Properties

Label 435.4.a.i.1.5
Level $435$
Weight $4$
Character 435.1
Self dual yes
Analytic conductor $25.666$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.40909\) of defining polynomial
Character \(\chi\) \(=\) 435.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.40909 q^{2} -3.00000 q^{3} -6.01448 q^{4} +5.00000 q^{5} -4.22726 q^{6} +22.4156 q^{7} -19.7476 q^{8} +9.00000 q^{9} +7.04543 q^{10} +11.9568 q^{11} +18.0434 q^{12} -24.3982 q^{13} +31.5855 q^{14} -15.0000 q^{15} +20.2898 q^{16} -57.0575 q^{17} +12.6818 q^{18} -101.555 q^{19} -30.0724 q^{20} -67.2467 q^{21} +16.8481 q^{22} +133.400 q^{23} +59.2428 q^{24} +25.0000 q^{25} -34.3792 q^{26} -27.0000 q^{27} -134.818 q^{28} +29.0000 q^{29} -21.1363 q^{30} +292.953 q^{31} +186.571 q^{32} -35.8703 q^{33} -80.3989 q^{34} +112.078 q^{35} -54.1303 q^{36} +393.581 q^{37} -143.100 q^{38} +73.1947 q^{39} -98.7380 q^{40} +237.918 q^{41} -94.7564 q^{42} -82.3986 q^{43} -71.9137 q^{44} +45.0000 q^{45} +187.972 q^{46} +490.781 q^{47} -60.8693 q^{48} +159.458 q^{49} +35.2271 q^{50} +171.173 q^{51} +146.743 q^{52} -416.624 q^{53} -38.0453 q^{54} +59.7838 q^{55} -442.654 q^{56} +304.666 q^{57} +40.8635 q^{58} +320.424 q^{59} +90.2172 q^{60} +612.103 q^{61} +412.796 q^{62} +201.740 q^{63} +100.576 q^{64} -121.991 q^{65} -50.5443 q^{66} +569.634 q^{67} +343.171 q^{68} -400.199 q^{69} +157.927 q^{70} -689.224 q^{71} -177.728 q^{72} +125.224 q^{73} +554.589 q^{74} -75.0000 q^{75} +610.801 q^{76} +268.018 q^{77} +103.138 q^{78} -356.958 q^{79} +101.449 q^{80} +81.0000 q^{81} +335.247 q^{82} +947.383 q^{83} +404.454 q^{84} -285.288 q^{85} -116.107 q^{86} -87.0000 q^{87} -236.117 q^{88} -1212.05 q^{89} +63.4089 q^{90} -546.901 q^{91} -802.330 q^{92} -878.858 q^{93} +691.553 q^{94} -507.776 q^{95} -559.712 q^{96} -597.340 q^{97} +224.690 q^{98} +107.611 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} - 21 q^{3} + 22 q^{4} + 35 q^{5} + 6 q^{6} - 50 q^{7} - 33 q^{8} + 63 q^{9} - 10 q^{10} + 76 q^{11} - 66 q^{12} + 30 q^{13} + 89 q^{14} - 105 q^{15} + 138 q^{16} - 140 q^{17} - 18 q^{18} + 90 q^{19}+ \cdots + 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40909 0.498187 0.249094 0.968479i \(-0.419867\pi\)
0.249094 + 0.968479i \(0.419867\pi\)
\(3\) −3.00000 −0.577350
\(4\) −6.01448 −0.751810
\(5\) 5.00000 0.447214
\(6\) −4.22726 −0.287628
\(7\) 22.4156 1.21033 0.605164 0.796101i \(-0.293108\pi\)
0.605164 + 0.796101i \(0.293108\pi\)
\(8\) −19.7476 −0.872729
\(9\) 9.00000 0.333333
\(10\) 7.04543 0.222796
\(11\) 11.9568 0.327736 0.163868 0.986482i \(-0.447603\pi\)
