Properties

Label 435.4.a.j.1.1
Level $435$
Weight $4$
Character 435.1
Self dual yes
Analytic conductor $25.666$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 35x^{5} + 18x^{4} + 329x^{3} - 167x^{2} - 767x + 638 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.12367\) of defining polynomial
Character \(\chi\) \(=\) 435.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.12367 q^{2} +3.00000 q^{3} +18.2520 q^{4} -5.00000 q^{5} -15.3710 q^{6} -21.7657 q^{7} -52.5281 q^{8} +9.00000 q^{9} +25.6184 q^{10} +57.1430 q^{11} +54.7561 q^{12} -41.2271 q^{13} +111.520 q^{14} -15.0000 q^{15} +123.120 q^{16} +73.0149 q^{17} -46.1131 q^{18} -0.658616 q^{19} -91.2602 q^{20} -65.2970 q^{21} -292.782 q^{22} -96.1672 q^{23} -157.584 q^{24} +25.0000 q^{25} +211.234 q^{26} +27.0000 q^{27} -397.267 q^{28} -29.0000 q^{29} +76.8551 q^{30} -2.01051 q^{31} -210.604 q^{32} +171.429 q^{33} -374.104 q^{34} +108.828 q^{35} +164.268 q^{36} -315.774 q^{37} +3.37453 q^{38} -123.681 q^{39} +262.640 q^{40} +219.873 q^{41} +334.560 q^{42} +81.2960 q^{43} +1042.98 q^{44} -45.0000 q^{45} +492.730 q^{46} +440.820 q^{47} +369.361 q^{48} +130.744 q^{49} -128.092 q^{50} +219.045 q^{51} -752.479 q^{52} +65.8584 q^{53} -138.339 q^{54} -285.715 q^{55} +1143.31 q^{56} -1.97585 q^{57} +148.587 q^{58} -551.520 q^{59} -273.780 q^{60} -149.536 q^{61} +10.3012 q^{62} -195.891 q^{63} +94.1041 q^{64} +206.136 q^{65} -878.346 q^{66} -888.233 q^{67} +1332.67 q^{68} -288.502 q^{69} -557.601 q^{70} -570.702 q^{71} -472.753 q^{72} +664.264 q^{73} +1617.92 q^{74} +75.0000 q^{75} -12.0211 q^{76} -1243.75 q^{77} +633.703 q^{78} +221.956 q^{79} -615.602 q^{80} +81.0000 q^{81} -1126.56 q^{82} -740.432 q^{83} -1191.80 q^{84} -365.074 q^{85} -416.534 q^{86} -87.0000 q^{87} -3001.61 q^{88} -895.415 q^{89} +230.565 q^{90} +897.336 q^{91} -1755.25 q^{92} -6.03152 q^{93} -2258.62 q^{94} +3.29308 q^{95} -631.813 q^{96} -705.666 q^{97} -669.888 q^{98} +514.287 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{2} + 21 q^{3} + 15 q^{4} - 35 q^{5} - 3 q^{6} - 37 q^{7} - 36 q^{8} + 63 q^{9} + 5 q^{10} - 11 q^{11} + 45 q^{12} - 133 q^{13} - 75 q^{14} - 105 q^{15} - 53 q^{16} + 21 q^{17} - 9 q^{18} - 170 q^{19}+ \cdots - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.12367 −1.81149 −0.905746 0.423821i \(-0.860689\pi\)
−0.905746 + 0.423821i \(0.860689\pi\)
\(3\) 3.00000 0.577350
\(4\) 18.2520 2.28150
\(5\) −5.00000 −0.447214
\(6\) −15.3710 −1.04587
\(7\) −21.7657 −1.17523 −0.587617 0.809139i \(-0.699934\pi\)
−0.587617 + 0.809139i \(0.699934\pi\)
\(8\) −52.5281 −2.32143
\(9\) 9.00000 0.333333
\(10\) 25.6184 0.810124
\(11\) 57.1430 1.56630 0.783148 0.621835i \(-0.213613\pi\)
0.783148 + 0.621835i \(0.213613\pi\)
\(12\) 54.7561 1.31723
\(13\) −41.2271 −0.879565 −0.439783 0.898104i \(-0.644945\pi\)
−0.439783 + 0.898104i \(0.644945\pi\)
\(14\) 111.520 2.12893
\(15\) −15.0000 −0.258199
\(16\) 123.120 1.92376
\(17\) 73.0149 1.04169 0.520844 0.853652i \(-0.325617\pi\)
0.520844 + 0.853652i \(0.325617\pi\)
\(18\) −46.1131 −0.603831
\(19\) −0.658616 −0.00795246 −0.00397623 0.999992i \(-0.501266\pi\)
−0.00397623 + 0.999992i \(0.501266\pi\)
\(20\) −91.2602 −1.02032
\(21\) −65.2970 −0.678522
\(22\) −292.782 −2.83733
\(23\) −96.1672 −0.871837 −0.435919 0.899986i \(-0.643576\pi\)
−0.435919 + 0.899986i \(0.643576\pi\)
\(24\) −157.584 −1.34028
\(25\) 25.0000 0.200000
\(26\) 211.234 1.59333
\(27\) 27.0000 0.192450
\(28\) −397.267 −2.68130
\(29\) −29.0000 −0.185695
\(30\) 76.8551 0.467725
\(31\) −2.01051 −0.0116483 −0.00582415 0.999983i \(-0.501854\pi\)
−0.00582415 + 0.999983i \(0.501854\pi\)
\(32\) −210.604 −1.16343
\(33\) 171.429 0.904301
\(34\) −374.104 −1.88701
\(35\) 108.828 0.525581
\(36\) 164.268 0.760501
\(37\) −315.774 −1.40305 −0.701526 0.712644i \(-0.747498\pi\)
−0.701526 + 0.712644i \(0.747498\pi\)
\(38\) 3.37453 0.0144058
\(39\) −123.681 −0.507817
\(40\) 262.640 1.03818
\(41\) 219.873 0.837522 0.418761 0.908097i \(-0.362465\pi\)
0.418761 + 0.908097i \(0.362465\pi\)
\(42\) 334.560 1.22914
\(43\) 81.2960 0.288315 0.144157 0.989555i \(-0.453953\pi\)
0.144157 + 0.989555i \(0.453953\pi\)
\(44\) 1042.98 3.57351
\(45\) −45.0000 −0.149071
\(46\) 492.730 1.57933
\(47\) 440.820 1.36809 0.684044 0.729441i \(-0.260220\pi\)
0.684044 + 0.729441i \(0.260220\pi\)
\(48\) 369.361 1.11068
\(49\) 130.744 0.381177
\(50\) −128.092 −0.362298
\(51\) 219.045 0.601419
\(52\) −752.479 −2.00673
\(53\) 65.8584 0.170686 0.0853429 0.996352i \(-0.472801\pi\)
0.0853429 + 0.996352i \(0.472801\pi\)
\(54\) −138.339 −0.348622
\(55\) −285.715 −0.700469
\(56\) 1143.31 2.72823
\(57\) −1.97585 −0.00459136
\(58\) 148.587 0.336386
\(59\) −551.520 −1.21698 −0.608489 0.793562i \(-0.708224\pi\)
−0.608489 + 0.793562i \(0.708224\pi\)
\(60\) −273.780 −0.589082
\(61\) −149.536 −0.313871 −0.156936 0.987609i \(-0.550161\pi\)
−0.156936 + 0.987609i \(0.550161\pi\)
\(62\) 10.3012 0.0211008
\(63\) −195.891 −0.391745
\(64\) 94.1041 0.183797
\(65\) 206.136 0.393354
\(66\) −878.346 −1.63814
\(67\) −888.233 −1.61963 −0.809813 0.586689i \(-0.800431\pi\)
−0.809813 + 0.586689i \(0.800431\pi\)
