Properties

Label 435.4.a.j.1.7
Level $435$
Weight $4$
Character 435.1
Self dual yes
Analytic conductor $25.666$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 35x^{5} + 18x^{4} + 329x^{3} - 167x^{2} - 767x + 638 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-3.96612\) of defining polynomial
Character \(\chi\) \(=\) 435.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.96612 q^{2} +3.00000 q^{3} +7.73008 q^{4} -5.00000 q^{5} +11.8983 q^{6} -32.8717 q^{7} -1.07055 q^{8} +9.00000 q^{9} -19.8306 q^{10} +12.6426 q^{11} +23.1902 q^{12} -52.2979 q^{13} -130.373 q^{14} -15.0000 q^{15} -66.0865 q^{16} -17.2978 q^{17} +35.6950 q^{18} +48.0486 q^{19} -38.6504 q^{20} -98.6150 q^{21} +50.1421 q^{22} -130.535 q^{23} -3.21165 q^{24} +25.0000 q^{25} -207.420 q^{26} +27.0000 q^{27} -254.100 q^{28} -29.0000 q^{29} -59.4917 q^{30} +196.614 q^{31} -253.542 q^{32} +37.9278 q^{33} -68.6049 q^{34} +164.358 q^{35} +69.5707 q^{36} -119.645 q^{37} +190.566 q^{38} -156.894 q^{39} +5.35275 q^{40} -134.133 q^{41} -391.118 q^{42} -222.109 q^{43} +97.7283 q^{44} -45.0000 q^{45} -517.716 q^{46} -569.042 q^{47} -198.260 q^{48} +737.546 q^{49} +99.1529 q^{50} -51.8933 q^{51} -404.267 q^{52} +393.464 q^{53} +107.085 q^{54} -63.2131 q^{55} +35.1908 q^{56} +144.146 q^{57} -115.017 q^{58} +741.684 q^{59} -115.951 q^{60} +758.295 q^{61} +779.796 q^{62} -295.845 q^{63} -476.886 q^{64} +261.489 q^{65} +150.426 q^{66} -74.7083 q^{67} -133.713 q^{68} -391.604 q^{69} +651.864 q^{70} -118.322 q^{71} -9.63496 q^{72} -498.399 q^{73} -474.525 q^{74} +75.0000 q^{75} +371.419 q^{76} -415.584 q^{77} -622.259 q^{78} +106.032 q^{79} +330.433 q^{80} +81.0000 q^{81} -531.988 q^{82} +42.5010 q^{83} -762.301 q^{84} +86.4888 q^{85} -880.911 q^{86} -87.0000 q^{87} -13.5346 q^{88} -161.806 q^{89} -178.475 q^{90} +1719.12 q^{91} -1009.04 q^{92} +589.843 q^{93} -2256.88 q^{94} -240.243 q^{95} -760.627 q^{96} +128.506 q^{97} +2925.19 q^{98} +113.784 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{2} + 21 q^{3} + 15 q^{4} - 35 q^{5} - 3 q^{6} - 37 q^{7} - 36 q^{8} + 63 q^{9} + 5 q^{10} - 11 q^{11} + 45 q^{12} - 133 q^{13} - 75 q^{14} - 105 q^{15} - 53 q^{16} + 21 q^{17} - 9 q^{18} - 170 q^{19}+ \cdots - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.96612 1.40223 0.701117 0.713046i \(-0.252685\pi\)
0.701117 + 0.713046i \(0.252685\pi\)
\(3\) 3.00000 0.577350
\(4\) 7.73008 0.966259
\(5\) −5.00000 −0.447214
\(6\) 11.8983 0.809580
\(7\) −32.8717 −1.77490 −0.887451 0.460901i \(-0.847526\pi\)
−0.887451 + 0.460901i \(0.847526\pi\)
\(8\) −1.07055 −0.0473121
\(9\) 9.00000 0.333333
\(10\) −19.8306 −0.627098
\(11\) 12.6426 0.346536 0.173268 0.984875i \(-0.444567\pi\)
0.173268 + 0.984875i \(0.444567\pi\)
\(12\) 23.1902 0.557870
\(13\) −52.2979 −1.11576 −0.557878 0.829923i \(-0.688384\pi\)
−0.557878 + 0.829923i \(0.688384\pi\)
\(14\) −130.373 −2.48883
\(15\) −15.0000 −0.258199
\(16\) −66.0865 −1.03260
\(17\) −17.2978 −0.246784 −0.123392 0.992358i \(-0.539377\pi\)
−0.123392 + 0.992358i \(0.539377\pi\)
\(18\) 35.6950 0.467411
\(19\) 48.0486 0.580163 0.290082 0.957002i \(-0.406318\pi\)
0.290082 + 0.957002i \(0.406318\pi\)
\(20\) −38.6504 −0.432124
\(21\) −98.6150 −1.02474
\(22\) 50.1421 0.485924
\(23\) −130.535 −1.18341 −0.591704 0.806156i \(-0.701544\pi\)
−0.591704 + 0.806156i \(0.701544\pi\)
\(24\) −3.21165 −0.0273157
\(25\) 25.0000 0.200000
\(26\) −207.420 −1.56455
\(27\) 27.0000 0.192450
\(28\) −254.100 −1.71502
\(29\) −29.0000 −0.185695
\(30\) −59.4917 −0.362055
\(31\) 196.614 1.13913 0.569564 0.821947i \(-0.307112\pi\)
0.569564 + 0.821947i \(0.307112\pi\)
\(32\) −253.542 −1.40064
\(33\) 37.9278 0.200072
\(34\) −68.6049 −0.346048
\(35\) 164.358 0.793761
\(36\) 69.5707 0.322086
\(37\) −119.645 −0.531608 −0.265804 0.964027i \(-0.585637\pi\)
−0.265804 + 0.964027i \(0.585637\pi\)
\(38\) 190.566 0.813525
\(39\) −156.894 −0.644182
\(40\) 5.35275 0.0211586
\(41\) −134.133 −0.510929 −0.255465 0.966818i \(-0.582228\pi\)
−0.255465 + 0.966818i \(0.582228\pi\)
\(42\) −391.118 −1.43693
\(43\) −222.109 −0.787705 −0.393853 0.919174i \(-0.628858\pi\)
−0.393853 + 0.919174i \(0.628858\pi\)
\(44\) 97.7283 0.334843
\(45\) −45.0000 −0.149071
\(46\) −517.716 −1.65941
\(47\) −569.042 −1.76603 −0.883013 0.469348i \(-0.844489\pi\)
−0.883013 + 0.469348i \(0.844489\pi\)
\(48\) −198.260 −0.596173
\(49\) 737.546 2.15028
\(50\) 99.1529 0.280447
\(51\) −51.8933 −0.142481
\(52\) −404.267 −1.07811
\(53\) 393.464 1.01974 0.509872 0.860250i \(-0.329693\pi\)
0.509872 + 0.860250i \(0.329693\pi\)
\(54\) 107.085 0.269860
\(55\) −63.2131 −0.154975
\(56\) 35.1908 0.0839744
\(57\) 144.146 0.334957
\(58\) −115.017 −0.260388
\(59\) 741.684 1.63659 0.818297 0.574795i \(-0.194918\pi\)
0.818297 + 0.574795i \(0.194918\pi\)
\(60\) −115.951 −0.249487
\(61\) 758.295 1.59163 0.795817 0.605537i \(-0.207042\pi\)
0.795817 + 0.605537i \(0.207042\pi\)
\(62\) 779.796 1.59732
\(63\) −295.845 −0.591634
\(64\) −476.886 −0.931419
\(65\) 261.489 0.498981
\(66\) 150.426 0.280548
\(67\) −74.7083 −0.136225 −0.0681125 0.997678i \(-0.521698\pi\)
−0.0681125 + 0.997678i \(0.521698\pi\)