0.163868 + 0.986482i \(0.447603\pi\)
\(12\) 18.0434 0.434058
\(13\) −24.3982 −0.520527 −0.260264 0.965538i \(-0.583810\pi\)
−0.260264 + 0.965538i \(0.583810\pi\)
\(14\) 31.5855 0.602969
\(15\) −15.0000 −0.258199
\(16\) 20.2898 0.317027
\(17\) −57.0575 −0.814028 −0.407014 0.913422i \(-0.633430\pi\)
−0.407014 + 0.913422i \(0.633430\pi\)
\(18\) 12.6818 0.166062
\(19\) −101.555 −1.22623 −0.613115 0.789994i \(-0.710084\pi\)
−0.613115 + 0.789994i \(0.710084\pi\)
\(20\) −30.0724 −0.336220
\(21\) −67.2467 −0.698783
\(22\) 16.8481 0.163274
\(23\) 133.400 1.20938 0.604691 0.796460i \(-0.293297\pi\)
0.604691 + 0.796460i \(0.293297\pi\)
\(24\) 59.2428 0.503870
\(25\) 25.0000 0.200000
\(26\) −34.3792 −0.259320
\(27\) −27.0000 −0.192450
\(28\) −134.818 −0.909936
\(29\) 29.0000 0.185695
\(30\) −21.1363 −0.128631
\(31\) 292.953 1.69729 0.848643 0.528966i \(-0.177420\pi\)
0.848643 + 0.528966i \(0.177420\pi\)
\(32\) 186.571 1.03067
\(33\) −35.8703 −0.189219
\(34\) −80.3989 −0.405538
\(35\) 112.078 0.541275
\(36\) −54.1303 −0.250603
\(37\) 393.581 1.74876 0.874382 0.485238i \(-0.161267\pi\)
0.874382 + 0.485238i \(0.161267\pi\)
\(38\) −143.100 −0.610892
\(39\) 73.1947 0.300527
\(40\) −98.7380 −0.390296
\(41\) 237.918 0.906257 0.453128 0.891445i \(-0.350308\pi\)
0.453128 + 0.891445i \(0.350308\pi\)
\(42\) −94.7564 −0.348125
\(43\) −82.3986 −0.292225 −0.146112 0.989268i \(-0.546676\pi\)
−0.146112 + 0.989268i \(0.546676\pi\)
\(44\) −71.9137 −0.246395
\(45\) 45.0000 0.149071
\(46\) 187.972 0.602498
\(47\) 490.781 1.52314 0.761572 0.648080i \(-0.224428\pi\)
0.761572 + 0.648080i \(0.224428\pi\)
\(48\) −60.8693 −0.183036
\(49\) 159.458 0.464893
\(50\) 35.2271 0.0996374
\(51\) 171.173 0.469979
\(52\) 146.743 0.391338
\(53\) −416.624 −1.07977 −0.539885 0.841739i \(-0.681532\pi\)
−0.539885 + 0.841739i \(0.681532\pi\)
\(54\) −38.0453 −0.0958761
\(55\) 59.7838 0.146568
\(56\) −442.654 −1.05629
\(57\) 304.666 0.707964
\(58\) 40.8635 0.0925110
\(59\) 320.424 0.707046 0.353523 0.935426i \(-0.384984\pi\)
0.353523 + 0.935426i \(0.384984\pi\)
\(60\) 90.2172 0.194116
\(61\) 612.103 1.28478 0.642392 0.766376i \(-0.277942\pi\)
0.642392 + 0.766376i \(0.277942\pi\)
\(62\) 412.796 0.845566
\(63\) 201.740 0.403442
\(64\) 100.576 0.196438
\(65\) −121.991 −0.232787
\(66\) −50.5443 −0.0942663
\(67\) 569.634 1.03868 0.519342 0.854567i \(-0.326177\pi\)
0.519342 + 0.854567i \(0.326177\pi\)
\(68\) 343.171 0.611994
\(69\) −400.199 −0.698237
\(70\) 157.927 0.269656
\(71\) −689.224 −1.15205 −0.576027 0.817431i \(-0.695398\pi\)