\(68\) 1332.67 2.37662
\(69\) −288.502 −0.503355
\(70\) −557.601 −0.952086
\(71\) −570.702 −0.953942 −0.476971 0.878919i \(-0.658265\pi\)
−0.476971 + 0.878919i \(0.658265\pi\)
\(72\) −472.753 −0.773811
\(73\) 664.264 1.06502 0.532509 0.846425i \(-0.321249\pi\)
0.532509 + 0.846425i \(0.321249\pi\)
\(74\) 1617.92 2.54162
\(75\) 75.0000 0.115470
\(76\) −12.0211 −0.0181436
\(77\) −1243.75 −1.84077
\(78\) 633.703 0.919907
\(79\) 221.956 0.316102 0.158051 0.987431i \(-0.449479\pi\)
0.158051 + 0.987431i \(0.449479\pi\)
\(80\) −615.602 −0.860330
\(81\) 81.0000 0.111111
\(82\) −1126.56 −1.51716
\(83\) −740.432 −0.979192 −0.489596 0.871949i \(-0.662856\pi\)
−0.489596 + 0.871949i \(0.662856\pi\)
\(84\) −1191.80 −1.54805
\(85\) −365.074 −0.465857
\(86\) −416.534 −0.522280
\(87\) −87.0000 −0.107211
\(88\) −3001.61 −3.63605
\(89\) −895.415 −1.06645 −0.533224 0.845974i \(-0.679020\pi\)
−0.533224 + 0.845974i \(0.679020\pi\)
\(90\) 230.565 0.270041
\(91\) 897.336 1.03370
\(92\) −1755.25 −1.98910
\(93\) −6.03152 −0.00672515
\(94\) −2258.62 −2.47828
\(95\) 3.29308 0.00355645
\(96\) −631.813 −0.671709
\(97\) −705.666 −0.738655 −0.369327 0.929299i \(-0.620412\pi\)
−0.369327 + 0.929299i \(0.620412\pi\)
\(98\) −669.888 −0.690499
\(99\) 514.287 0.522099
\(100\) 456.301 0.456301
\(101\) −1290.41 −1.27129 −0.635647 0.771980i \(-0.719266\pi\)
−0.635647 + 0.771980i \(0.719266\pi\)
\(102\) −1122.31 −1.08947
\(103\) 897.912 0.858970 0.429485 0.903074i \(-0.358695\pi\)
0.429485 + 0.903074i \(0.358695\pi\)
\(104\) 2165.58 2.04185
\(105\) 326.485 0.303444
\(106\) −337.437 −0.309196
\(107\) −2080.08 −1.87934 −0.939669 0.342086i \(-0.888867\pi\)
−0.939669 + 0.342086i \(0.888867\pi\)
\(108\) 492.805 0.439076
\(109\) −1386.38 −1.21827 −0.609133 0.793068i \(-0.708482\pi\)
−0.609133 + 0.793068i \(0.708482\pi\)
\(110\) 1463.91 1.26889
\(111\) −947.322 −0.810052
\(112\) −2679.80 −2.26087
\(113\) 477.103 0.397187 0.198593 0.980082i \(-0.436363\pi\)
0.198593 + 0.980082i \(0.436363\pi\)
\(114\) 10.1236 0.00831721
\(115\) 480.836 0.389897
\(116\) −529.309 −0.423665
\(117\) −371.044 −0.293188
\(118\) 2825.81 2.20455
\(119\) −1589.22 −1.22423
\(120\) 787.921 0.599392
\(121\) 1934.32 1.45328
\(122\) 766.174 0.568575
\(123\) 659.619 0.483543
\(124\) −36.6958 −0.0265757
\(125\) −125.000 −0.0894427
\(126\) 1003.68 0.709643
\(127\) −1357.50 −0.948495 −0.474247 0.880392i \(-0.657280\pi\)
−0.474247 + 0.880392i \(0.657280\pi\)
\(128\) 1202.67 0.830488
\(129\) 243.888 0.166459
\(130\) −1056.17 −0.712557
\(131\) 2994.84 1.99741 0.998704 0.0508962i \(-0.0162078\pi\)
0.998704 + 0.0508962i \(0.0162078\pi\)
\(132\) 3128.93 2.06317
\(133\) 14.3352 0.00934601
\(134\) 4551.01 2.93394
\(135\) −135.000 −0.0860663
\(136\) −3835.33 −2.41821
\(137\) −1067.77 −0.665878 −0.332939 0.942948i \(-0.608040\pi\)
−0.332939 + 0.942948i \(0.608040\pi\)
\(138\) 1478.19 0.911824
\(139\) −843.314 −0.514597 −0.257298 0.966332i \(-0.582832\pi\)
−0.257298 + 0.966332i \(0.582832\pi\)
\(140\) 1986.34 1.19912
\(141\) 1322.46 0.789866
\(142\) 2924.09 1.72806
\(143\) −2355.84 −1.37766
\(144\) 1108.08 0.641252
\(145\) 145.000 0.0830455
\(146\) −3403.47 −1.92927
\(147\) 392.231 0.220073
\(148\) −5763.52 −3.20107
\(149\) 1273.71 0.700313 0.350157 0.936691i \(-0.386128\pi\)
0.350157 + 0.936691i \(0.386128\pi\)
\(150\) −384.276 −0.209173
\(151\) −3030.58 −1.63328 −0.816639 0.577149i \(-0.804165\pi\)
−0.816639 + 0.577149i \(0.804165\pi\)
\(152\) 34.5958 0.0184611
\(153\) 657.134 0.347230
\(154\) 6372.59 3.33453
\(155\) 10.0525 0.00520928
\(156\) −2257.44 −1.15859
\(157\) −1513.57 −0.769399 −0.384700 0.923042i \(-0.625695\pi\)
−0.384700 + 0.923042i \(0.625695\pi\)
\(158\) −1137.23 −0.572616
\(159\) 197.575 0.0985455
\(160\) 1053.02 0.520304
\(161\) 2093.14 1.02461
\(162\) −415.018 −0.201277
\(163\) −3134.88 −1.50640 −0.753200 0.657792i \(-0.771491\pi\)
−0.753200 + 0.657792i \(0.771491\pi\)
\(164\) 4013.13 1.91081
\(165\) −857.145 −0.404416
\(166\) 3793.73 1.77380
\(167\) 703.416 0.325940 0.162970 0.986631i \(-0.447893\pi\)
0.162970 + 0.986631i \(0.447893\pi\)
\(168\) 3429.92 1.57514
\(169\) −497.323 −0.226365
\(170\) 1870.52 0.843897
\(171\) −5.92754 −0.00265082
\(172\) 1483.82 0.657791
\(173\) −1699.75 −0.746993 −0.373497 0.927632i \(-0.621841\pi\)
−0.373497 + 0.927632i \(0.621841\pi\)
\(174\) 445.760 0.194212
\(175\) −544.141 −0.235047
\(176\) 7035.47 3.01317
\(177\) −1654.56 −0.702623
\(178\) 4587.81 1.93186
\(179\) −1616.87 −0.675143 −0.337572 0.941300i \(-0.609606\pi\)
−0.337572 + 0.941300i \(0.609606\pi\)
\(180\) −821.341 −0.340107
\(181\) 790.412 0.324590 0.162295 0.986742i \(-0.448110\pi\)
0.162295 + 0.986742i \(0.448110\pi\)
\(182\) −4597.65 −1.87253
\(183\) −448.608 −0.181214
\(184\) 5051.48 2.02391
\(185\) 1578.87 0.627464
\(186\) 30.9035 0.0121826
\(187\) 4172.29 1.63159
\(188\) 8045.85 3.12130
\(189\) −587.673 −0.226174
\(190\) −16.8727 −0.00644248
\(191\) −2966.34 −1.12375 −0.561877 0.827221i \(-0.689921\pi\)
−0.561877 + 0.827221i \(0.689921\pi\)
\(192\) 282.312 0.106115
\(193\) −1871.55 −0.698018 −0.349009 0.937119i \(-0.613482\pi\)