\(68\) −133.713 −0.238457
\(69\) −391.604 −0.683240
\(70\) 651.864 1.11304
\(71\) −118.322 −0.197779 −0.0988893 0.995098i \(-0.531529\pi\)
−0.0988893 + 0.995098i \(0.531529\pi\)
\(72\) −9.63496 −0.0157707
\(73\) −498.399 −0.799084 −0.399542 0.916715i \(-0.630831\pi\)
−0.399542 + 0.916715i \(0.630831\pi\)
\(74\) −474.525 −0.745438
\(75\) 75.0000 0.115470
\(76\) 371.419 0.560588
\(77\) −415.584 −0.615067
\(78\) −622.259 −0.903294
\(79\) 106.032 0.151007 0.0755037 0.997146i \(-0.475944\pi\)
0.0755037 + 0.997146i \(0.475944\pi\)
\(80\) 330.433 0.461794
\(81\) 81.0000 0.111111
\(82\) −531.988 −0.716442
\(83\) 42.5010 0.0562059 0.0281030 0.999605i \(-0.491053\pi\)
0.0281030 + 0.999605i \(0.491053\pi\)
\(84\) −762.301 −0.990165
\(85\) 86.4888 0.110365
\(86\) −880.911 −1.10455
\(87\) −87.0000 −0.107211
\(88\) −13.5346 −0.0163953
\(89\) −161.806 −0.192713 −0.0963564 0.995347i \(-0.530719\pi\)
−0.0963564 + 0.995347i \(0.530719\pi\)
\(90\) −178.475 −0.209033
\(91\) 1719.12 1.98036
\(92\) −1009.04 −1.14348
\(93\) 589.843 0.657676
\(94\) −2256.88 −2.47638
\(95\) −240.243 −0.259457
\(96\) −760.627 −0.808658
\(97\) 128.506 0.134514 0.0672569 0.997736i \(-0.478575\pi\)
0.0672569 + 0.997736i \(0.478575\pi\)
\(98\) 2925.19 3.01519
\(99\) 113.784 0.115512
\(100\) 193.252 0.193252
\(101\) −584.973 −0.576307 −0.288153 0.957584i \(-0.593041\pi\)
−0.288153 + 0.957584i \(0.593041\pi\)
\(102\) −205.815 −0.199791
\(103\) −1908.33 −1.82557 −0.912783 0.408446i \(-0.866071\pi\)
−0.912783 + 0.408446i \(0.866071\pi\)
\(104\) 55.9876 0.0527888
\(105\) 493.075 0.458278
\(106\) 1560.52 1.42992
\(107\) 646.934 0.584500 0.292250 0.956342i \(-0.405596\pi\)
0.292250 + 0.956342i \(0.405596\pi\)
\(108\) 208.712 0.185957
\(109\) −1065.19 −0.936028 −0.468014 0.883721i \(-0.655030\pi\)
−0.468014 + 0.883721i \(0.655030\pi\)
\(110\) −250.710 −0.217312
\(111\) −358.934 −0.306924
\(112\) 2172.37 1.83277
\(113\) −1368.69 −1.13943 −0.569713 0.821844i \(-0.692946\pi\)
−0.569713 + 0.821844i \(0.692946\pi\)
\(114\) 571.699 0.469689
\(115\) 652.673 0.529236
\(116\) −224.172 −0.179430
\(117\) −470.681 −0.371919
\(118\) 2941.61 2.29489
\(119\) 568.606 0.438017
\(120\) 16.0583 0.0122159
\(121\) −1171.16 −0.879913
\(122\) 3007.49 2.23184
\(123\) −402.400 −0.294985
\(124\) 1519.84 1.10069
\(125\) −125.000 −0.0894427
\(126\) −1173.36 −0.829610
\(127\) 2118.32 1.48008 0.740040 0.672562i \(-0.234806\pi\)
0.740040 + 0.672562i \(0.234806\pi\)
\(128\) 136.953 0.0945704
\(129\) −666.327 −0.454782
\(130\) 1037.10 0.699688
\(131\) −2446.56 −1.63173 −0.815866 0.578241i \(-0.803740\pi\)
−0.815866 + 0.578241i \(0.803740\pi\)
\(132\) 293.185 0.193322
\(133\) −1579.44 −1.02973
\(134\) −296.302 −0.191019
\(135\) −135.000 −0.0860663
\(136\) 18.5181 0.0116759
\(137\) 1586.44 0.989331 0.494665 0.869084i \(-0.335291\pi\)
0.494665 + 0.869084i \(0.335291\pi\)
\(138\) −1553.15 −0.958063
\(139\) 1793.32 1.09430 0.547150 0.837034i \(-0.315713\pi\)
0.547150 + 0.837034i \(0.315713\pi\)
\(140\) 1270.50 0.766979
\(141\) −1707.12 −1.01962
\(142\) −469.280 −0.277332
\(143\) −661.182 −0.386649
\(144\) −594.779 −0.344201
\(145\) 145.000 0.0830455
\(146\) −1976.71 −1.12050
\(147\) 2212.64 1.24146
\(148\) −924.863 −0.513671
\(149\) −2640.05 −1.45155 −0.725777 0.687930i \(-0.758520\pi\)
−0.725777 + 0.687930i \(0.758520\pi\)
\(150\) 297.459 0.161916
\(151\) 1132.79 0.610498 0.305249 0.952273i \(-0.401260\pi\)
0.305249 + 0.952273i \(0.401260\pi\)
\(152\) −51.4385 −0.0274487
\(153\) −155.680 −0.0822612
\(154\) −1648.25 −0.862468
\(155\) −983.072 −0.509434
\(156\) −1212.80 −0.622447
\(157\) 912.652 0.463933 0.231967 0.972724i \(-0.425484\pi\)
0.231967 + 0.972724i \(0.425484\pi\)
\(158\) 420.537 0.211748
\(159\) 1180.39 0.588750
\(160\) 1267.71 0.626384
\(161\) 4290.89 2.10043
\(162\) 321.255 0.155804
\(163\) −2303.83 −1.10705 −0.553527 0.832831i \(-0.686718\pi\)
−0.553527 + 0.832831i \(0.686718\pi\)
\(164\) −1036.86 −0.493690
\(165\) −189.639 −0.0894751
\(166\) 168.564 0.0788138
\(167\) 381.558 0.176801 0.0884006 0.996085i \(-0.471824\pi\)
0.0884006 + 0.996085i \(0.471824\pi\)
\(168\) 105.572 0.0484826
\(169\) 538.070 0.244911
\(170\) 343.025 0.154758
\(171\) 432.437 0.193388
\(172\) −1716.92 −0.761128
\(173\) −2697.02 −1.18526 −0.592631 0.805474i \(-0.701911\pi\)
−0.592631 + 0.805474i \(0.701911\pi\)
\(174\) −345.052 −0.150335
\(175\) −821.791 −0.354981
\(176\) −835.506 −0.357833
\(177\) 2225.05 0.944888
\(178\) −641.742 −0.270228
\(179\) 30.7370 0.0128346 0.00641729 0.999979i \(-0.497957\pi\)
0.00641729 + 0.999979i \(0.497957\pi\)
\(180\) −347.853 −0.144041
\(181\) 159.556 0.0655231 0.0327615 0.999463i \(-0.489570\pi\)
0.0327615 + 0.999463i \(0.489570\pi\)
\(182\) 6818.22 2.77692
\(183\) 2274.88 0.918931
\(184\) 139.744 0.0559895
\(185\) 598.224 0.237742
\(186\) 2339.39 0.922216
\(187\) −218.689 −0.0855193
\(188\) −4398.73 −1.70644
\(189\) −887.535 −0.341580
\(190\) −952.831 −0.363819
\(191\) 96.7632 0.0366573 0.0183286 0.999832i \(-0.494165\pi\)
0.0183286 + 0.999832i \(0.494165\pi\)
\(192\) −1430.66 −0.537755
\(193\) 1017.92 0.379646 0.189823 0.981818i \(-0.439209\pi\)
