Properties

Label 435.4.a.j
Level $435$
Weight $4$
Character orbit 435.a
Self dual yes
Analytic conductor $25.666$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 35x^{5} + 18x^{4} + 329x^{3} - 167x^{2} - 767x + 638 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + 3 q^{3} + (\beta_{2} + \beta_1 + 2) q^{4} - 5 q^{5} - 3 \beta_1 q^{6} + ( - \beta_{6} - \beta_{5} + \beta_{4} + \cdots - 6) q^{7}+ \cdots + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + 3 q^{3} + (\beta_{2} + \beta_1 + 2) q^{4} - 5 q^{5} - 3 \beta_1 q^{6} + ( - \beta_{6} - \beta_{5} + \beta_{4} + \cdots - 6) q^{7}+ \cdots + (9 \beta_{6} + 45 \beta_{5} + \cdots - 18) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{2} + 21 q^{3} + 15 q^{4} - 35 q^{5} - 3 q^{6} - 37 q^{7} - 36 q^{8} + 63 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q - q^{2} + 21 q^{3} + 15 q^{4} - 35 q^{5} - 3 q^{6} - 37 q^{7} - 36 q^{8} + 63 q^{9} + 5 q^{10} - 11 q^{11} + 45 q^{12} - 133 q^{13} - 75 q^{14} - 105 q^{15} - 53 q^{16} + 21 q^{17} - 9 q^{18} - 170 q^{19} - 75 q^{20} - 111 q^{21} - 369 q^{22} - 68 q^{23} - 108 q^{24} + 175 q^{25} + 181 q^{26} + 189 q^{27} - 637 q^{28} - 203 q^{29} + 15 q^{30} - 480 q^{31} - 779 q^{32} - 33 q^{33} - 897 q^{34} + 185 q^{35} + 135 q^{36} - 1032 q^{37} - 194 q^{38} - 399 q^{39} + 180 q^{40} - 638 q^{41} - 225 q^{42} - 512 q^{43} + 625 q^{44} - 315 q^{45} + 16 q^{46} - 111 q^{47} - 159 q^{48} + 178 q^{49} - 25 q^{50} + 63 q^{51} - 1263 q^{52} + 410 q^{53} - 27 q^{54} + 55 q^{55} + 1174 q^{56} - 510 q^{57} + 29 q^{58} - 426 q^{59} - 225 q^{60} - 1192 q^{61} + 460 q^{62} - 333 q^{63} + 390 q^{64} + 665 q^{65} - 1107 q^{66} - 1671 q^{67} + 1509 q^{68} - 204 q^{69} + 375 q^{70} - 1324 q^{71} - 324 q^{72} - 852 q^{73} + 1780 q^{74} + 525 q^{75} - 564 q^{76} - 2107 q^{77} + 543 q^{78} + 366 q^{79} + 265 q^{80} + 567 q^{81} - 318 q^{82} + 470 q^{83} - 1911 q^{84} - 105 q^{85} - 2196 q^{86} - 609 q^{87} - 2518 q^{88} + 51 q^{89} + 45 q^{90} - 1297 q^{91} - 684 q^{92} - 1440 q^{93} - 1837 q^{94} + 850 q^{95} - 2337 q^{96} - 3322 q^{97} + 1068 q^{98} - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 35x^{5} + 18x^{4} + 329x^{3} - 167x^{2} - 767x + 638 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} - 4\nu^{5} - 23\nu^{4} + 67\nu^{3} + 128\nu^{2} - 131\nu - 94 ) / 20 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3\nu^{6} - 2\nu^{5} - 99\nu^{4} + \nu^{3} + 814\nu^{2} + 157\nu - 1262 ) / 20 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} - \nu^{5} + 38\nu^{4} + 43\nu^{3} - 363\nu^{2} - 304\nu + 744 ) / 10 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 17\nu^{6} + 2\nu^{5} - 581\nu^{4} - 381\nu^{3} + 4946\nu^{2} + 3183\nu - 8898 ) / 40 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} - \beta_{3} + 2\beta_{2} + 18\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{6} + 6\beta_{5} - \beta_{4} - 2\beta_{3} + 24\beta_{2} + 42\beta _1 + 166 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 6\beta_{6} + 38\beta_{5} + 19\beta_{4} - 32\beta_{3} + 69\beta_{2} + 388\beta _1 + 246 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 70\beta_{6} + 223\beta_{5} - 14\beta_{4} - 87\beta_{3} + 566\beta_{2} + 1315\beta _1 + 3348 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.12367
3.07921
1.26184
1.10304
−2.08033
−3.52131
−3.96612
−5.12367 3.00000 18.2520 −5.00000 −15.3710 −21.7657 −52.5281 9.00000 25.6184
1.2 −3.07921 3.00000 1.48151 −5.00000 −9.23762 23.1532 20.0718 9.00000 15.3960
1.3 −1.26184 3.00000 −6.40776 −5.00000 −3.78552 −13.4311 18.1803 9.00000 6.30920
1.4 −1.10304 3.00000 −6.78329 −5.00000 −3.30913 1.72550 16.3066 9.00000 5.51522
1.5 2.08033 3.00000 −3.67221 −5.00000 6.24100 15.0555 −24.2821 9.00000 −10.4017
1.6 3.52131 3.00000 4.39964 −5.00000 10.5639 −8.86571 −12.6780 9.00000 −17.6066
1.7 3.96612 3.00000 7.73008 −5.00000 11.8983 −32.8717 −1.07055 9.00000 −19.8306
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.4.a.j 7
3.b odd 2 1 1305.4.a.m 7
5.b even 2 1 2175.4.a.m 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.4.a.j 7 1.a even 1 1 trivial
1305.4.a.m 7 3.b odd 2 1
2175.4.a.m 7 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{7} + T_{2}^{6} - 35T_{2}^{5} - 18T_{2}^{4} + 329T_{2}^{3} + 167T_{2}^{2} - 767T_{2} - 638 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(435))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + T^{6} + \cdots - 638 \) Copy content Toggle raw display
$3$ \( (T - 3)^{7} \) Copy content Toggle raw display
$5$ \( (T + 5)^{7} \) Copy content Toggle raw display
$7$ \( T^{7} + 37 T^{6} + \cdots - 51243488 \) Copy content Toggle raw display
$11$ \( T^{7} + 11 T^{6} + \cdots - 344198304 \) Copy content Toggle raw display
$13$ \( T^{7} + \cdots + 724528410064 \) Copy content Toggle raw display
$17$ \( T^{7} + \cdots - 1088280942608 \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots + 206799749120 \) Copy content Toggle raw display
$23$ \( T^{7} + \cdots - 199055640559616 \) Copy content Toggle raw display
$29$ \( (T + 29)^{7} \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots - 2046710061056 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots + 48\!\cdots\!52 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots + 24\!\cdots\!48 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots - 24\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots - 41\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots - 40\!\cdots\!68 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots - 19\!\cdots\!80 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots + 36\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{7} + \cdots + 43\!\cdots\!52 \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots + 57\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots - 24\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots + 16\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots + 20\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots - 53\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots + 27\!\cdots\!76 \) Copy content Toggle raw display
show more
show less