617i \(0.559437\pi\)
\(674\) 0 0
\(675\) −1.83709 −0.0707096
\(676\) 0 0
\(677\) 16.4914 0.633816 0.316908 0.948456i \(-0.397355\pi\)
0.316908 + 0.948456i \(0.397355\pi\)
\(678\) 0 0
\(679\) −17.7164 −0.679892
\(680\) 0 0
\(681\) 9.79145 0.375209
\(682\) 0 0
\(683\) −41.9311 −1.60445 −0.802224 0.597024i \(-0.796350\pi\)
−0.802224 + 0.597024i \(0.796350\pi\)
\(684\) 0 0
\(685\) −30.2277 −1.15494
\(686\) 0 0
\(687\) 3.88273 0.148136
\(688\) 0 0
\(689\) −6.39400 −0.243592
\(690\) 0 0
\(691\) −38.1786 −1.45238 −0.726191 0.687493i \(-0.758711\pi\)
−0.726191 + 0.687493i \(0.758711\pi\)
\(692\) 0 0
\(693\) 6.49828 0.246849
\(694\) 0 0
\(695\) 15.2120 0.577024
\(696\) 0 0
\(697\) 8.99656 0.340769
\(698\) 0 0
\(699\) −15.8337 −0.598884
\(700\) 0 0
\(701\) 16.5957 0.626810 0.313405 0.949620i \(-0.398530\pi\)
0.313405 + 0.949620i \(0.398530\pi\)
\(702\) 0 0
\(703\) 46.2277 1.74351
\(704\) 0 0
\(705\) 15.5078 0.584059
\(706\) 0 0
\(707\) 6.73281 0.253214
\(708\) 0 0
\(709\) 21.7655 0.817419 0.408710 0.912664i \(-0.365979\pi\)
0.408710 + 0.912664i \(0.365979\pi\)
\(710\) 0 0
\(711\) 1.28018 0.0480104
\(712\) 0 0
\(713\) −36.2699 −1.35832
\(714\) 0 0
\(715\) −11.5569 −0.432204
\(716\) 0 0
\(717\) 6.94137 0.259230
\(718\) 0 0
\(719\) −36.7880 −1.37196 −0.685981 0.727620i \(-0.740627\pi\)
−0.685981 + 0.727620i \(0.740627\pi\)
\(720\) 0 0
\(721\) −10.8793 −0.405166
\(722\) 0 0
\(723\) 7.28018 0.270753
\(724\) 0 0
\(725\) 5.21199 0.193568
\(726\) 0 0
\(727\) 32.3189 1.19864 0.599322 0.800508i \(-0.295437\pi\)
0.599322 + 0.800508i \(0.295437\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) −12.7198 −0.469817 −0.234909 0.972017i \(-0.575479\pi\)
−0.234909 + 0.972017i \(0.575479\pi\)
\(734\) 0 0
\(735\) 1.77846 0.0655994
\(736\) 0 0
\(737\) −36.8724 −1.35821
\(738\) 0 0
\(739\) −23.1982 −0.853361 −0.426681 0.904402i \(-0.640317\pi\)
−0.426681 + 0.904402i \(0.640317\pi\)
\(740\) 0 0
\(741\) −4.83709 −0.177695
\(742\) 0 0
\(743\) −31.8138 −1.16713 −0.583567 0.812065i \(-0.698344\pi\)
−0.583567 + 0.812065i \(0.698344\pi\)
\(744\) 0 0
\(745\) −27.6673 −1.01365
\(746\) 0 0
\(747\) 2.83709 0.103804
\(748\) 0 0
\(749\) 8.49828 0.310520
\(750\) 0 0
\(751\) 0.863070 0.0314939 0.0157469 0.999876i \(-0.494987\pi\)
0.0157469 + 0.999876i \(0.494987\pi\)
\(752\) 0 0
\(753\) −23.3224 −0.849915
\(754\) 0 0
\(755\) −8.88617 −0.323401
\(756\) 0 0
\(757\) −13.3974 −0.486938 −0.243469 0.969909i \(-0.578285\pi\)
−0.243469 + 0.969909i \(0.578285\pi\)
\(758\) 0 0
\(759\) 37.5500 1.36298
\(760\) 0 0