−0.349009 + 0.937119i \(0.613482\pi\)
\(194\) 3615.60 1.33807
\(195\) 618.407 0.227103
\(196\) 2386.34 0.869656
\(197\) −1765.75 −0.638603 −0.319301 0.947653i \(-0.603448\pi\)
−0.319301 + 0.947653i \(0.603448\pi\)
\(198\) −2635.04 −0.945778
\(199\) −153.070 −0.0545268 −0.0272634 0.999628i \(-0.508679\pi\)
−0.0272634 + 0.999628i \(0.508679\pi\)
\(200\) −1313.20 −0.464287
\(201\) −2664.70 −0.935091
\(202\) 6611.64 2.30294
\(203\) 631.204 0.218236
\(204\) 3998.01 1.37214
\(205\) −1099.37 −0.374551
\(206\) −4600.61 −1.55602
\(207\) −865.505 −0.290612
\(208\) −5075.90 −1.69207
\(209\) −37.6353 −0.0124559
\(210\) −1672.80 −0.549687
\(211\) 5632.85 1.83783 0.918913 0.394460i \(-0.129068\pi\)
0.918913 + 0.394460i \(0.129068\pi\)
\(212\) 1202.05 0.389420
\(213\) −1712.11 −0.550758
\(214\) 10657.7 3.40440
\(215\) −406.480 −0.128938
\(216\) −1418.26 −0.446760
\(217\) 43.7600 0.0136895
\(218\) 7103.35 2.20688
\(219\) 1992.79 0.614888
\(220\) −5214.88 −1.59812
\(221\) −3010.19 −0.916233
\(222\) 4853.77 1.46740
\(223\) −2962.89 −0.889730 −0.444865 0.895598i \(-0.646748\pi\)
−0.444865 + 0.895598i \(0.646748\pi\)
\(224\) 4583.94 1.36731
\(225\) 225.000 0.0666667
\(226\) −2444.52 −0.719501
\(227\) −1006.81 −0.294381 −0.147190 0.989108i \(-0.547023\pi\)
−0.147190 + 0.989108i \(0.547023\pi\)
\(228\) −36.0632 −0.0104752
\(229\) −1297.30 −0.374359 −0.187179 0.982326i \(-0.559935\pi\)
−0.187179 + 0.982326i \(0.559935\pi\)
\(230\) −2463.65 −0.706296
\(231\) −3731.26 −1.06277
\(232\) 1523.31 0.431080
\(233\) −1649.87 −0.463891 −0.231946 0.972729i \(-0.574509\pi\)
−0.231946 + 0.972729i \(0.574509\pi\)
\(234\) 1901.11 0.531109
\(235\) −2204.10 −0.611828
\(236\) −10066.4 −2.77654
\(237\) 665.869 0.182501
\(238\) 8142.63 2.21768
\(239\) 5704.40 1.54388 0.771939 0.635696i \(-0.219287\pi\)
0.771939 + 0.635696i \(0.219287\pi\)
\(240\) −1846.81 −0.496712
\(241\) 7233.99 1.93354 0.966768 0.255657i \(-0.0822916\pi\)
0.966768 + 0.255657i \(0.0822916\pi\)
\(242\) −9910.83 −2.63261
\(243\) 243.000 0.0641500
\(244\) −2729.34 −0.716098
\(245\) −653.718 −0.170467
\(246\) −3379.67 −0.875935
\(247\) 27.1528 0.00699471
\(248\) 105.608 0.0270408
\(249\) −2221.30 −0.565337
\(250\) 640.459 0.162025
\(251\) 5887.94 1.48065 0.740326 0.672248i \(-0.234671\pi\)
0.740326 + 0.672248i \(0.234671\pi\)
\(252\) −3575.41 −0.893768
\(253\) −5495.28 −1.36556
\(254\) 6955.40 1.71819
\(255\) −1095.22 −0.268963
\(256\) −6914.95 −1.68822
\(257\) 5751.33 1.39595 0.697973 0.716124i \(-0.254086\pi\)
0.697973 + 0.716124i \(0.254086\pi\)
\(258\) −1249.60 −0.301538
\(259\) 6873.03 1.64892
\(260\) 3762.39 0.897438
\(261\) −261.000 −0.0618984
\(262\) −15344.6 −3.61829
\(263\) 5196.53 1.21837 0.609186 0.793027i \(-0.291496\pi\)
0.609186 + 0.793027i \(0.291496\pi\)
\(264\) −9004.83 −2.09928
\(265\) −329.292 −0.0763330
\(266\) −73.4489 −0.0169302
\(267\) −2686.24 −0.615713
\(268\) −16212.1 −3.69518
\(269\) −7201.66 −1.63232 −0.816158 0.577829i \(-0.803900\pi\)
−0.816158 + 0.577829i \(0.803900\pi\)
\(270\) 691.696 0.155908
\(271\) −1510.97 −0.338690 −0.169345 0.985557i \(-0.554165\pi\)
−0.169345 + 0.985557i \(0.554165\pi\)
\(272\) 8989.62 2.00396
\(273\) 2692.01 0.596805
\(274\) 5470.88 1.20623
\(275\) 1428.57 0.313259
\(276\) −5265.74 −1.14841
\(277\) 6906.59 1.49811 0.749056 0.662507i \(-0.230507\pi\)
0.749056 + 0.662507i \(0.230507\pi\)
\(278\) 4320.87 0.932188
\(279\) −18.0946 −0.00388277
\(280\) −5716.54 −1.22010
\(281\) −5553.49 −1.17898 −0.589490 0.807776i \(-0.700671\pi\)
−0.589490 + 0.807776i \(0.700671\pi\)
\(282\) −6775.85 −1.43084
\(283\) −906.811 −0.190475 −0.0952373 0.995455i \(-0.530361\pi\)
−0.0952373 + 0.995455i \(0.530361\pi\)
\(284\) −10416.5 −2.17642
\(285\) 9.87923 0.00205332
\(286\) 12070.6 2.49562
\(287\) −4785.68 −0.984285
\(288\) −1895.44 −0.387812
\(289\) 418.172 0.0851154
\(290\) −742.933 −0.150436
\(291\) −2117.00 −0.426462
\(292\) 12124.2 2.42984
\(293\) 478.454 0.0953979 0.0476989 0.998862i \(-0.484811\pi\)
0.0476989 + 0.998862i \(0.484811\pi\)
\(294\) −2009.66 −0.398660
\(295\) 2757.60 0.544249
\(296\) 16587.0 3.25709
\(297\) 1542.86 0.301434
\(298\) −6526.09 −1.26861
\(299\) 3964.70 0.766838
\(300\) 1368.90 0.263445
\(301\) −1769.46 −0.338837
\(302\) 15527.7 2.95867
\(303\) −3871.23 −0.733982
\(304\) −81.0890 −0.0152986
\(305\) 747.680 0.140367
\(306\) −3366.94 −0.629004
\(307\) −8071.13 −1.50047 −0.750235 0.661172i \(-0.770059\pi\)
−0.750235 + 0.661172i \(0.770059\pi\)
\(308\) −22701.0 −4.19971
\(309\) 2693.74 0.495926
\(310\) −51.5059 −0.00943657
\(311\) −2191.99 −0.399667 −0.199834 0.979830i \(-0.564040\pi\)
−0.199834 + 0.979830i \(0.564040\pi\)
\(312\) 6496.74 1.17886
\(313\) 10935.0 1.97471 0.987353 0.158535i \(-0.0506771\pi\)
0.987353 + 0.158535i \(0.0506771\pi\)
\(314\) 7755.02 1.39376
\(315\) 979.454 0.175194
\(316\) 4051.15 0.721187
\(317\) 8640.32 1.53088 0.765440 0.643508i \(-0.222522\pi\)
0.765440 + 0.643508i \(0.222522\pi\)
\(318\) −1012.31 −0.178514
\(319\) −1657.15 −0.290854
\(320\) −470.520 −0.0821965
\(321\) −6240.25 −1.08504
\(322\) −10724.6 −1.85608
\(323\) −48.0887 −0.00828399
\(324\) 1478.41 0.253500
