Defining parameters
Level: | \( N \) | \(=\) | \( 4356 = 2^{2} \cdot 3^{2} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4356.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 26 \) | ||
Sturm bound: | \(1584\) | ||
Trace bound: | \(31\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4356))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 864 | 46 | 818 |
Cusp forms | 721 | 46 | 675 |
Eisenstein series | 143 | 0 | 143 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(108\) | \(0\) | \(108\) | \(85\) | \(0\) | \(85\) | \(23\) | \(0\) | \(23\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(114\) | \(0\) | \(114\) | \(90\) | \(0\) | \(90\) | \(24\) | \(0\) | \(24\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(114\) | \(0\) | \(114\) | \(90\) | \(0\) | \(90\) | \(24\) | \(0\) | \(24\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(108\) | \(0\) | \(108\) | \(84\) | \(0\) | \(84\) | \(24\) | \(0\) | \(24\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(108\) | \(12\) | \(96\) | \(96\) | \(12\) | \(84\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(102\) | \(7\) | \(95\) | \(90\) | \(7\) | \(83\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(102\) | \(12\) | \(90\) | \(90\) | \(12\) | \(78\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(108\) | \(15\) | \(93\) | \(96\) | \(15\) | \(81\) | \(12\) | \(0\) | \(12\) | |||
Plus space | \(+\) | \(420\) | \(19\) | \(401\) | \(349\) | \(19\) | \(330\) | \(71\) | \(0\) | \(71\) | |||||
Minus space | \(-\) | \(444\) | \(27\) | \(417\) | \(372\) | \(27\) | \(345\) | \(72\) | \(0\) | \(72\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4356))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4356))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4356)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(396))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(484))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(726))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1089))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1452))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2178))\)\(^{\oplus 2}\)