\(761\) −35.5630 −1.28916 −0.644579 0.764537i \(-0.722967\pi\)
−0.644579 + 0.764537i \(0.722967\pi\)
\(762\) 0 0
\(763\) 10.0000 0.362024
\(764\) 0 0
\(765\) −5.23109 −0.189131
\(766\) 0 0
\(767\) 1.55691 0.0562169
\(768\) 0 0
\(769\) −48.3871 −1.74488 −0.872442 0.488717i \(-0.837465\pi\)
−0.872442 + 0.488717i \(0.837465\pi\)
\(770\) 0 0
\(771\) 15.4948 0.558033
\(772\) 0 0
\(773\) 17.9379 0.645182 0.322591 0.946538i \(-0.395446\pi\)
0.322591 + 0.946538i \(0.395446\pi\)
\(774\) 0 0
\(775\) 11.5309 0.414203
\(776\) 0 0
\(777\) 9.55691 0.342852
\(778\) 0 0
\(779\) −14.7949 −0.530082
\(780\) 0 0
\(781\) −65.3415 −2.33810
\(782\) 0 0
\(783\) −2.83709 −0.101389
\(784\) 0 0
\(785\) −33.4137 −1.19258
\(786\) 0 0
\(787\) 3.71639 0.132475 0.0662374 0.997804i \(-0.478901\pi\)
0.0662374 + 0.997804i \(0.478901\pi\)
\(788\) 0 0
\(789\) −3.42666 −0.121992
\(790\) 0 0
\(791\) 14.6026 0.519207
\(792\) 0 0
\(793\) −3.88273 −0.137880
\(794\) 0 0
\(795\) 11.3715 0.403304
\(796\) 0 0
\(797\) 14.9673 0.530171 0.265085 0.964225i \(-0.414600\pi\)
0.265085 + 0.964225i \(0.414600\pi\)
\(798\) 0 0
\(799\) −25.6482 −0.907368
\(800\) 0 0
\(801\) −7.66119 −0.270695
\(802\) 0 0
\(803\) −102.892 −3.63096
\(804\) 0 0
\(805\) 10.2767 0.362207
\(806\) 0 0
\(807\) −0.172462 −0.00607094
\(808\) 0 0
\(809\) 11.7233 0.412168 0.206084 0.978534i \(-0.433928\pi\)
0.206084 + 0.978534i \(0.433928\pi\)
\(810\) 0 0
\(811\) 0.886172 0.0311177 0.0155588 0.999879i \(-0.495047\pi\)
0.0155588 + 0.999879i \(0.495047\pi\)
\(812\) 0 0
\(813\) 25.9931 0.911619
\(814\) 0 0
\(815\) 17.5760 0.615661
\(816\) 0 0
\(817\) −13.1560 −0.460271
\(818\) 0 0
\(819\) −1.00000 −0.0349428
\(820\) 0 0
\(821\) −53.7846 −1.87709 −0.938547 0.345151i \(-0.887828\pi\)
−0.938547 + 0.345151i \(0.887828\pi\)
\(822\) 0 0
\(823\) 35.7655 1.24671 0.623353 0.781941i \(-0.285770\pi\)
0.623353 + 0.781941i \(0.285770\pi\)
\(824\) 0 0
\(825\) −11.9379 −0.415625
\(826\) 0 0
\(827\) −7.41043 −0.257686 −0.128843 0.991665i \(-0.541126\pi\)
−0.128843 + 0.991665i \(0.541126\pi\)
\(828\) 0 0
\(829\) −31.9931 −1.11117 −0.555584 0.831461i \(-0.687505\pi\)
−0.555584 + 0.831461i \(0.687505\pi\)
\(830\) 0 0
\(831\) 3.72326 0.129159
\(832\) 0 0
\(833\) −2.94137 −0.101912
\(834\) 0 0
\(835\) 12.5304 0.433631
\(836\) 0 0
\(837\) −6.27674 −0.216956
\(838\) 0 0
\(839\) 1.55691 0.0537506 0.0268753 0.999639i \(-0.491444\pi\)
0.0268753 + 0.999639i \(0.491444\pi\)
\(840\) 0 0
\(841\) −20.9509 −0.722445
\(842\) 0 0
\(843\) −21.5500 −0.742223
\(844\) 0 0
\(845\) 1.77846 0.0611808
\(846\) 0 0