\(325\) −1030.68 −0.175913
\(326\) 16062.1 2.72883
\(327\) −4159.14 −0.703366
\(328\) −11549.5 −1.94425
\(329\) −9594.72 −1.60782
\(330\) 4391.73 0.732596
\(331\) −10031.0 −1.66571 −0.832857 0.553488i \(-0.813297\pi\)
−0.832857 + 0.553488i \(0.813297\pi\)
\(332\) −13514.4 −2.23403
\(333\) −2841.97 −0.467684
\(334\) −3604.07 −0.590437
\(335\) 4441.16 0.724318
\(336\) −8039.39 −1.30531
\(337\) 2538.16 0.410274 0.205137 0.978733i \(-0.434236\pi\)
0.205137 + 0.978733i \(0.434236\pi\)
\(338\) 2548.12 0.410058
\(339\) 1431.31 0.229316
\(340\) −6663.35 −1.06286
\(341\) −114.886 −0.0182447
\(342\) 30.3708 0.00480194
\(343\) 4619.90 0.727263
\(344\) −4270.32 −0.669304
\(345\) 1442.51 0.225107
\(346\) 8708.98 1.35317
\(347\) 8139.07 1.25916 0.629579 0.776936i \(-0.283227\pi\)
0.629579 + 0.776936i \(0.283227\pi\)
\(348\) −1587.93 −0.244603
\(349\) 3054.95 0.468561 0.234280 0.972169i \(-0.424727\pi\)
0.234280 + 0.972169i \(0.424727\pi\)
\(350\) 2788.00 0.425786
\(351\) −1113.13 −0.169272
\(352\) −12034.6 −1.82228
\(353\) −4993.98 −0.752982 −0.376491 0.926420i \(-0.622869\pi\)
−0.376491 + 0.926420i \(0.622869\pi\)
\(354\) 8477.42 1.27280
\(355\) 2853.51 0.426616
\(356\) −16343.1 −2.43310
\(357\) −4767.65 −0.706809
\(358\) 8284.32 1.22302
\(359\) −3701.99 −0.544245 −0.272122 0.962263i \(-0.587726\pi\)
−0.272122 + 0.962263i \(0.587726\pi\)
\(360\) 2363.76 0.346059
\(361\) −6858.57 −0.999937
\(362\) −4049.81 −0.587993
\(363\) 5802.96 0.839054
\(364\) 16378.2 2.35838
\(365\) −3321.32 −0.476290
\(366\) 2298.52 0.328267
\(367\) −1936.81 −0.275478 −0.137739 0.990469i \(-0.543984\pi\)
−0.137739 + 0.990469i \(0.543984\pi\)
\(368\) −11840.1 −1.67720
\(369\) 1978.86 0.279174
\(370\) −8089.61 −1.13665
\(371\) −1433.45 −0.200596
\(372\) −110.087 −0.0153435
\(373\) 12540.1 1.74075 0.870376 0.492387i \(-0.163876\pi\)
0.870376 + 0.492387i \(0.163876\pi\)
\(374\) −21377.4 −2.95562
\(375\) −375.000 −0.0516398
\(376\) −23155.4 −3.17593
\(377\) 1195.59 0.163331
\(378\) 3011.04 0.409713
\(379\) 7644.03 1.03601 0.518005 0.855378i \(-0.326675\pi\)
0.518005 + 0.855378i \(0.326675\pi\)
\(380\) 60.1054 0.00811405
\(381\) −4072.51 −0.547614
\(382\) 15198.6 2.03567
\(383\) 13834.6 1.84574 0.922868 0.385115i \(-0.125838\pi\)
0.922868 + 0.385115i \(0.125838\pi\)
\(384\) 3608.02 0.479482
\(385\) 6218.77 0.823215
\(386\) 9589.24 1.26445
\(387\) 731.664 0.0961049
\(388\) −12879.8 −1.68524
\(389\) −14818.0 −1.93137 −0.965684 0.259719i \(-0.916370\pi\)
−0.965684 + 0.259719i \(0.916370\pi\)
\(390\) −3168.52 −0.411395
\(391\) −7021.64 −0.908183
\(392\) −6867.71 −0.884877
\(393\) 8984.52 1.15320
\(394\) 9047.14 1.15682
\(395\) −1109.78 −0.141365
\(396\) 9386.78 1.19117
\(397\) −2846.02 −0.359792 −0.179896 0.983686i \(-0.557576\pi\)
−0.179896 + 0.983686i \(0.557576\pi\)
\(398\) 784.281 0.0987750
\(399\) 43.0056 0.00539592
\(400\) 3078.01 0.384751
\(401\) 7701.88 0.959136 0.479568 0.877505i \(-0.340793\pi\)
0.479568 + 0.877505i \(0.340793\pi\)
\(402\) 13653.0 1.69391
\(403\) 82.8874 0.0102454
\(404\) −23552.6 −2.90046
\(405\) −405.000 −0.0496904
\(406\) −3234.08 −0.395332
\(407\) −18044.3 −2.19759
\(408\) −11506.0 −1.39616
\(409\) −10969.5 −1.32618 −0.663088 0.748541i \(-0.730755\pi\)
−0.663088 + 0.748541i \(0.730755\pi\)
\(410\) 5632.79 0.678497
\(411\) −3203.30 −0.384445
\(412\) 16388.7 1.95974
\(413\) 12004.2 1.43024
\(414\) 4434.57 0.526442
\(415\) 3702.16 0.437908
\(416\) 8682.61 1.02332
\(417\) −2529.94 −0.297103
\(418\) 192.831 0.0225638
\(419\) −10760.9 −1.25467 −0.627335 0.778750i \(-0.715854\pi\)
−0.627335 + 0.778750i \(0.715854\pi\)
\(420\) 5959.01 0.692309
\(421\) −3562.20 −0.412378 −0.206189 0.978512i \(-0.566106\pi\)
−0.206189 + 0.978512i \(0.566106\pi\)
\(422\) −28860.9 −3.32921
\(423\) 3967.38 0.456029
\(424\) −3459.41 −0.396236
\(425\) 1825.37 0.208338
\(426\) 8772.27 0.997695
\(427\) 3254.75 0.368872
\(428\) −37965.7 −4.28772
\(429\) −7067.52 −0.795392
\(430\) 2082.67 0.233571
\(431\) −1086.78 −0.121458 −0.0607290 0.998154i \(-0.519343\pi\)
−0.0607290 + 0.998154i \(0.519343\pi\)
\(432\) 3324.25 0.370227
\(433\) 4185.80 0.464565 0.232282 0.972648i \(-0.425381\pi\)
0.232282 + 0.972648i \(0.425381\pi\)
\(434\) −224.212 −0.0247984
\(435\) 435.000 0.0479463
\(436\) −25304.2 −2.77948
\(437\) 63.3372 0.00693325
\(438\) −10210.4 −1.11386
\(439\) 3960.69 0.430600 0.215300 0.976548i \(-0.430927\pi\)
0.215300 + 0.976548i \(0.430927\pi\)
\(440\) 15008.1 1.62609
\(441\) 1176.69 0.127059
\(442\) 15423.3 1.65975
\(443\) 1695.58 0.181850 0.0909250 0.995858i \(-0.471018\pi\)
0.0909250 + 0.995858i \(0.471018\pi\)
\(444\) −17290.5 −1.84814
\(445\) 4477.07 0.476930
\(446\) 15180.9 1.61174
\(447\) 3821.14 0.404326
\(448\) −2048.24 −0.216005
\(449\) 655.044 0.0688495 0.0344248 0.999407i \(-0.489040\pi\)
0.0344248 + 0.999407i \(0.489040\pi\)
\(450\) −1152.83 −0.120766
\(451\) 12564.2 1.31181
\(452\) 8708.11 0.906183
\(453\) −9091.73 −0.942973
\(454\) 5158.58 0.533269
\(455\) −4486.68 −0.462283
\(456\) 103.787 0.0106585
\(457\) 10691.4 1.09437 0.547183 0.837013i \(-0.315700\pi\)
0.547183 + 0.837013i \(0.315700\pi\)
