Defining parameters
Level: | \( N \) | \(=\) | \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4368.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 45 \) | ||
Sturm bound: | \(1792\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4368))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 920 | 72 | 848 |
Cusp forms | 873 | 72 | 801 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(56\) | \(6\) | \(50\) | \(54\) | \(6\) | \(48\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(58\) | \(4\) | \(54\) | \(55\) | \(4\) | \(51\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(58\) | \(3\) | \(55\) | \(55\) | \(3\) | \(52\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(56\) | \(5\) | \(51\) | \(53\) | \(5\) | \(48\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(59\) | \(6\) | \(53\) | \(56\) | \(6\) | \(50\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(57\) | \(2\) | \(55\) | \(54\) | \(2\) | \(52\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(57\) | \(3\) | \(54\) | \(54\) | \(3\) | \(51\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(59\) | \(7\) | \(52\) | \(56\) | \(7\) | \(49\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(59\) | \(4\) | \(55\) | \(56\) | \(4\) | \(52\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(57\) | \(5\) | \(52\) | \(54\) | \(5\) | \(49\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(57\) | \(3\) | \(54\) | \(54\) | \(3\) | \(51\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(59\) | \(6\) | \(53\) | \(56\) | \(6\) | \(50\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(56\) | \(6\) | \(50\) | \(53\) | \(6\) | \(47\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(58\) | \(5\) | \(53\) | \(55\) | \(5\) | \(50\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(58\) | \(5\) | \(53\) | \(55\) | \(5\) | \(50\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(56\) | \(2\) | \(54\) | \(53\) | \(2\) | \(51\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(452\) | \(32\) | \(420\) | \(429\) | \(32\) | \(397\) | \(23\) | \(0\) | \(23\) | ||||||
Minus space | \(-\) | \(468\) | \(40\) | \(428\) | \(444\) | \(40\) | \(404\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4368))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4368))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4368)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(336))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(546))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(624))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(728))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1092))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1456))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2184))\)\(^{\oplus 2}\)