0.189823 + 0.981818i \(0.439209\pi\)
\(194\) 509.671 0.188620
\(195\) 784.468 0.288087
\(196\) 5701.29 2.07773
\(197\) 5012.65 1.81288 0.906438 0.422339i \(-0.138791\pi\)
0.906438 + 0.422339i \(0.138791\pi\)
\(198\) 451.279 0.161975
\(199\) −4339.56 −1.54585 −0.772924 0.634499i \(-0.781206\pi\)
−0.772924 + 0.634499i \(0.781206\pi\)
\(200\) −26.7638 −0.00946242
\(201\) −224.125 −0.0786495
\(202\) −2320.07 −0.808116
\(203\) 953.278 0.329591
\(204\) −401.139 −0.137673
\(205\) 670.666 0.228494
\(206\) −7568.65 −2.55987
\(207\) −1174.81 −0.394469
\(208\) 3456.19 1.15213
\(209\) 607.460 0.201047
\(210\) 1955.59 0.642613
\(211\) −2360.56 −0.770180 −0.385090 0.922879i \(-0.625830\pi\)
−0.385090 + 0.922879i \(0.625830\pi\)
\(212\) 3041.51 0.985338
\(213\) −354.967 −0.114188
\(214\) 2565.82 0.819605
\(215\) 1110.55 0.352273
\(216\) −28.9049 −0.00910522
\(217\) −6463.04 −2.02184
\(218\) −4224.68 −1.31253
\(219\) −1495.20 −0.461352
\(220\) −488.642 −0.149746
\(221\) 904.636 0.275350
\(222\) −1423.58 −0.430379
\(223\) −6063.08 −1.82069 −0.910345 0.413851i \(-0.864184\pi\)
−0.910345 + 0.413851i \(0.864184\pi\)
\(224\) 8334.36 2.48600
\(225\) 225.000 0.0666667
\(226\) −5428.37 −1.59774
\(227\) 4428.61 1.29488 0.647438 0.762118i \(-0.275840\pi\)
0.647438 + 0.762118i \(0.275840\pi\)
\(228\) 1114.26 0.323656
\(229\) −4517.28 −1.30354 −0.651768 0.758418i \(-0.725973\pi\)
−0.651768 + 0.758418i \(0.725973\pi\)
\(230\) 2588.58 0.742112
\(231\) −1246.75 −0.355109
\(232\) 31.0460 0.00878564
\(233\) 4051.13 1.13905 0.569525 0.821974i \(-0.307127\pi\)
0.569525 + 0.821974i \(0.307127\pi\)
\(234\) −1866.78 −0.521517
\(235\) 2845.21 0.789791
\(236\) 5733.28 1.58138
\(237\) 318.097 0.0871841
\(238\) 2255.16 0.614202
\(239\) 837.357 0.226628 0.113314 0.993559i \(-0.463853\pi\)
0.113314 + 0.993559i \(0.463853\pi\)
\(240\) 991.298 0.266617
\(241\) −2011.23 −0.537571 −0.268785 0.963200i \(-0.586622\pi\)
−0.268785 + 0.963200i \(0.586622\pi\)
\(242\) −4644.97 −1.23384
\(243\) 243.000 0.0641500
\(244\) 5861.68 1.53793
\(245\) −3687.73 −0.961634
\(246\) −1595.96 −0.413638
\(247\) −2512.84 −0.647321
\(248\) −210.486 −0.0538946
\(249\) 127.503 0.0324505
\(250\) −495.764 −0.125420
\(251\) 6458.29 1.62408 0.812039 0.583603i \(-0.198358\pi\)
0.812039 + 0.583603i \(0.198358\pi\)
\(252\) −2286.90 −0.571672
\(253\) −1650.30 −0.410093
\(254\) 8401.49 2.07542
\(255\) 259.466 0.0637193
\(256\) 4358.26 1.06403
\(257\) 1838.15 0.446150 0.223075 0.974801i \(-0.428390\pi\)
0.223075 + 0.974801i \(0.428390\pi\)
\(258\) −2642.73 −0.637711
\(259\) 3932.92 0.943552
\(260\) 2021.33 0.482145
\(261\) −261.000 −0.0618984
\(262\) −9703.34 −2.28807
\(263\) 2263.00 0.530580 0.265290 0.964169i \(-0.414532\pi\)
0.265290 + 0.964169i \(0.414532\pi\)
\(264\) −40.6037 −0.00946585
\(265\) −1967.32 −0.456044
\(266\) −6264.23 −1.44393
\(267\) −485.419 −0.111263
\(268\) −577.501 −0.131629
\(269\) 632.951 0.143464 0.0717318 0.997424i \(-0.477147\pi\)
0.0717318 + 0.997424i \(0.477147\pi\)
\(270\) −535.426 −0.120685
\(271\) −987.158 −0.221275 −0.110638 0.993861i \(-0.535289\pi\)
−0.110638 + 0.993861i \(0.535289\pi\)
\(272\) 1143.15 0.254829
\(273\) 5157.36 1.14336
\(274\) 6291.99 1.38727
\(275\) 316.065 0.0693071
\(276\) −3027.13 −0.660187
\(277\) 8123.34 1.76204 0.881018 0.473083i \(-0.156859\pi\)
0.881018 + 0.473083i \(0.156859\pi\)
\(278\) 7112.53 1.53447
\(279\) 1769.53 0.379710
\(280\) −175.954 −0.0375545
\(281\) −5075.60 −1.07753 −0.538764 0.842457i \(-0.681108\pi\)
−0.538764 + 0.842457i \(0.681108\pi\)
\(282\) −6770.65 −1.42974
\(283\) −2077.30 −0.436335 −0.218168 0.975911i \(-0.570008\pi\)
−0.218168 + 0.975911i \(0.570008\pi\)
\(284\) −914.641 −0.191105
\(285\) −720.729 −0.149798
\(286\) −2622.32 −0.542172
\(287\) 4409.18 0.906849
\(288\) −2281.88 −0.466879
\(289\) −4613.79 −0.939098
\(290\) 575.087 0.116449
\(291\) 385.519 0.0776615
\(292\) −3852.66 −0.772123
\(293\) −4097.60 −0.817011 −0.408505 0.912756i \(-0.633950\pi\)
−0.408505 + 0.912756i \(0.633950\pi\)
\(294\) 8775.58 1.74082
\(295\) −3708.42 −0.731907
\(296\) 128.086 0.0251515
\(297\) 341.351 0.0666908
\(298\) −10470.8 −2.03542
\(299\) 6826.69 1.32039
\(300\) 579.756 0.111574
\(301\) 7301.10 1.39810
\(302\) 4492.78 0.856061
\(303\) −1754.92 −0.332731
\(304\) −3175.36 −0.599078
\(305\) −3791.47 −0.711801
\(306\) −617.444 −0.115349
\(307\) 2800.27 0.520586 0.260293 0.965530i \(-0.416181\pi\)
0.260293 + 0.965530i \(0.416181\pi\)
\(308\) −3212.49 −0.594314
\(309\) −5724.99 −1.05399
\(310\) −3898.98 −0.714345
\(311\) −1007.23 −0.183649 −0.0918247 0.995775i \(-0.529270\pi\)
−0.0918247 + 0.995775i \(0.529270\pi\)
\(312\) 167.963 0.0304776
\(313\) −8540.20 −1.54224 −0.771119 0.636691i \(-0.780303\pi\)
−0.771119 + 0.636691i \(0.780303\pi\)
\(314\) 3619.68 0.650543
\(315\) 1479.22 0.264587
\(316\) 819.639 0.145912
\(317\) −6756.75 −1.19715 −0.598575 0.801067i \(-0.704266\pi\)
−0.598575 + 0.801067i \(0.704266\pi\)
\(318\) 4681.57 0.825565
\(319\) −366.636 −0.0643500
\(320\) 2384.43 0.416543
\(321\) 1940.80 0.337461
\(322\) 17018.2 2.94530
\(323\) −831.133 −0.143175
\(324\) 626.136 0.107362