\(847\) 31.2277 1.07299
\(848\) 0 0
\(849\) 31.8759 1.09398
\(850\) 0 0
\(851\) 55.2242 1.89306
\(852\) 0 0
\(853\) 35.4750 1.21464 0.607320 0.794457i \(-0.292245\pi\)
0.607320 + 0.794457i \(0.292245\pi\)
\(854\) 0 0
\(855\) 8.60256 0.294201
\(856\) 0 0
\(857\) −2.49828 −0.0853397 −0.0426698 0.999089i \(-0.513586\pi\)
−0.0426698 + 0.999089i \(0.513586\pi\)
\(858\) 0 0
\(859\) −52.0122 −1.77463 −0.887317 0.461160i \(-0.847434\pi\)
−0.887317 + 0.461160i \(0.847434\pi\)
\(860\) 0 0
\(861\) −3.05863 −0.104238
\(862\) 0 0
\(863\) −34.8172 −1.18519 −0.592596 0.805500i \(-0.701897\pi\)
−0.592596 + 0.805500i \(0.701897\pi\)
\(864\) 0 0
\(865\) −25.4137 −0.864091
\(866\) 0 0
\(867\) −8.34836 −0.283525
\(868\) 0 0
\(869\) 8.31894 0.282201
\(870\) 0 0
\(871\) 5.67418 0.192262
\(872\) 0 0
\(873\) −17.7164 −0.599609
\(874\) 0 0
\(875\) −12.1595 −0.411065
\(876\) 0 0
\(877\) −11.2571 −0.380124 −0.190062 0.981772i \(-0.560869\pi\)
−0.190062 + 0.981772i \(0.560869\pi\)
\(878\) 0 0
\(879\) 3.42666 0.115578
\(880\) 0 0
\(881\) −9.50172 −0.320121 −0.160061 0.987107i \(-0.551169\pi\)
−0.160061 + 0.987107i \(0.551169\pi\)
\(882\) 0 0
\(883\) −23.7655 −0.799772 −0.399886 0.916565i \(-0.630950\pi\)
−0.399886 + 0.916565i \(0.630950\pi\)
\(884\) 0 0
\(885\) −2.76891 −0.0930757
\(886\) 0 0
\(887\) −18.3518 −0.616193 −0.308097 0.951355i \(-0.599692\pi\)
−0.308097 + 0.951355i \(0.599692\pi\)
\(888\) 0 0
\(889\) 9.88273 0.331456
\(890\) 0 0
\(891\) 6.49828 0.217701
\(892\) 0 0
\(893\) 42.1786 1.41145
\(894\) 0 0
\(895\) 15.3974 0.514680
\(896\) 0 0
\(897\) −5.77846 −0.192937
\(898\) 0 0
\(899\) 17.8077 0.593919
\(900\) 0 0
\(901\) −18.8071 −0.626556
\(902\) 0 0
\(903\) −2.71982 −0.0905101
\(904\) 0 0
\(905\) 46.8533 1.55746
\(906\) 0 0
\(907\) −35.7164 −1.18594 −0.592972 0.805223i \(-0.702045\pi\)
−0.592972 + 0.805223i \(0.702045\pi\)
\(908\) 0 0
\(909\) 6.73281 0.223313
\(910\) 0 0
\(911\) 16.2147 0.537216 0.268608 0.963250i \(-0.413436\pi\)
0.268608 + 0.963250i \(0.413436\pi\)
\(912\) 0 0
\(913\) 18.4362 0.610149
\(914\) 0 0
\(915\) 6.90528 0.228281
\(916\) 0 0
\(917\) −3.76547 −0.124347
\(918\) 0 0
\(919\) 34.4622 1.13680 0.568401 0.822751i \(-0.307562\pi\)
0.568401 + 0.822751i \(0.307562\pi\)
\(920\) 0 0
\(921\) 3.39744 0.111950
\(922\) 0 0
\(923\) 10.0552 0.330971
\(924\) 0 0
\(925\) −17.5569 −0.577268
\(926\) 0 0
\(927\) −10.8793 −0.357323
\(928\) 0 0
\(929\) −28.4492 −0.933388 −0.466694 0.884419i \(-0.654555\pi\)
−0.466694 + 0.884419i \(0.654555\pi\)
\(930\) 0 0
\(931\) 4.83709 0.158529
\(932\) 0 0