\(458\) 6646.96 0.678148
\(459\) 1971.40 0.200473
\(460\) 8776.24 0.889553
\(461\) 15258.6 1.54157 0.770783 0.637098i \(-0.219865\pi\)
0.770783 + 0.637098i \(0.219865\pi\)
\(462\) 19117.8 1.92519
\(463\) −9359.99 −0.939515 −0.469758 0.882795i \(-0.655659\pi\)
−0.469758 + 0.882795i \(0.655659\pi\)
\(464\) −3570.49 −0.357233
\(465\) 30.1576 0.00300758
\(466\) 8453.40 0.840335
\(467\) 11840.9 1.17330 0.586651 0.809840i \(-0.300446\pi\)
0.586651 + 0.809840i \(0.300446\pi\)
\(468\) −6772.31 −0.668911
\(469\) 19333.0 1.90344
\(470\) 11293.1 1.10832
\(471\) −4540.70 −0.444213
\(472\) 28970.3 2.82514
\(473\) 4645.50 0.451586
\(474\) −3411.70 −0.330600
\(475\) −16.4654 −0.00159049
\(476\) −29006.4 −2.79308
\(477\) 592.725 0.0568953
\(478\) −29227.5 −2.79672
\(479\) 581.072 0.0554277 0.0277139 0.999616i \(-0.491177\pi\)
0.0277139 + 0.999616i \(0.491177\pi\)
\(480\) 3159.06 0.300398
\(481\) 13018.5 1.23408
\(482\) −37064.6 −3.50258
\(483\) 6279.43 0.591561
\(484\) 35305.3 3.31567
\(485\) 3528.33 0.330336
\(486\) −1245.05 −0.116207
\(487\) −5996.94 −0.558003 −0.279001 0.960291i \(-0.590003\pi\)
−0.279001 + 0.960291i \(0.590003\pi\)
\(488\) 7854.84 0.728631
\(489\) −9404.65 −0.869720
\(490\) 3349.44 0.308800
\(491\) 18570.0 1.70683 0.853414 0.521234i \(-0.174528\pi\)
0.853414 + 0.521234i \(0.174528\pi\)
\(492\) 12039.4 1.10321
\(493\) −2117.43 −0.193437
\(494\) −139.122 −0.0126709
\(495\) −2571.43 −0.233490
\(496\) −247.534 −0.0224085
\(497\) 12421.7 1.12111
\(498\) 11381.2 1.02410
\(499\) 3462.43 0.310621 0.155310 0.987866i \(-0.450362\pi\)
0.155310 + 0.987866i \(0.450362\pi\)
\(500\) −2281.50 −0.204064
\(501\) 2110.25 0.188181
\(502\) −30167.9 −2.68219
\(503\) −2437.40 −0.216060 −0.108030 0.994148i \(-0.534454\pi\)
−0.108030 + 0.994148i \(0.534454\pi\)
\(504\) 10289.8 0.909410
\(505\) 6452.05 0.568540
\(506\) 28156.0 2.47369
\(507\) −1491.97 −0.130692
\(508\) −24777.2 −2.16399
\(509\) −17387.0 −1.51407 −0.757037 0.653372i \(-0.773354\pi\)
−0.757037 + 0.653372i \(0.773354\pi\)
\(510\) 5611.57 0.487224
\(511\) −14458.1 −1.25165
\(512\) 25808.5 2.22771
\(513\) −17.7826 −0.00153045
\(514\) −29467.9 −2.52874
\(515\) −4489.56 −0.384143
\(516\) 4451.45 0.379776
\(517\) 25189.7 2.14283
\(518\) −35215.1 −2.98700
\(519\) −5099.26 −0.431277
\(520\) −10827.9 −0.913145
\(521\) −13912.4 −1.16989 −0.584945 0.811073i \(-0.698884\pi\)
−0.584945 + 0.811073i \(0.698884\pi\)
\(522\) 1337.28 0.112129
\(523\) 4178.69 0.349371 0.174686 0.984624i \(-0.444109\pi\)
0.174686 + 0.984624i \(0.444109\pi\)
\(524\) 54661.9 4.55709
\(525\) −1632.42 −0.135704
\(526\) −26625.3 −2.20707
\(527\) −146.797 −0.0121339
\(528\) 21106.4 1.73966
\(529\) −2918.86 −0.239900
\(530\) 1687.18 0.138277
\(531\) −4963.68 −0.405659
\(532\) 261.647 0.0213230
\(533\) −9064.73 −0.736655
\(534\) 13763.4 1.11536
\(535\) 10400.4 0.840465
\(536\) 46657.1 3.75985
\(537\) −4850.61 −0.389794
\(538\) 36899.0 2.95693
\(539\) 7471.08 0.597036
\(540\) −2464.02 −0.196361
\(541\) 15727.3 1.24985 0.624927 0.780683i \(-0.285129\pi\)
0.624927 + 0.780683i \(0.285129\pi\)
\(542\) 7741.72 0.613534
\(543\) 2371.24 0.187402
\(544\) −15377.2 −1.21194
\(545\) 6931.89 0.544825
\(546\) −13793.0 −1.08111
\(547\) −17384.0 −1.35884 −0.679420 0.733750i \(-0.737769\pi\)
−0.679420 + 0.733750i \(0.737769\pi\)
\(548\) −19488.9 −1.51920
\(549\) −1345.82 −0.104624
\(550\) −7319.55 −0.567467
\(551\) 19.0999 0.00147674
\(552\) 15154.4 1.16851
\(553\) −4831.02 −0.371494
\(554\) −35387.1 −2.71382
\(555\) 4736.61 0.362266
\(556\) −15392.2 −1.17405
\(557\) −18853.0 −1.43416 −0.717080 0.696991i \(-0.754522\pi\)
−0.717080 + 0.696991i \(0.754522\pi\)
\(558\) 92.7106 0.00703360
\(559\) −3351.60 −0.253592
\(560\) 13399.0 1.01109
\(561\) 12516.9 0.942001
\(562\) 28454.3 2.13571
\(563\) 6897.37 0.516323 0.258161 0.966102i \(-0.416883\pi\)
0.258161 + 0.966102i \(0.416883\pi\)
\(564\) 24137.6 1.80208
\(565\) −2385.52 −0.177627
\(566\) 4646.20 0.345043
\(567\) −1763.02 −0.130582
\(568\) 29977.9 2.21451
\(569\) 4008.52 0.295336 0.147668 0.989037i \(-0.452823\pi\)
0.147668 + 0.989037i \(0.452823\pi\)
\(570\) −50.6180 −0.00371957
\(571\) −6259.59 −0.458766 −0.229383 0.973336i \(-0.573671\pi\)
−0.229383 + 0.973336i \(0.573671\pi\)
\(572\) −42998.9 −3.14314
\(573\) −8899.02 −0.648799
\(574\) 24520.3 1.78302
\(575\) −2404.18 −0.174367
\(576\) 846.937 0.0612657
\(577\) −12282.9 −0.886208 −0.443104 0.896470i \(-0.646123\pi\)
−0.443104 + 0.896470i \(0.646123\pi\)
\(578\) −2142.58 −0.154186
\(579\) −5614.66 −0.403001
\(580\) 2646.54 0.189469
\(581\) 16116.0 1.15078
\(582\) 10846.8 0.772533
\(583\) 3763.34 0.267344
\(584\) −34892.5 −2.47237
\(585\) 1855.22 0.131118
\(586\) −2451.44 −0.172813
\(587\) −3526.91 −0.247992 −0.123996 0.992283i \(-0.539571\pi\)
−0.123996 + 0.992283i \(0.539571\pi\)
\(588\) 7159.01 0.502096
\(589\) 1.32415 9.26327e−5 0
\(590\) −14129.0 −0.985903
\(591\) −5297.26 −0.368697
\(592\) −38878.2 −2.69913
\(593\) −14783.4 −1.02375 −0.511875 0.859060i \(-0.671049\pi\)
−0.511875 + 0.859060i \(0.671049\pi\)
\(594\) −7905.11 −0.546045
\(595\) 7946.08 0.547492
\(596\) 23247.9 1.59777