\(325\) −1307.45 −0.223151
\(326\) −9137.25 −1.55235
\(327\) −3195.58 −0.540416
\(328\) 143.596 0.0241731
\(329\) 18705.3 3.13453
\(330\) −752.131 −0.125465
\(331\) −2186.58 −0.363097 −0.181548 0.983382i \(-0.558111\pi\)
−0.181548 + 0.983382i \(0.558111\pi\)
\(332\) 328.536 0.0543095
\(333\) −1076.80 −0.177203
\(334\) 1513.30 0.247917
\(335\) 373.542 0.0609217
\(336\) 6517.12 1.05815
\(337\) 5592.65 0.904010 0.452005 0.892016i \(-0.350709\pi\)
0.452005 + 0.892016i \(0.350709\pi\)
\(338\) 2134.05 0.343423
\(339\) −4106.06 −0.657848
\(340\) 668.565 0.106641
\(341\) 2485.72 0.394749
\(342\) 1715.10 0.271175
\(343\) −12969.4 −2.04163
\(344\) 237.779 0.0372680
\(345\) 1958.02 0.305554
\(346\) −10696.7 −1.66201
\(347\) 3744.53 0.579300 0.289650 0.957133i \(-0.406461\pi\)
0.289650 + 0.957133i \(0.406461\pi\)
\(348\) −672.517 −0.103594
\(349\) −11200.7 −1.71794 −0.858970 0.512025i \(-0.828895\pi\)
−0.858970 + 0.512025i \(0.828895\pi\)
\(350\) −3259.32 −0.497766
\(351\) −1412.04 −0.214727
\(352\) −3205.44 −0.485371
\(353\) 1695.02 0.255572 0.127786 0.991802i \(-0.459213\pi\)
0.127786 + 0.991802i \(0.459213\pi\)
\(354\) 8824.82 1.32495
\(355\) 591.612 0.0884493
\(356\) −1250.77 −0.186210
\(357\) 1705.82 0.252889
\(358\) 121.907 0.0179971
\(359\) −331.341 −0.0487117 −0.0243559 0.999703i \(-0.507753\pi\)
−0.0243559 + 0.999703i \(0.507753\pi\)
\(360\) 48.1748 0.00705287
\(361\) −4550.33 −0.663411
\(362\) 632.816 0.0918787
\(363\) −3513.49 −0.508018
\(364\) 13288.9 1.91354
\(365\) 2491.99 0.357361
\(366\) 9022.46 1.28856
\(367\) −11394.1 −1.62061 −0.810306 0.586006i \(-0.800699\pi\)
−0.810306 + 0.586006i \(0.800699\pi\)
\(368\) 8626.58 1.22199
\(369\) −1207.20 −0.170310
\(370\) 2372.63 0.333370
\(371\) −12933.8 −1.80995
\(372\) 4559.53 0.635486
\(373\) 6042.53 0.838794 0.419397 0.907803i \(-0.362241\pi\)
0.419397 + 0.907803i \(0.362241\pi\)
\(374\) −867.345 −0.119918
\(375\) −375.000 −0.0516398
\(376\) 609.188 0.0835544
\(377\) 1516.64 0.207191
\(378\) −3520.07 −0.478975
\(379\) 3446.58 0.467121 0.233560 0.972342i \(-0.424962\pi\)
0.233560 + 0.972342i \(0.424962\pi\)
\(380\) −1857.10 −0.250703
\(381\) 6354.95 0.854525
\(382\) 383.774 0.0514021
\(383\) 6068.80 0.809664 0.404832 0.914391i \(-0.367330\pi\)
0.404832 + 0.914391i \(0.367330\pi\)
\(384\) 410.858 0.0546002
\(385\) 2077.92 0.275066
\(386\) 4037.20 0.532352
\(387\) −1998.98 −0.262568
\(388\) 993.363 0.129975
\(389\) −4788.36 −0.624112 −0.312056 0.950064i \(-0.601018\pi\)
−0.312056 + 0.950064i \(0.601018\pi\)
\(390\) 3111.29 0.403965
\(391\) 2257.96 0.292046
\(392\) −789.580 −0.101734
\(393\) −7339.68 −0.942081
\(394\) 19880.8 2.54208
\(395\) −530.162 −0.0675325
\(396\) 879.555 0.111614
\(397\) 206.388 0.0260914 0.0130457 0.999915i \(-0.495847\pi\)
0.0130457 + 0.999915i \(0.495847\pi\)
\(398\) −17211.2 −2.16764
\(399\) −4738.31 −0.594517
\(400\) −1652.16 −0.206520
\(401\) −10080.5 −1.25535 −0.627675 0.778475i \(-0.715993\pi\)
−0.627675 + 0.778475i \(0.715993\pi\)
\(402\) −888.906 −0.110285
\(403\) −10282.5 −1.27099
\(404\) −4521.88 −0.556862
\(405\) −405.000 −0.0496904
\(406\) 3780.81 0.462164
\(407\) −1512.62 −0.184221
\(408\) 55.5544 0.00674106
\(409\) 15178.0 1.83497 0.917486 0.397769i \(-0.130215\pi\)
0.917486 + 0.397769i \(0.130215\pi\)
\(410\) 2659.94 0.320403
\(411\) 4759.31 0.571190
\(412\) −14751.5 −1.76397
\(413\) −24380.4 −2.90480
\(414\) −4659.44 −0.553138
\(415\) −212.505 −0.0251360
\(416\) 13259.7 1.56277
\(417\) 5379.97 0.631795
\(418\) 2409.26 0.281915
\(419\) −6104.30 −0.711729 −0.355864 0.934538i \(-0.615814\pi\)
−0.355864 + 0.934538i \(0.615814\pi\)
\(420\) 3811.51 0.442815
\(421\) 8543.56 0.989045 0.494522 0.869165i \(-0.335343\pi\)
0.494522 + 0.869165i \(0.335343\pi\)
\(422\) −9362.27 −1.07997
\(423\) −5121.37 −0.588675
\(424\) −421.223 −0.0482463
\(425\) −432.444 −0.0493567
\(426\) −1407.84 −0.160118
\(427\) −24926.4 −2.82500
\(428\) 5000.85 0.564778
\(429\) −1983.55 −0.223232
\(430\) 4404.55 0.493968
\(431\) −7712.54 −0.861949 −0.430975 0.902364i \(-0.641830\pi\)
−0.430975 + 0.902364i \(0.641830\pi\)
\(432\) −1784.34 −0.198724
\(433\) −13294.5 −1.47551 −0.737753 0.675071i \(-0.764113\pi\)
−0.737753 + 0.675071i \(0.764113\pi\)
\(434\) −25633.2 −2.83510
\(435\) 435.000 0.0479463
\(436\) −8234.03 −0.904446
\(437\) −6272.01 −0.686569
\(438\) −5930.12 −0.646923
\(439\) −18032.6 −1.96048 −0.980239 0.197816i \(-0.936615\pi\)
−0.980239 + 0.197816i \(0.936615\pi\)
\(440\) 67.6728 0.00733221
\(441\) 6637.91 0.716760
\(442\) 3587.89 0.386106
\(443\) 16475.7 1.76700 0.883502 0.468427i \(-0.155179\pi\)
0.883502 + 0.468427i \(0.155179\pi\)
\(444\) −2774.59 −0.296568
\(445\) 809.031 0.0861837
\(446\) −24046.9 −2.55303
\(447\) −7920.16 −0.838055
\(448\) 15676.1 1.65318
\(449\) −2651.74 −0.278716 −0.139358 0.990242i \(-0.544504\pi\)
−0.139358 + 0.990242i \(0.544504\pi\)
\(450\) 892.376 0.0934822
\(451\) −1695.79 −0.177055
\(452\) −10580.0 −1.10098
\(453\) 3398.37 0.352471
\(454\) 17564.4 1.81572
\(455\) −8595.59 −0.885643
\(456\) −154.315 −0.0158475
\(457\) −582.597 −0.0596340 −0.0298170 0.999555i \(-0.509492\pi\)
