Properties

Label 435.4.a.k
Level $435$
Weight $4$
Character orbit 435.a
Self dual yes
Analytic conductor $25.666$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 43x^{6} + 117x^{5} + 586x^{4} - 701x^{3} - 1792x^{2} + 924x + 1424 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} - 3 q^{3} + (\beta_{2} + 5) q^{4} - 5 q^{5} + ( - 3 \beta_1 + 3) q^{6} + (\beta_{6} - \beta_{5} - \beta_{4} + \cdots + 1) q^{7}+ \cdots + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 - 1) q^{2} - 3 q^{3} + (\beta_{2} + 5) q^{4} - 5 q^{5} + ( - 3 \beta_1 + 3) q^{6} + (\beta_{6} - \beta_{5} - \beta_{4} + \cdots + 1) q^{7}+ \cdots + (9 \beta_{7} + 9 \beta_{6} + 9 \beta_{4} + \cdots + 27) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 24 q^{3} + 38 q^{4} - 40 q^{5} + 12 q^{6} - q^{7} - 9 q^{8} + 72 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{2} - 24 q^{3} + 38 q^{4} - 40 q^{5} + 12 q^{6} - q^{7} - 9 q^{8} + 72 q^{9} + 20 q^{10} + 11 q^{11} - 114 q^{12} - 97 q^{13} - 69 q^{14} + 120 q^{15} + 242 q^{16} - 119 q^{17} - 36 q^{18} + 220 q^{19} - 190 q^{20} + 3 q^{21} - 129 q^{22} - 262 q^{23} + 27 q^{24} + 200 q^{25} + 43 q^{26} - 216 q^{27} - 13 q^{28} + 232 q^{29} - 60 q^{30} + 108 q^{31} - 566 q^{32} - 33 q^{33} - 527 q^{34} + 5 q^{35} + 342 q^{36} + 118 q^{37} - 1088 q^{38} + 291 q^{39} + 45 q^{40} - 118 q^{41} + 207 q^{42} - 384 q^{43} - 1605 q^{44} - 360 q^{45} + 154 q^{46} - 1309 q^{47} - 726 q^{48} + 427 q^{49} - 100 q^{50} + 357 q^{51} - 747 q^{52} - 1912 q^{53} + 108 q^{54} - 55 q^{55} - 2022 q^{56} - 660 q^{57} - 116 q^{58} - 1178 q^{59} + 570 q^{60} + 572 q^{61} - 2572 q^{62} - 9 q^{63} - 1771 q^{64} + 485 q^{65} + 387 q^{66} + 1147 q^{67} - 3963 q^{68} + 786 q^{69} + 345 q^{70} + 84 q^{71} - 81 q^{72} - 222 q^{73} - 1758 q^{74} - 600 q^{75} + 1390 q^{76} - 1753 q^{77} - 129 q^{78} + 390 q^{79} - 1210 q^{80} + 648 q^{81} - 2994 q^{82} - 1570 q^{83} + 39 q^{84} + 595 q^{85} + 1668 q^{86} - 696 q^{87} - 1790 q^{88} - 119 q^{89} + 180 q^{90} - 3529 q^{91} - 2934 q^{92} - 324 q^{93} - 2277 q^{94} - 1100 q^{95} + 1698 q^{96} - 2100 q^{97} - 7677 q^{98} + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} - 43x^{6} + 117x^{5} + 586x^{4} - 701x^{3} - 1792x^{2} + 924x + 1424 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{7} + 5\nu^{6} + 85\nu^{5} - 98\nu^{4} - 1081\nu^{3} - 143\nu^{2} + 2426\nu + 1128 ) / 136 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -7\nu^{7} + 43\nu^{6} + 204\nu^{5} - 1193\nu^{4} - 1837\nu^{3} + 7838\nu^{2} + 3544\nu - 9040 ) / 272 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -5\nu^{7} + 21\nu^{6} + 204\nu^{5} - 619\nu^{4} - 2371\nu^{3} + 3578\nu^{2} + 1968\nu - 3232 ) / 136 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -5\nu^{7} + 21\nu^{6} + 204\nu^{5} - 619\nu^{4} - 2507\nu^{3} + 3850\nu^{2} + 4824\nu - 4320 ) / 136 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 7\nu^{7} - 9\nu^{6} - 374\nu^{5} - 31\nu^{4} + 5883\nu^{3} + 6952\nu^{2} - 14220\nu - 15440 ) / 272 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{6} + \beta_{5} + 2\beta_{2} + 25\beta _1 + 16 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{7} - 3\beta_{6} + 2\beta_{5} + \beta_{4} - \beta_{3} + 28\beta_{2} + 86\beta _1 + 273 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -4\beta_{7} - 26\beta_{6} + 28\beta_{5} - 12\beta_{3} + 89\beta_{2} + 700\beta _1 + 780 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -48\beta_{7} - 119\beta_{6} + 93\beta_{5} + 44\beta_{4} - 96\beta_{3} + 780\beta_{2} + 3065\beta _1 + 7324 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -241\beta_{7} - 715\beta_{6} + 784\beta_{5} + 61\beta_{4} - 769\beta_{3} + 3208\beta_{2} + 20756\beta _1 + 29141 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.17466
−3.76263
−1.46965
−0.859765
1.26223
1.81879
5.42731
5.75837
−5.17466 −3.00000 18.7771 −5.00000 15.5240 −11.1931 −55.7681 9.00000 25.8733
1.2 −4.76263 −3.00000 14.6826 −5.00000 14.2879 35.2196 −31.8267 9.00000 23.8131
1.3 −2.46965 −3.00000 −1.90084 −5.00000 7.40894 −36.5630 24.4516 9.00000 12.3482
1.4 −1.85976 −3.00000 −4.54128 −5.00000 5.57929 −0.560700 23.3238 9.00000 9.29882
1.5 0.262226 −3.00000 −7.93124 −5.00000 −0.786679 12.1027 −4.17759 9.00000 −1.31113
1.6 0.818792 −3.00000 −7.32958 −5.00000 −2.45638 13.8632 −12.5517 9.00000 −4.09396
1.7 4.42731 −3.00000 11.6011 −5.00000 −13.2819 −2.85439 15.9430 9.00000 −22.1365
1.8 4.75837 −3.00000 14.6421 −5.00000 −14.2751 −11.0144 31.6057 9.00000 −23.7919
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.4.a.k 8
3.b odd 2 1 1305.4.a.p 8
5.b even 2 1 2175.4.a.o 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.4.a.k 8 1.a even 1 1 trivial
1305.4.a.p 8 3.b odd 2 1
2175.4.a.o 8 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} + 4T_{2}^{7} - 43T_{2}^{6} - 169T_{2}^{5} + 456T_{2}^{4} + 1869T_{2}^{3} + 90T_{2}^{2} - 2112T_{2} + 512 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(435))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 4 T^{7} + \cdots + 512 \) Copy content Toggle raw display
$3$ \( (T + 3)^{8} \) Copy content Toggle raw display
$5$ \( (T + 5)^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + T^{7} + \cdots - 42630912 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots - 109041848480 \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 791998533632 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 13781129317504 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 66835834880 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots - 22\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( (T - 29)^{8} \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots + 33\!\cdots\!52 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots - 22\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots - 10\!\cdots\!20 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots - 11\!\cdots\!40 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 48\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots - 79\!\cdots\!92 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 17\!\cdots\!88 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots - 19\!\cdots\!08 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots - 21\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 43\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots - 15\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 89\!\cdots\!28 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 14\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 73\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 70\!\cdots\!80 \) Copy content Toggle raw display
show more
show less