\(597\) −459.210 −0.0314811
\(598\) −20313.8 −1.38912
\(599\) 23249.3 1.58588 0.792940 0.609300i \(-0.208549\pi\)
0.792940 + 0.609300i \(0.208549\pi\)
\(600\) −3939.60 −0.268056
\(601\) −15134.4 −1.02720 −0.513599 0.858031i \(-0.671688\pi\)
−0.513599 + 0.858031i \(0.671688\pi\)
\(602\) 9066.14 0.613801
\(603\) −7994.09 −0.539875
\(604\) −55314.2 −3.72633
\(605\) −9671.60 −0.649928
\(606\) 19834.9 1.32960
\(607\) −26346.6 −1.76174 −0.880870 0.473358i \(-0.843042\pi\)
−0.880870 + 0.473358i \(0.843042\pi\)
\(608\) 138.707 0.00925217
\(609\) 1893.61 0.125998
\(610\) −3830.87 −0.254274
\(611\) −18173.7 −1.20332
\(612\) 11994.0 0.792206
\(613\) 3259.35 0.214754 0.107377 0.994218i \(-0.465755\pi\)
0.107377 + 0.994218i \(0.465755\pi\)
\(614\) 41353.9 2.71809
\(615\) −3298.10 −0.216247
\(616\) 65332.0 4.27322
\(617\) −6482.74 −0.422990 −0.211495 0.977379i \(-0.567833\pi\)
−0.211495 + 0.977379i \(0.567833\pi\)
\(618\) −13801.8 −0.898367
\(619\) −3720.63 −0.241591 −0.120796 0.992677i \(-0.538545\pi\)
−0.120796 + 0.992677i \(0.538545\pi\)
\(620\) 183.479 0.0118850
\(621\) −2596.52 −0.167785
\(622\) 11231.1 0.723994
\(623\) 19489.3 1.25333
\(624\) −15227.7 −0.976917
\(625\) 625.000 0.0400000
\(626\) −56027.4 −3.57717
\(627\) −112.906 −0.00719142
\(628\) −27625.6 −1.75539
\(629\) −23056.2 −1.46154
\(630\) −5018.40 −0.317362
\(631\) −13113.6 −0.827328 −0.413664 0.910430i \(-0.635751\pi\)
−0.413664 + 0.910430i \(0.635751\pi\)
\(632\) −11658.9 −0.733809
\(633\) 16898.6 1.06107
\(634\) −44270.2 −2.77318
\(635\) 6787.51 0.424180
\(636\) 3606.15 0.224832
\(637\) −5390.19 −0.335270
\(638\) 8490.68 0.526880
\(639\) −5136.32 −0.317981
\(640\) −6013.37 −0.371405
\(641\) 25815.2 1.59070 0.795352 0.606148i \(-0.207286\pi\)
0.795352 + 0.606148i \(0.207286\pi\)
\(642\) 31973.0 1.96553
\(643\) 9425.88 0.578103 0.289052 0.957313i \(-0.406660\pi\)
0.289052 + 0.957313i \(0.406660\pi\)
\(644\) 38204.1 2.33766
\(645\) −1219.44 −0.0744425
\(646\) 246.391 0.0150064
\(647\) 2734.65 0.166167 0.0830836 0.996543i \(-0.473523\pi\)
0.0830836 + 0.996543i \(0.473523\pi\)
\(648\) −4254.77 −0.257937
\(649\) −31515.5 −1.90615
\(650\) 5280.86 0.318665
\(651\) 131.280 0.00790363
\(652\) −57218.0 −3.43686
\(653\) 602.998 0.0361365 0.0180683 0.999837i \(-0.494248\pi\)
0.0180683 + 0.999837i \(0.494248\pi\)
\(654\) 21310.1 1.27414
\(655\) −14974.2 −0.893268
\(656\) 27070.9 1.61119
\(657\) 5978.38 0.355006
\(658\) 49160.2 2.91256
\(659\) −23932.8 −1.41470 −0.707352 0.706862i \(-0.750110\pi\)
−0.707352 + 0.706862i \(0.750110\pi\)
\(660\) −15644.6 −0.922676
\(661\) −12965.0 −0.762905 −0.381452 0.924388i \(-0.624576\pi\)
−0.381452 + 0.924388i \(0.624576\pi\)
\(662\) 51395.4 3.01743
\(663\) −9030.58 −0.528988
\(664\) 38893.4 2.27313
\(665\) −71.6760 −0.00417966
\(666\) 14561.3 0.847206
\(667\) 2788.85 0.161896
\(668\) 12838.8 0.743633
\(669\) −8888.67 −0.513686
\(670\) −22755.1 −1.31210
\(671\) −8544.94 −0.491615
\(672\) 13751.8 0.789416
\(673\) −4523.17 −0.259072 −0.129536 0.991575i \(-0.541349\pi\)
−0.129536 + 0.991575i \(0.541349\pi\)
\(674\) −13004.7 −0.743208
\(675\) 675.000 0.0384900
\(676\) −9077.16 −0.516452
\(677\) −17685.7 −1.00401 −0.502007 0.864863i \(-0.667405\pi\)
−0.502007 + 0.864863i \(0.667405\pi\)
\(678\) −7333.57 −0.415404
\(679\) 15359.3 0.868093
\(680\) 19176.6 1.08146
\(681\) −3020.44 −0.169961
\(682\) 588.640 0.0330501
\(683\) 31140.8 1.74461 0.872307 0.488958i \(-0.162623\pi\)
0.872307 + 0.488958i \(0.162623\pi\)
\(684\) −108.190 −0.00604786
\(685\) 5338.83 0.297790
\(686\) −23670.8 −1.31743
\(687\) −3891.91 −0.216136
\(688\) 10009.2 0.554647
\(689\) −2715.15 −0.150129
\(690\) −7390.94 −0.407780
\(691\) −18166.3 −1.00012 −0.500058 0.865992i \(-0.666688\pi\)
−0.500058 + 0.865992i \(0.666688\pi\)
\(692\) −31024.0 −1.70427
\(693\) −11193.8 −0.613589
\(694\) −41701.9 −2.28096
\(695\) 4216.57 0.230135
\(696\) 4569.94 0.248884
\(697\) 16054.0 0.872437
\(698\) −15652.6 −0.848794
\(699\) −4949.61 −0.267828
\(700\) −9931.68 −0.536261
\(701\) −11583.6 −0.624120 −0.312060 0.950062i \(-0.601019\pi\)
−0.312060 + 0.950062i \(0.601019\pi\)
\(702\) 5703.33 0.306636
\(703\) 207.974 0.0111577
\(704\) 5377.39 0.287881
\(705\) −6612.29 −0.353239
\(706\) 25587.5 1.36402
\(707\) 28086.6 1.49407
\(708\) −30199.1 −1.60304
\(709\) −20232.9 −1.07174 −0.535869 0.844301i \(-0.680016\pi\)
−0.535869 + 0.844301i \(0.680016\pi\)
\(710\) −14620.5 −0.772811
\(711\) 1997.61 0.105367
\(712\) 47034.4 2.47569
\(713\) 193.345 0.0101554
\(714\) 24427.9 1.28038
\(715\) 11779.2 0.616108
\(716\) −29511.2 −1.54034
\(717\) 17113.2 0.891359
\(718\) 18967.8 0.985895
\(719\) 16489.7 0.855304 0.427652 0.903943i \(-0.359341\pi\)
0.427652 + 0.903943i \(0.359341\pi\)
\(720\) −5540.42 −0.286777
\(721\) −19543.6 −1.00949
\(722\) 35141.1 1.81138
\(723\) 21702.0 1.11633
\(724\) 14426.6 0.740554
\(725\) −725.000 −0.0371391
\(726\) −29732.5 −1.51994
\(727\) 27239.4 1.38962 0.694810 0.719194i \(-0.255489\pi\)
0.694810 + 0.719194i \(0.255489\pi\)
\(728\) −47135.3 −2.39966
\(729\) 729.000 0.0370370
\(730\) 17017.4 0.862796
\(731\) 5935.82 0.300334