−0.0298170 + 0.999555i \(0.509492\pi\)
\(458\) −17916.0 −1.82786
\(459\) −467.040 −0.0474935
\(460\) 5045.21 0.511379
\(461\) −6537.72 −0.660504 −0.330252 0.943893i \(-0.607134\pi\)
−0.330252 + 0.943893i \(0.607134\pi\)
\(462\) −4944.76 −0.497946
\(463\) −11895.3 −1.19400 −0.596998 0.802243i \(-0.703640\pi\)
−0.596998 + 0.802243i \(0.703640\pi\)
\(464\) 1916.51 0.191749
\(465\) −2949.22 −0.294122
\(466\) 16067.3 1.59721
\(467\) −14742.5 −1.46081 −0.730406 0.683013i \(-0.760669\pi\)
−0.730406 + 0.683013i \(0.760669\pi\)
\(468\) −3638.40 −0.359370
\(469\) 2455.79 0.241786
\(470\) 11284.4 1.10747
\(471\) 2737.96 0.267852
\(472\) −794.011 −0.0774307
\(473\) −2808.04 −0.272968
\(474\) 1261.61 0.122253
\(475\) 1201.21 0.116033
\(476\) 4395.37 0.423238
\(477\) 3541.18 0.339915
\(478\) 3321.06 0.317786
\(479\) 5864.41 0.559398 0.279699 0.960088i \(-0.409765\pi\)
0.279699 + 0.960088i \(0.409765\pi\)
\(480\) 3803.14 0.361643
\(481\) 6257.17 0.593144
\(482\) −7976.76 −0.753800
\(483\) 12872.7 1.21269
\(484\) −9053.19 −0.850224
\(485\) −642.531 −0.0601564
\(486\) 963.766 0.0899533
\(487\) −15495.7 −1.44184 −0.720920 0.693018i \(-0.756281\pi\)
−0.720920 + 0.693018i \(0.756281\pi\)
\(488\) −811.793 −0.0753036
\(489\) −6911.49 −0.639158
\(490\) −14626.0 −1.34844
\(491\) 951.715 0.0874751 0.0437376 0.999043i \(-0.486073\pi\)
0.0437376 + 0.999043i \(0.486073\pi\)
\(492\) −3110.58 −0.285032
\(493\) 501.635 0.0458266
\(494\) −9966.22 −0.907695
\(495\) −568.918 −0.0516585
\(496\) −12993.6 −1.17627
\(497\) 3889.45 0.351038
\(498\) 505.692 0.0455032
\(499\) 12667.6 1.13643 0.568216 0.822880i \(-0.307634\pi\)
0.568216 + 0.822880i \(0.307634\pi\)
\(500\) −966.259 −0.0864249
\(501\) 1144.67 0.102076
\(502\) 25614.3 2.27734
\(503\) 17478.7 1.54938 0.774690 0.632341i \(-0.217906\pi\)
0.774690 + 0.632341i \(0.217906\pi\)
\(504\) 316.717 0.0279915
\(505\) 2924.86 0.257732
\(506\) −6545.28 −0.575046
\(507\) 1614.21 0.141399
\(508\) 16374.8 1.43014
\(509\) 11463.1 0.998219 0.499110 0.866539i \(-0.333661\pi\)
0.499110 + 0.866539i \(0.333661\pi\)
\(510\) 1029.07 0.0893493
\(511\) 16383.2 1.41830
\(512\) 16189.8 1.39745
\(513\) 1297.31 0.111652
\(514\) 7290.32 0.625607
\(515\) 9541.64 0.816418
\(516\) −5150.76 −0.439437
\(517\) −7194.17 −0.611991
\(518\) 15598.4 1.32308
\(519\) −8091.05 −0.684312
\(520\) −279.938 −0.0236079
\(521\) 13465.1 1.13228 0.566141 0.824309i \(-0.308436\pi\)
0.566141 + 0.824309i \(0.308436\pi\)
\(522\) −1035.16 −0.0867961
\(523\) 19829.8 1.65793 0.828963 0.559303i \(-0.188931\pi\)
0.828963 + 0.559303i \(0.188931\pi\)
\(524\) −18912.1 −1.57668
\(525\) −2465.37 −0.204948
\(526\) 8975.32 0.743997
\(527\) −3400.99 −0.281118
\(528\) −2506.52 −0.206595
\(529\) 4872.30 0.400452
\(530\) −7802.62 −0.639480
\(531\) 6675.16 0.545532
\(532\) −12209.2 −0.994990
\(533\) 7014.89 0.570072
\(534\) −1925.23 −0.156016
\(535\) −3234.67 −0.261396
\(536\) 79.9790 0.00644509
\(537\) 92.2110 0.00741005
\(538\) 2510.36 0.201170
\(539\) 9324.51 0.745148
\(540\) −1043.56 −0.0831624
\(541\) −8464.80 −0.672699 −0.336349 0.941737i \(-0.609192\pi\)
−0.336349 + 0.941737i \(0.609192\pi\)
\(542\) −3915.18 −0.310280
\(543\) 478.667 0.0378298
\(544\) 4385.72 0.345654
\(545\) 5325.97 0.418605
\(546\) 20454.7 1.60326
\(547\) 7649.90 0.597964 0.298982 0.954259i \(-0.403353\pi\)
0.298982 + 0.954259i \(0.403353\pi\)
\(548\) 12263.3 0.955950
\(549\) 6824.65 0.530545
\(550\) 1253.55 0.0971848
\(551\) −1393.41 −0.107734
\(552\) 419.232 0.0323255
\(553\) −3485.46 −0.268023
\(554\) 32218.1 2.47079
\(555\) 1794.67 0.137261
\(556\) 13862.5 1.05738
\(557\) 6293.95 0.478785 0.239393 0.970923i \(-0.423052\pi\)
0.239393 + 0.970923i \(0.423052\pi\)
\(558\) 7018.16 0.532442
\(559\) 11615.8 0.878887
\(560\) −10861.9 −0.819639
\(561\) −656.067 −0.0493746
\(562\) −20130.4 −1.51095
\(563\) −4688.80 −0.350993 −0.175497 0.984480i \(-0.556153\pi\)
−0.175497 + 0.984480i \(0.556153\pi\)
\(564\) −13196.2 −0.985213
\(565\) 6843.43 0.509567
\(566\) −8238.83 −0.611844
\(567\) −2662.60 −0.197211
\(568\) 126.670 0.00935732
\(569\) −20371.9 −1.50094 −0.750470 0.660904i \(-0.770173\pi\)
−0.750470 + 0.660904i \(0.770173\pi\)
\(570\) −2858.49 −0.210051
\(571\) −5658.25 −0.414694 −0.207347 0.978267i \(-0.566483\pi\)
−0.207347 + 0.978267i \(0.566483\pi\)
\(572\) −5110.99 −0.373603
\(573\) 290.290 0.0211641
\(574\) 17487.3 1.27161
\(575\) −3263.37 −0.236681
\(576\) −4291.98 −0.310473
\(577\) 809.648 0.0584161 0.0292081 0.999573i \(-0.490701\pi\)
0.0292081 + 0.999573i \(0.490701\pi\)
\(578\) −18298.8 −1.31683
\(579\) 3053.77 0.219189
\(580\) 1120.86 0.0802435
\(581\) −1397.08 −0.0997600
\(582\) 1529.01 0.108900
\(583\) 4974.42 0.353378
\(584\) 533.561 0.0378064
\(585\) 2353.41 0.166327
\(586\) −16251.5 −1.14564
\(587\) 9794.78 0.688712 0.344356 0.938839i \(-0.388097\pi\)
0.344356 + 0.938839i \(0.388097\pi\)
\(588\) 17103.9 1.19958
\(589\) 9447.05 0.660881
\(590\) −14708.0 −1.02631
\(591\) 15038.0 1.04666
\(592\) 7906.91 0.548939
\(593\) −19668.3 −1.36202 −0.681011 0.732273i \(-0.738459\pi\)
−0.681011 + 0.732273i \(0.738459\pi\)
\(594\) 1353.84 0.0935161
\(595\) −2843.03 −0.195887