\(933\) 0.443086 0.0145060
\(934\) 0 0
\(935\) −33.9931 −1.11169
\(936\) 0 0
\(937\) 2.91215 0.0951358 0.0475679 0.998868i \(-0.484853\pi\)
0.0475679 + 0.998868i \(0.484853\pi\)
\(938\) 0 0
\(939\) −19.8827 −0.648848
\(940\) 0 0
\(941\) −59.0096 −1.92366 −0.961828 0.273654i \(-0.911768\pi\)
−0.961828 + 0.273654i \(0.911768\pi\)
\(942\) 0 0
\(943\) −17.6742 −0.575551
\(944\) 0 0
\(945\) 1.77846 0.0578532
\(946\) 0 0
\(947\) −34.8432 −1.13225 −0.566126 0.824319i \(-0.691558\pi\)
−0.566126 + 0.824319i \(0.691558\pi\)
\(948\) 0 0
\(949\) 15.8337 0.513982
\(950\) 0 0
\(951\) 9.46563 0.306944
\(952\) 0 0
\(953\) 23.9578 0.776069 0.388035 0.921645i \(-0.373154\pi\)
0.388035 + 0.921645i \(0.373154\pi\)
\(954\) 0 0
\(955\) −11.7655 −0.380722
\(956\) 0 0
\(957\) −18.4362 −0.595958
\(958\) 0 0
\(959\) −16.9966 −0.548848
\(960\) 0 0
\(961\) 8.39744 0.270885
\(962\) 0 0
\(963\) 8.49828 0.273853
\(964\) 0 0
\(965\) 21.1329 0.680293
\(966\) 0 0
\(967\) 37.3155 1.19999 0.599993 0.800005i \(-0.295170\pi\)
0.599993 + 0.800005i \(0.295170\pi\)
\(968\) 0 0
\(969\) −14.2277 −0.457058
\(970\) 0 0
\(971\) −20.7880 −0.667119 −0.333559 0.942729i \(-0.608250\pi\)
−0.333559 + 0.942729i \(0.608250\pi\)
\(972\) 0 0
\(973\) 8.55348 0.274212
\(974\) 0 0
\(975\) 1.83709 0.0588340
\(976\) 0 0
\(977\) 49.0810 1.57024 0.785120 0.619344i \(-0.212601\pi\)
0.785120 + 0.619344i \(0.212601\pi\)
\(978\) 0 0
\(979\) −49.7846 −1.59112
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) −10.1855 −0.324865 −0.162433 0.986720i \(-0.551934\pi\)
−0.162433 + 0.986720i \(0.551934\pi\)
\(984\) 0 0
\(985\) 20.5535 0.654888
\(986\) 0 0
\(987\) 8.71982 0.277555
\(988\) 0 0
\(989\) −15.7164 −0.499752
\(990\) 0 0
\(991\) −4.34492 −0.138021 −0.0690105 0.997616i \(-0.521984\pi\)
−0.0690105 + 0.997616i \(0.521984\pi\)
\(992\) 0 0
\(993\) 27.4328 0.870553
\(994\) 0 0
\(995\) −1.77234 −0.0561871
\(996\) 0 0
\(997\) 44.9637 1.42401 0.712007 0.702172i \(-0.247786\pi\)
0.712007 + 0.702172i \(0.247786\pi\)
\(998\) 0 0
\(999\) 9.55691 0.302367
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4368.2.a.bq.1.3 3
4.3 odd 2 273.2.a.d.1.2 3
12.11 even 2 819.2.a.j.1.2 3
20.19 odd 2 6825.2.a.bd.1.2 3
28.27 even 2 1911.2.a.n.1.2 3
52.51 odd 2 3549.2.a.t.1.2 3
84.83 odd 2 5733.2.a.bc.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.a.d.1.2 3 4.3 odd 2
819.2.a.j.1.2 3 12.11 even 2
1911.2.a.n.1.2 3 28.27 even 2
3549.2.a.t.1.2 3 52.51 odd 2
4368.2.a.bq.1.3 3 1.1 even 1 trivial
5733.2.a.bc.1.2 3 84.83 odd 2
6825.2.a.bd.1.2 3 20.19 odd 2