\(732\) −8188.01 −0.413439
\(733\) −8145.16 −0.410434 −0.205217 0.978716i \(-0.565790\pi\)
−0.205217 + 0.978716i \(0.565790\pi\)
\(734\) 9923.57 0.499027
\(735\) −1961.15 −0.0984194
\(736\) 20253.2 1.01433
\(737\) −50756.3 −2.53681
\(738\) −10139.0 −0.505721
\(739\) 23926.8 1.19102 0.595508 0.803349i \(-0.296951\pi\)
0.595508 + 0.803349i \(0.296951\pi\)
\(740\) 28817.6 1.43156
\(741\) 81.4585 0.00403840
\(742\) 7344.53 0.363378
\(743\) −2938.74 −0.145103 −0.0725517 0.997365i \(-0.523114\pi\)
−0.0725517 + 0.997365i \(0.523114\pi\)
\(744\) 316.824 0.0156120
\(745\) −6368.57 −0.313190
\(746\) −64251.3 −3.15336
\(747\) −6663.89 −0.326397
\(748\) 76152.7 3.72249
\(749\) 45274.3 2.20866
\(750\) 1921.38 0.0935451
\(751\) 7625.31 0.370508 0.185254 0.982691i \(-0.440689\pi\)
0.185254 + 0.982691i \(0.440689\pi\)
\(752\) 54273.9 2.63187
\(753\) 17663.8 0.854855
\(754\) −6125.80 −0.295873
\(755\) 15152.9 0.730424
\(756\) −10726.2 −0.516017
\(757\) −1641.02 −0.0787898 −0.0393949 0.999224i \(-0.512543\pi\)
−0.0393949 + 0.999224i \(0.512543\pi\)
\(758\) −39165.5 −1.87672
\(759\) −16485.8 −0.788404
\(760\) −172.979 −0.00825606
\(761\) −18376.8 −0.875374 −0.437687 0.899127i \(-0.644202\pi\)
−0.437687 + 0.899127i \(0.644202\pi\)
\(762\) 20866.2 0.991998
\(763\) 30175.4 1.43175
\(764\) −54141.8 −2.56385
\(765\) −3285.67 −0.155286
\(766\) −70884.2 −3.34354
\(767\) 22737.6 1.07041
\(768\) −20744.8 −0.974694
\(769\) −16315.5 −0.765085 −0.382543 0.923938i \(-0.624951\pi\)
−0.382543 + 0.923938i \(0.624951\pi\)
\(770\) −31863.0 −1.49125
\(771\) 17254.0 0.805950
\(772\) −34159.7 −1.59253
\(773\) −1255.81 −0.0584325 −0.0292163 0.999573i \(-0.509301\pi\)
−0.0292163 + 0.999573i \(0.509301\pi\)
\(774\) −3748.81 −0.174093
\(775\) −50.2626 −0.00232966
\(776\) 37067.3 1.71474
\(777\) 20619.1 0.952002
\(778\) 75922.6 3.49866
\(779\) −144.812 −0.00666036
\(780\) 11287.2 0.518136
\(781\) −32611.6 −1.49415
\(782\) 35976.6 1.64517
\(783\) −783.000 −0.0357371
\(784\) 16097.2 0.733291
\(785\) 7567.83 0.344086
\(786\) −46033.8 −2.08902
\(787\) −18667.8 −0.845534 −0.422767 0.906238i \(-0.638941\pi\)
−0.422767 + 0.906238i \(0.638941\pi\)
\(788\) −32228.6 −1.45697
\(789\) 15589.6 0.703428
\(790\) 5686.16 0.256082
\(791\) −10384.5 −0.466788
\(792\) −27014.5 −1.21202
\(793\) 6164.94 0.276070
\(794\) 14582.1 0.651761
\(795\) −987.876 −0.0440709
\(796\) −2793.84 −0.124403
\(797\) −7280.08 −0.323556 −0.161778 0.986827i \(-0.551723\pi\)
−0.161778 + 0.986827i \(0.551723\pi\)
\(798\) −220.347 −0.00977467
\(799\) 32186.4 1.42512
\(800\) −5265.11 −0.232687
\(801\) −8058.73 −0.355482
\(802\) −39461.9 −1.73747
\(803\) 37958.1 1.66813
\(804\) −48636.2 −2.13341
\(805\) −10465.7 −0.458221
\(806\) −424.688 −0.0185595
\(807\) −21605.0 −0.942418
\(808\) 67782.8 2.95122
\(809\) 44097.9 1.91644 0.958221 0.286030i \(-0.0923356\pi\)
0.958221 + 0.286030i \(0.0923356\pi\)
\(810\) 2075.09 0.0900138
\(811\) −17249.1 −0.746854 −0.373427 0.927660i \(-0.621817\pi\)
−0.373427 + 0.927660i \(0.621817\pi\)
\(812\) 11520.8 0.497905
\(813\) −4532.91 −0.195543
\(814\) 92452.9 3.98093
\(815\) 15674.4 0.673682
\(816\) 26968.9 1.15698
\(817\) −53.5428 −0.00229281
\(818\) 56204.1 2.40236
\(819\) 8076.02 0.344565
\(820\) −20065.6 −0.854540
\(821\) 11201.7 0.476177 0.238088 0.971244i \(-0.423479\pi\)
0.238088 + 0.971244i \(0.423479\pi\)
\(822\) 16412.6 0.696419
\(823\) 12114.8 0.513118 0.256559 0.966529i \(-0.417411\pi\)
0.256559 + 0.966529i \(0.417411\pi\)
\(824\) −47165.6 −1.99404
\(825\) 4285.72 0.180860
\(826\) −61505.5 −2.59086
\(827\) 37074.2 1.55888 0.779442 0.626474i \(-0.215502\pi\)
0.779442 + 0.626474i \(0.215502\pi\)
\(828\) −15797.2 −0.663033
\(829\) 611.209 0.0256069 0.0128035 0.999918i \(-0.495924\pi\)
0.0128035 + 0.999918i \(0.495924\pi\)
\(830\) −18968.7 −0.793267
\(831\) 20719.8 0.864935
\(832\) −3879.64 −0.161662
\(833\) 9546.23 0.397068
\(834\) 12962.6 0.538199
\(835\) −3517.08 −0.145765
\(836\) −686.920 −0.0284182
\(837\) −54.2837 −0.00224172
\(838\) 55135.6 2.27282
\(839\) −43306.8 −1.78202 −0.891010 0.453983i \(-0.850003\pi\)
−0.891010 + 0.453983i \(0.850003\pi\)
\(840\) −17149.6 −0.704426
\(841\) 841.000 0.0344828
\(842\) 18251.6 0.747020
\(843\) −16660.5 −0.680685
\(844\) 102811. 4.19301
\(845\) 2486.62 0.101233
\(846\) −20327.5 −0.826094
\(847\) −42101.7 −1.70795
\(848\) 8108.51 0.328358
\(849\) −2720.43 −0.109971
\(850\) −9352.61 −0.377402
\(851\) 30367.1 1.22323
\(852\) −31249.4 −1.25656
\(853\) −3447.15 −0.138368 −0.0691842 0.997604i \(-0.522040\pi\)
−0.0691842 + 0.997604i \(0.522040\pi\)
\(854\) −16676.3 −0.668209
\(855\) 29.6377 0.00118548
\(856\) 109263. 4.36276
\(857\) −42416.7 −1.69069 −0.845347 0.534217i \(-0.820607\pi\)
−0.845347 + 0.534217i \(0.820607\pi\)
\(858\) 36211.7 1.44085
\(859\) 29061.5 1.15433 0.577163 0.816629i \(-0.304160\pi\)
0.577163 + 0.816629i \(0.304160\pi\)
\(860\) −7419.09 −0.294173
\(861\) −14357.0 −0.568277
\(862\) 5568.31 0.220020
\(863\) 20744.0 0.818232 0.409116 0.912482i \(-0.365837\pi\)
0.409116 + 0.912482i \(0.365837\pi\)
\(864\) −5686.31 −0.223903
\(865\) 8498.77 0.334066
\(866\) −21446.7 −0.841556