\(596\) −20407.8 −1.40258
\(597\) −13018.7 −0.892495
\(598\) 27075.4 1.85150
\(599\) 3461.98 0.236148 0.118074 0.993005i \(-0.462328\pi\)
0.118074 + 0.993005i \(0.462328\pi\)
\(600\) −80.2913 −0.00546313
\(601\) 1598.93 0.108522 0.0542611 0.998527i \(-0.482720\pi\)
0.0542611 + 0.998527i \(0.482720\pi\)
\(602\) 28957.0 1.96046
\(603\) −672.375 −0.0454083
\(604\) 8756.56 0.589900
\(605\) 5855.82 0.393509
\(606\) −6960.21 −0.466566
\(607\) −9756.63 −0.652405 −0.326202 0.945300i \(-0.605769\pi\)
−0.326202 + 0.945300i \(0.605769\pi\)
\(608\) −12182.4 −0.812598
\(609\) 2859.83 0.190290
\(610\) −15037.4 −0.998111
\(611\) 29759.7 1.97045
\(612\) −1203.42 −0.0794857
\(613\) −1209.23 −0.0796744 −0.0398372 0.999206i \(-0.512684\pi\)
−0.0398372 + 0.999206i \(0.512684\pi\)
\(614\) 11106.2 0.729984
\(615\) 2012.00 0.131921
\(616\) 444.903 0.0291001
\(617\) 12543.6 0.818456 0.409228 0.912432i \(-0.365798\pi\)
0.409228 + 0.912432i \(0.365798\pi\)
\(618\) −22706.0 −1.47794
\(619\) 11124.6 0.722353 0.361176 0.932498i \(-0.382375\pi\)
0.361176 + 0.932498i \(0.382375\pi\)
\(620\) −7599.22 −0.492245
\(621\) −3524.44 −0.227747
\(622\) −3994.80 −0.257519
\(623\) 5318.84 0.342046
\(624\) 10368.6 0.665184
\(625\) 625.000 0.0400000
\(626\) −33871.4 −2.16258
\(627\) 1822.38 0.116075
\(628\) 7054.87 0.448280
\(629\) 2069.59 0.131192
\(630\) 5866.78 0.371013
\(631\) 5229.61 0.329932 0.164966 0.986299i \(-0.447249\pi\)
0.164966 + 0.986299i \(0.447249\pi\)
\(632\) −113.513 −0.00714447
\(633\) −7081.69 −0.444663
\(634\) −26798.0 −1.67868
\(635\) −10591.6 −0.661912
\(636\) 9124.53 0.568885
\(637\) −38572.1 −2.39919
\(638\) −1454.12 −0.0902338
\(639\) −1064.90 −0.0659262
\(640\) −684.763 −0.0422931
\(641\) 8390.44 0.517008 0.258504 0.966010i \(-0.416770\pi\)
0.258504 + 0.966010i \(0.416770\pi\)
\(642\) 7697.45 0.473199
\(643\) 25647.2 1.57298 0.786490 0.617602i \(-0.211896\pi\)
0.786490 + 0.617602i \(0.211896\pi\)
\(644\) 33168.9 2.02956
\(645\) 3331.64 0.203385
\(646\) −3296.37 −0.200765
\(647\) 24363.6 1.48042 0.740210 0.672376i \(-0.234726\pi\)
0.740210 + 0.672376i \(0.234726\pi\)
\(648\) −86.7146 −0.00525690
\(649\) 9376.83 0.567138
\(650\) −5185.49 −0.312910
\(651\) −19389.1 −1.16731
\(652\) −17808.8 −1.06970
\(653\) −20699.7 −1.24049 −0.620246 0.784407i \(-0.712967\pi\)
−0.620246 + 0.784407i \(0.712967\pi\)
\(654\) −12674.1 −0.757790
\(655\) 12232.8 0.729733
\(656\) 8864.40 0.527586
\(657\) −4485.59 −0.266361
\(658\) 74187.5 4.39534
\(659\) 18977.9 1.12181 0.560905 0.827880i \(-0.310453\pi\)
0.560905 + 0.827880i \(0.310453\pi\)
\(660\) −1465.93 −0.0864562
\(661\) 19769.9 1.16333 0.581665 0.813428i \(-0.302401\pi\)
0.581665 + 0.813428i \(0.302401\pi\)
\(662\) −8672.21 −0.509147
\(663\) 2713.91 0.158974
\(664\) −45.4995 −0.00265922
\(665\) 7897.18 0.460511
\(666\) −4270.73 −0.248479
\(667\) 3785.51 0.219753
\(668\) 2949.47 0.170836
\(669\) −18189.2 −1.05118
\(670\) 1481.51 0.0854264
\(671\) 9586.83 0.551558
\(672\) 25003.1 1.43529
\(673\) 5776.20 0.330841 0.165420 0.986223i \(-0.447102\pi\)
0.165420 + 0.986223i \(0.447102\pi\)
\(674\) 22181.1 1.26763
\(675\) 675.000 0.0384900
\(676\) 4159.32 0.236648
\(677\) 20304.8 1.15270 0.576349 0.817203i \(-0.304477\pi\)
0.576349 + 0.817203i \(0.304477\pi\)
\(678\) −16285.1 −0.922456
\(679\) −4224.21 −0.238749
\(680\) −92.5907 −0.00522160
\(681\) 13285.8 0.747598
\(682\) 9858.65 0.553530
\(683\) 2014.43 0.112855 0.0564276 0.998407i \(-0.482029\pi\)
0.0564276 + 0.998407i \(0.482029\pi\)
\(684\) 3342.77 0.186863
\(685\) −7932.18 −0.442442
\(686\) −51438.1 −2.86285
\(687\) −13551.8 −0.752597
\(688\) 14678.4 0.813386
\(689\) −20577.4 −1.13779
\(690\) 7765.73 0.428459
\(691\) −25073.6 −1.38038 −0.690190 0.723628i \(-0.742473\pi\)
−0.690190 + 0.723628i \(0.742473\pi\)
\(692\) −20848.1 −1.14527
\(693\) −3740.25 −0.205022
\(694\) 14851.2 0.812314
\(695\) −8966.62 −0.489386
\(696\) 93.1379 0.00507239
\(697\) 2320.20 0.126089
\(698\) −44423.4 −2.40895
\(699\) 12153.4 0.657631
\(700\) −6352.51 −0.343003
\(701\) −507.308 −0.0273335 −0.0136667 0.999907i \(-0.504350\pi\)
−0.0136667 + 0.999907i \(0.504350\pi\)
\(702\) −5600.33 −0.301098
\(703\) −5748.76 −0.308419
\(704\) −6029.09 −0.322770
\(705\) 8535.62 0.455986
\(706\) 6722.65 0.358372
\(707\) 19229.0 1.02289
\(708\) 17199.8 0.913007
\(709\) −24972.7 −1.32280 −0.661402 0.750032i \(-0.730038\pi\)
−0.661402 + 0.750032i \(0.730038\pi\)
\(710\) 2346.40 0.124027
\(711\) 954.292 0.0503358
\(712\) 173.222 0.00911764
\(713\) −25665.0 −1.34805
\(714\) 6765.47 0.354610
\(715\) 3305.91 0.172915
\(716\) 237.599 0.0124015
\(717\) 2512.07 0.130844
\(718\) −1314.14 −0.0683052
\(719\) 13494.0 0.699917 0.349958 0.936765i \(-0.386196\pi\)
0.349958 + 0.936765i \(0.386196\pi\)
\(720\) 2973.89 0.153931
\(721\) 62729.9 3.24020
\(722\) −18047.1 −0.930257
\(723\) −6033.68 −0.310367
\(724\) 1233.38 0.0633123
\(725\) −725.000 −0.0371391
\(726\) −13934.9 −0.712360
\(727\) 5717.08 0.291657 0.145829 0.989310i \(-0.453415\pi\)
0.145829 + 0.989310i \(0.453415\pi\)
\(728\) −1840.40 −0.0936949
\(729\) 729.000 0.0370370
\(730\) 9883.53 0.501104