\(867\) 1254.52 0.0491414
\(868\) 798.708 0.0312326
\(869\) 12683.2 0.495109
\(870\) −2228.80 −0.0868544
\(871\) 36619.3 1.42457
\(872\) 72823.8 2.82812
\(873\) −6350.99 −0.246218
\(874\) −324.519 −0.0125595
\(875\) 2720.71 0.105116
\(876\) 36372.5 1.40287
\(877\) −26329.7 −1.01379 −0.506893 0.862009i \(-0.669206\pi\)
−0.506893 + 0.862009i \(0.669206\pi\)
\(878\) −20293.3 −0.780028
\(879\) 1435.36 0.0550780
\(880\) −35177.3 −1.34753
\(881\) −7199.40 −0.275317 −0.137658 0.990480i \(-0.543958\pi\)
−0.137658 + 0.990480i \(0.543958\pi\)
\(882\) −6028.99 −0.230166
\(883\) 64.9911 0.00247693 0.00123846 0.999999i \(-0.499606\pi\)
0.00123846 + 0.999999i \(0.499606\pi\)
\(884\) −54942.2 −2.09039
\(885\) 8272.79 0.314222
\(886\) −8687.61 −0.329420
\(887\) 12243.2 0.463456 0.231728 0.972781i \(-0.425562\pi\)
0.231728 + 0.972781i \(0.425562\pi\)
\(888\) 49761.0 1.88048
\(889\) 29546.9 1.11470
\(890\) −22939.1 −0.863954
\(891\) 4628.58 0.174033
\(892\) −54078.8 −2.02992
\(893\) −290.331 −0.0108797
\(894\) −19578.3 −0.732433
\(895\) 8084.36 0.301933
\(896\) −26177.0 −0.976018
\(897\) 11894.1 0.442734
\(898\) −3356.23 −0.124720
\(899\) 58.3047 0.00216304
\(900\) 4106.71 0.152100
\(901\) 4808.64 0.177801
\(902\) −64374.9 −2.37633
\(903\) −5308.38 −0.195628
\(904\) −25061.3 −0.922043
\(905\) −3952.06 −0.145161
\(906\) 46583.1 1.70819
\(907\) 30619.9 1.12097 0.560483 0.828166i \(-0.310616\pi\)
0.560483 + 0.828166i \(0.310616\pi\)
\(908\) −18376.4 −0.671631
\(909\) −11613.7 −0.423764
\(910\) 22988.3 0.837422
\(911\) 3062.05 0.111362 0.0556808 0.998449i \(-0.482267\pi\)
0.0556808 + 0.998449i \(0.482267\pi\)
\(912\) −243.267 −0.00883265
\(913\) −42310.5 −1.53370
\(914\) −54779.5 −1.98243
\(915\) 2243.04 0.0810412
\(916\) −23678.4 −0.854101
\(917\) −65184.7 −2.34742
\(918\) −10100.8 −0.363155
\(919\) −1527.71 −0.0548361 −0.0274180 0.999624i \(-0.508729\pi\)
−0.0274180 + 0.999624i \(0.508729\pi\)
\(920\) −25257.4 −0.905121
\(921\) −24213.4 −0.866296
\(922\) −78179.9 −2.79253
\(923\) 23528.4 0.839054
\(924\) −68103.1 −2.42471
\(925\) −7894.35 −0.280610
\(926\) 47957.5 1.70192
\(927\) 8081.21 0.286323
\(928\) 6107.52 0.216044
\(929\) −968.476 −0.0342031 −0.0171015 0.999854i \(-0.505444\pi\)
−0.0171015 + 0.999854i \(0.505444\pi\)
\(930\) −154.518 −0.00544821
\(931\) −86.1098 −0.00303129
\(932\) −30113.5 −1.05837
\(933\) −6575.98 −0.230748
\(934\) −60669.0 −2.12543
\(935\) −20861.4 −0.729671
\(936\) 19490.2 0.680618
\(937\) −47051.9 −1.64047 −0.820234 0.572029i \(-0.806157\pi\)
−0.820234 + 0.572029i \(0.806157\pi\)
\(938\) −99055.8 −3.44807
\(939\) 32805.0 1.14010
\(940\) −40229.3 −1.39589
\(941\) −31285.3 −1.08382 −0.541908 0.840438i \(-0.682298\pi\)
−0.541908 + 0.840438i \(0.682298\pi\)
\(942\) 23265.0 0.804688
\(943\) −21144.6 −0.730183
\(944\) −67903.3 −2.34117
\(945\) 2938.36 0.101148
\(946\) −23802.0 −0.818045
\(947\) −1155.25 −0.0396416 −0.0198208 0.999804i \(-0.506310\pi\)
−0.0198208 + 0.999804i \(0.506310\pi\)
\(948\) 12153.5 0.416378
\(949\) −27385.7 −0.936752
\(950\) 84.3633 0.00288116
\(951\) 25921.0 0.883853
\(952\) 83478.5 2.84197
\(953\) 8073.69 0.274431 0.137215 0.990541i \(-0.456185\pi\)
0.137215 + 0.990541i \(0.456185\pi\)
\(954\) −3036.93 −0.103065
\(955\) 14831.7 0.502558
\(956\) 104117. 3.52236
\(957\) −4971.44 −0.167925
\(958\) −2977.22 −0.100407
\(959\) 23240.6 0.782563
\(960\) −1411.56 −0.0474562
\(961\) −29787.0 −0.999864
\(962\) −66702.3 −2.23552
\(963\) −18720.7 −0.626446
\(964\) 132035. 4.41137
\(965\) 9357.77 0.312163
\(966\) −32173.7 −1.07161
\(967\) 30587.8 1.01721 0.508603 0.861001i \(-0.330162\pi\)
0.508603 + 0.861001i \(0.330162\pi\)
\(968\) −101606. −3.37370
\(969\) −144.266 −0.00478276
\(970\) −18078.0 −0.598402
\(971\) −37585.6 −1.24220 −0.621101 0.783730i \(-0.713314\pi\)
−0.621101 + 0.783730i \(0.713314\pi\)
\(972\) 4435.24 0.146359
\(973\) 18355.3 0.604772
\(974\) 30726.4 1.01082
\(975\) −3092.04 −0.101563
\(976\) −18410.9 −0.603811
\(977\) 605.357 0.0198230 0.00991151 0.999951i \(-0.496845\pi\)
0.00991151 + 0.999951i \(0.496845\pi\)
\(978\) 48186.4 1.57549
\(979\) −51166.7 −1.67037
\(980\) −11931.7 −0.388922
\(981\) −12477.4 −0.406089
\(982\) −95146.6 −3.09190
\(983\) 24370.9 0.790755 0.395378 0.918519i \(-0.370614\pi\)
0.395378 + 0.918519i \(0.370614\pi\)
\(984\) −34648.5 −1.12251
\(985\) 8828.77 0.285592
\(986\) 10849.0 0.350409
\(987\) −28784.2 −0.928278
\(988\) 495.594 0.0159585
\(989\) −7818.02 −0.251363
\(990\) 13175.2 0.422965
\(991\) 53287.8 1.70812 0.854058 0.520178i \(-0.174134\pi\)
0.854058 + 0.520178i \(0.174134\pi\)
\(992\) 423.421 0.0135520
\(993\) −30092.9 −0.961701
\(994\) −63644.7 −2.03087
\(995\) 765.350 0.0243851
\(996\) −40543.1 −1.28982
\(997\) 880.741 0.0279773 0.0139886 0.999902i \(-0.495547\pi\)
0.0139886 + 0.999902i \(0.495547\pi\)
\(998\) −17740.4 −0.562687
\(999\) −8525.90 −0.270017
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.4.a.j.1.1 7
3.2 odd 2 1305.4.a.m.1.7 7
5.4 even 2 2175.4.a.m.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.j.1.1 7 1.1 even 1 trivial
1305.4.a.m.1.7 7 3.2 odd 2
2175.4.a.m.1.7 7 5.4 even 2