\(731\) 3841.99 0.194393
\(732\) 17585.0 0.887925
\(733\) 10147.2 0.511318 0.255659 0.966767i \(-0.417708\pi\)
0.255659 + 0.966767i \(0.417708\pi\)
\(734\) −45190.1 −2.27248
\(735\) −11063.2 −0.555200
\(736\) 33096.1 1.65752
\(737\) −944.508 −0.0472068
\(738\) −4787.89 −0.238814
\(739\) 39280.9 1.95531 0.977654 0.210222i \(-0.0674187\pi\)
0.977654 + 0.210222i \(0.0674187\pi\)
\(740\) 4624.32 0.229721
\(741\) −7538.52 −0.373731
\(742\) −51297.0 −2.53797
\(743\) 27166.1 1.34136 0.670679 0.741748i \(-0.266003\pi\)
0.670679 + 0.741748i \(0.266003\pi\)
\(744\) −631.457 −0.0311161
\(745\) 13200.3 0.649155
\(746\) 23965.4 1.17619
\(747\) 382.509 0.0187353
\(748\) −1690.48 −0.0826339
\(749\) −21265.8 −1.03743
\(750\) −1487.29 −0.0724110
\(751\) −2310.40 −0.112261 −0.0561303 0.998423i \(-0.517876\pi\)
−0.0561303 + 0.998423i \(0.517876\pi\)
\(752\) 37606.0 1.82360
\(753\) 19374.9 0.937662
\(754\) 6015.17 0.290530
\(755\) −5663.95 −0.273023
\(756\) −6860.71 −0.330055
\(757\) 28647.5 1.37545 0.687723 0.725973i \(-0.258610\pi\)
0.687723 + 0.725973i \(0.258610\pi\)
\(758\) 13669.5 0.655012
\(759\) −4950.90 −0.236767
\(760\) 257.192 0.0122755
\(761\) −28161.6 −1.34147 −0.670733 0.741699i \(-0.734020\pi\)
−0.670733 + 0.741699i \(0.734020\pi\)
\(762\) 25204.5 1.19824
\(763\) 35014.7 1.66136
\(764\) 747.987 0.0354205
\(765\) 778.399 0.0367883
\(766\) 24069.6 1.13534
\(767\) −38788.5 −1.82604
\(768\) 13074.8 0.614317
\(769\) −12197.5 −0.571981 −0.285990 0.958233i \(-0.592323\pi\)
−0.285990 + 0.958233i \(0.592323\pi\)
\(770\) 8241.26 0.385707
\(771\) 5514.45 0.257585
\(772\) 7868.62 0.366837
\(773\) 21367.3 0.994216 0.497108 0.867689i \(-0.334395\pi\)
0.497108 + 0.867689i \(0.334395\pi\)
\(774\) −7928.20 −0.368182
\(775\) 4915.36 0.227826
\(776\) −137.572 −0.00636413
\(777\) 11798.8 0.544760
\(778\) −18991.2 −0.875151
\(779\) −6444.91 −0.296422
\(780\) 6064.00 0.278367
\(781\) −1495.90 −0.0685373
\(782\) 8955.32 0.409516
\(783\) −783.000 −0.0357371
\(784\) −48741.9 −2.22038
\(785\) −4563.26 −0.207477
\(786\) −29110.0 −1.32102
\(787\) −20891.1 −0.946236 −0.473118 0.880999i \(-0.656872\pi\)
−0.473118 + 0.880999i \(0.656872\pi\)
\(788\) 38748.2 1.75171
\(789\) 6789.00 0.306331
\(790\) −2102.68 −0.0946964
\(791\) 44991.0 2.02237
\(792\) −121.811 −0.00546511
\(793\) −39657.2 −1.77588
\(794\) 818.557 0.0365863
\(795\) −5901.96 −0.263297
\(796\) −33545.2 −1.49369
\(797\) −12968.8 −0.576386 −0.288193 0.957572i \(-0.593054\pi\)
−0.288193 + 0.957572i \(0.593054\pi\)
\(798\) −18792.7 −0.833652
\(799\) 9843.14 0.435827
\(800\) −6338.56 −0.280127
\(801\) −1456.26 −0.0642376
\(802\) −39980.4 −1.76029
\(803\) −6301.06 −0.276911
\(804\) −1732.50 −0.0759959
\(805\) −21454.5 −0.939342
\(806\) −40781.7 −1.78222
\(807\) 1898.85 0.0828288
\(808\) 626.243 0.0272663
\(809\) −13867.9 −0.602683 −0.301342 0.953516i \(-0.597434\pi\)
−0.301342 + 0.953516i \(0.597434\pi\)
\(810\) −1606.28 −0.0696776
\(811\) −32657.3 −1.41400 −0.707000 0.707213i \(-0.749952\pi\)
−0.707000 + 0.707213i \(0.749952\pi\)
\(812\) 7368.91 0.318471
\(813\) −2961.47 −0.127753
\(814\) −5999.24 −0.258321
\(815\) 11519.1 0.495090
\(816\) 3429.45 0.147126
\(817\) −10672.0 −0.456998
\(818\) 60197.7 2.57306
\(819\) 15472.1 0.660119
\(820\) 5184.30 0.220785
\(821\) 13615.5 0.578788 0.289394 0.957210i \(-0.406546\pi\)
0.289394 + 0.957210i \(0.406546\pi\)
\(822\) 18876.0 0.800942
\(823\) −13661.8 −0.578640 −0.289320 0.957232i \(-0.593429\pi\)
−0.289320 + 0.957232i \(0.593429\pi\)
\(824\) 2042.96 0.0863713
\(825\) 948.196 0.0400145
\(826\) −96695.5 −4.07320
\(827\) 31693.6 1.33264 0.666320 0.745666i \(-0.267869\pi\)
0.666320 + 0.745666i \(0.267869\pi\)
\(828\) −9081.39 −0.381159
\(829\) −18908.6 −0.792185 −0.396093 0.918211i \(-0.629634\pi\)
−0.396093 + 0.918211i \(0.629634\pi\)
\(830\) −842.819 −0.0352466
\(831\) 24370.0 1.01731
\(832\) 24940.2 1.03924
\(833\) −12757.9 −0.530654
\(834\) 21337.6 0.885924
\(835\) −1907.79 −0.0790679
\(836\) 4695.71 0.194264
\(837\) 5308.59 0.219225
\(838\) −24210.3 −0.998010
\(839\) 29382.9 1.20907 0.604534 0.796579i \(-0.293359\pi\)
0.604534 + 0.796579i \(0.293359\pi\)
\(840\) −527.862 −0.0216821
\(841\) 841.000 0.0344828
\(842\) 33884.8 1.38687
\(843\) −15226.8 −0.622111
\(844\) −18247.3 −0.744193
\(845\) −2690.35 −0.109528
\(846\) −20312.0 −0.825461
\(847\) 38498.1 1.56176
\(848\) −26002.7 −1.05299
\(849\) −6231.91 −0.251918
\(850\) −1715.12 −0.0692097
\(851\) 15617.8 0.629108
\(852\) −2743.92 −0.110335
\(853\) 421.011 0.0168994 0.00844968 0.999964i \(-0.497310\pi\)
0.00844968 + 0.999964i \(0.497310\pi\)
\(854\) −98861.0 −3.96131
\(855\) −2162.19 −0.0864856
\(856\) −692.576 −0.0276539
\(857\) −41115.0 −1.63881 −0.819405 0.573215i \(-0.805696\pi\)
−0.819405 + 0.573215i \(0.805696\pi\)
\(858\) −7866.97 −0.313023
\(859\) −578.823 −0.0229909 −0.0114954 0.999934i \(-0.503659\pi\)
−0.0114954 + 0.999934i \(0.503659\pi\)
\(860\) 8584.60 0.340387
\(861\) 13227.5 0.523570
\(862\) −30588.8 −1.20865
\(863\) −30773.6 −1.21384 −0.606921 0.794762i \(-0.707596\pi\)
−0.606921 + 0.794762i \(0.707596\pi\)
\(864\) −6845.65 −0.269553
\(865\) 13485.1 0.530065
\(866\) −52727.6 −2.06900
\(867\) −13841.4 −0.542188
\(868\) −49959.8 −1.95362
\(869\) 1340.53 0.0523294
\(870\) 1725.26 0.0672320
\(871\) 3907.09 0.151994
\(872\) 1140.34 0.0442855
\(873\) 1156.56 0.0448379
\(874\) −24875.5 −0.962731
\(875\) 4108.96 0.158752
\(876\) −11558.0 −0.445785
\(877\) −21118.7 −0.813146 −0.406573 0.913618i \(-0.633276\pi\)
−0.406573 + 0.913618i \(0.633276\pi\)
\(878\) −71519.5 −2.74905
\(879\) −12292.8 −0.471701
\(880\) 4177.53 0.160028
\(881\) −42520.5 −1.62605 −0.813026 0.582228i \(-0.802181\pi\)
−0.813026 + 0.582228i \(0.802181\pi\)
\(882\) 26326.7 1.00506
\(883\) 25473.5 0.970840 0.485420 0.874281i \(-0.338667\pi\)
0.485420 + 0.874281i \(0.338667\pi\)
\(884\) 6992.91 0.266060
\(885\) −11125.3 −0.422567
\(886\) 65344.5 2.47775
\(887\) 36451.4 1.37984 0.689920 0.723885i \(-0.257646\pi\)
0.689920 + 0.723885i \(0.257646\pi\)
\(888\) 384.258 0.0145212
\(889\) −69632.6 −2.62700
\(890\) 3208.71 0.120850
\(891\) 1024.05 0.0385039
\(892\) −46868.1 −1.75926
\(893\) −27341.6 −1.02458
\(894\) −31412.3 −1.17515
\(895\) −153.685 −0.00573980
\(896\) −4501.86 −0.167853
\(897\) 20480.1 0.762329
\(898\) −10517.1 −0.390825
\(899\) −5701.82 −0.211531
\(900\) 1739.27 0.0644173
\(901\) −6806.05 −0.251656
\(902\) −6725.72 −0.248273
\(903\) 21903.3 0.807194
\(904\) 1465.25 0.0539086
\(905\) −797.778 −0.0293028
\(906\) 13478.3 0.494247
\(907\) 36563.0 1.33854 0.669270 0.743020i \(-0.266607\pi\)
0.669270 + 0.743020i \(0.266607\pi\)
\(908\) 34233.5 1.25119
\(909\) −5264.75 −0.192102
\(910\) −34091.1 −1.24188
\(911\) 25321.6 0.920902 0.460451 0.887685i \(-0.347688\pi\)
0.460451 + 0.887685i \(0.347688\pi\)
\(912\) −9526.09 −0.345878
\(913\) 537.324 0.0194773
\(914\) −2310.65 −0.0836208
\(915\) −11374.4 −0.410958
\(916\) −34918.9 −1.25955
\(917\) 80422.5 2.89617
\(918\) −1852.33 −0.0665971
\(919\) 16527.1 0.593230 0.296615 0.954997i \(-0.404142\pi\)
0.296615 + 0.954997i \(0.404142\pi\)
\(920\) −698.720 −0.0250393
\(921\) 8400.82 0.300561
\(922\) −25929.4 −0.926181
\(923\) 6188.01 0.220673
\(924\) −9637.48 −0.343127
\(925\) −2991.12 −0.106322
\(926\) −47178.0 −1.67426
\(927\) −17175.0 −0.608522
\(928\) 7352.73 0.260092
\(929\) −32080.4 −1.13297 −0.566483 0.824073i \(-0.691696\pi\)
−0.566483 + 0.824073i \(0.691696\pi\)
\(930\) −11696.9 −0.412428
\(931\) 35438.0 1.24751
\(932\) 31315.6 1.10062
\(933\) −3021.70 −0.106030
\(934\) −58470.3 −2.04840
\(935\) 1093.44 0.0382454
\(936\) 503.888 0.0175963
\(937\) 31282.2 1.09066 0.545328 0.838223i \(-0.316405\pi\)
0.545328 + 0.838223i \(0.316405\pi\)
\(938\) 9739.93 0.339041
\(939\) −25620.6 −0.890411
\(940\) 21993.7 0.763143
\(941\) 23786.8 0.824047 0.412024 0.911173i \(-0.364822\pi\)
0.412024 + 0.911173i \(0.364822\pi\)
\(942\) 10859.0 0.375591
\(943\) 17509.0 0.604637
\(944\) −49015.4 −1.68995
\(945\) 4437.67 0.152759
\(946\) −11137.0 −0.382765
\(947\) 38442.2 1.31912 0.659558 0.751654i \(-0.270744\pi\)
0.659558 + 0.751654i \(0.270744\pi\)
\(948\) 2458.92 0.0842425
\(949\) 26065.2 0.891583
\(950\) 4764.16 0.162705
\(951\) −20270.2 −0.691175
\(952\) −608.722 −0.0207235
\(953\) 41175.0 1.39957 0.699784 0.714355i \(-0.253280\pi\)
0.699784 + 0.714355i \(0.253280\pi\)
\(954\) 14044.7 0.476640
\(955\) −483.816 −0.0163936
\(956\) 6472.84 0.218982
\(957\) −1099.91 −0.0371525
\(958\) 23258.9 0.784407
\(959\) −52148.8 −1.75597
\(960\) 7153.30 0.240491
\(961\) 8866.24 0.297615
\(962\) 24816.7 0.831727
\(963\) 5822.41 0.194833
\(964\) −15546.9 −0.519433
\(965\) −5089.61 −0.169783
\(966\) 51054.5 1.70047
\(967\) 20553.4 0.683508 0.341754 0.939790i \(-0.388979\pi\)
0.341754 + 0.939790i \(0.388979\pi\)
\(968\) 1253.79 0.0416305
\(969\) −2493.40 −0.0826620
\(970\) −2548.35 −0.0843533
\(971\) 7678.14 0.253762 0.126881 0.991918i \(-0.459503\pi\)
0.126881 + 0.991918i \(0.459503\pi\)
\(972\) 1878.41 0.0619856
\(973\) −58949.5 −1.94228
\(974\) −61457.7 −2.02180
\(975\) −3922.34 −0.128836
\(976\) −50113.1 −1.64353
\(977\) 46149.6 1.51121 0.755607 0.655025i \(-0.227342\pi\)
0.755607 + 0.655025i \(0.227342\pi\)
\(978\) −27411.8 −0.896249
\(979\) −2045.65 −0.0667818
\(980\) −28506.4 −0.929188
\(981\) −9586.75 −0.312009
\(982\) 3774.61 0.122661
\(983\) −17189.7 −0.557747 −0.278874 0.960328i \(-0.589961\pi\)
−0.278874 + 0.960328i \(0.589961\pi\)
\(984\) 430.789 0.0139564
\(985\) −25063.3 −0.810743
\(986\) 1989.54 0.0642596
\(987\) 56116.0 1.80972
\(988\) −19424.4 −0.625480
\(989\) 28992.9 0.932176
\(990\) −2256.39 −0.0724372
\(991\) −14818.9 −0.475012 −0.237506 0.971386i \(-0.576330\pi\)
−0.237506 + 0.971386i \(0.576330\pi\)
\(992\) −49850.1 −1.59551
\(993\) −6559.73 −0.209634
\(994\) 15426.0 0.492237
\(995\) 21697.8 0.691324
\(996\) 985.608 0.0313556
\(997\) −60460.3 −1.92056 −0.960280 0.279038i \(-0.909984\pi\)
−0.960280 + 0.279038i \(0.909984\pi\)
\(998\) 50241.2 1.59354
\(999\) −3230.41 −0.102308
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.4.a.j.1.7 7
3.2 odd 2 1305.4.a.m.1.1 7
5.4 even 2 2175.4.a.m.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.j.1.7 7 1.1 even 1 trivial
1305.4.a.m.1.1 7 3.2 odd 2
2175.4.a.m.1.1 7 5.4 even 2