−0.576027 + 0.817431i \(0.695398\pi\)
\(72\) −177.728 −0.290910
\(73\) 125.224 0.200772 0.100386 0.994949i \(-0.467992\pi\)
0.100386 + 0.994949i \(0.467992\pi\)
\(74\) 554.589 0.871212
\(75\) −75.0000 −0.115470
\(76\) 610.801 0.921891
\(77\) 268.018 0.396668
\(78\) 103.138 0.149718
\(79\) −356.958 −0.508366 −0.254183 0.967156i \(-0.581807\pi\)
−0.254183 + 0.967156i \(0.581807\pi\)
\(80\) 101.449 0.141779
\(81\) 81.0000 0.111111
\(82\) 335.247 0.451485
\(83\) 947.383 1.25288 0.626439 0.779471i \(-0.284512\pi\)
0.626439 + 0.779471i \(0.284512\pi\)
\(84\) 404.454 0.525352
\(85\) −285.288 −0.364045
\(86\) −116.107 −0.145583
\(87\) −87.0000 −0.107211
\(88\) −236.117 −0.286025
\(89\) −1212.05 −1.44356 −0.721779 0.692123i \(-0.756675\pi\)
−0.721779 + 0.692123i \(0.756675\pi\)
\(90\) 63.4089 0.0742653
\(91\) −546.901 −0.630009
\(92\) −802.330 −0.909224
\(93\) −878.858 −0.979929
\(94\) 691.553 0.758811
\(95\) −507.776 −0.548387
\(96\) −559.712 −0.595056
\(97\) −597.340 −0.625265 −0.312633 0.949874i \(-0.601211\pi\)
−0.312633 + 0.949874i \(0.601211\pi\)
\(98\) 224.690 0.231603
\(99\) 107.611 0.109245
\(100\) −150.362 −0.150362
\(101\) −318.168 −0.313455 −0.156727 0.987642i \(-0.550094\pi\)
−0.156727 + 0.987642i \(0.550094\pi\)
\(102\) 241.197 0.234138
\(103\) −629.601 −0.602295 −0.301148 0.953577i \(-0.597370\pi\)
−0.301148 + 0.953577i \(0.597370\pi\)
\(104\) 481.807 0.454279
\(105\) −336.234 −0.312505
\(106\) −587.059 −0.537927
\(107\) 716.131 0.647019 0.323509 0.946225i \(-0.395137\pi\)
0.323509 + 0.946225i \(0.395137\pi\)
\(108\) 162.391 0.144686
\(109\) 1969.57 1.73074 0.865371 0.501132i \(-0.167083\pi\)
0.865371 + 0.501132i \(0.167083\pi\)
\(110\) 84.2405 0.0730183
\(111\) −1180.74 −1.00965
\(112\) 454.807 0.383707
\(113\) 1106.67 0.921295 0.460647 0.887583i \(-0.347617\pi\)
0.460647 + 0.887583i \(0.347617\pi\)
\(114\) 429.300 0.352698
\(115\) 666.999 0.540852
\(116\) −174.420 −0.139608
\(117\) −219.584 −0.173509
\(118\) 451.505 0.352241
\(119\) −1278.98 −0.985241
\(120\) 296.214 0.225338
\(121\) −1188.04 −0.892589
\(122\) 862.506 0.640063
\(123\) −713.753 −0.523228
\(124\) −1761.96 −1.27604
\(125\) 125.000 0.0894427
\(126\) 284.269 0.200990
\(127\) −2496.52 −1.74433 −0.872167 0.489207i \(-0.837286\pi\)
−0.872167 + 0.489207i \(0.837286\pi\)
\(128\) −1350.85 −0.932805
\(129\) 247.196 0.168716
\(130\) −171.896 −0.115971
\(131\) 2155.49 1.43760 0.718800 0.695216i \(-0.244691\pi\)
0.718800 + 0.695216i \(0.244691\pi\)
\(132\) 215.741 0.142256
\(133\) −2276.42 −1.48414
\(134\) 802.663 0.517459
\(135\) −135.000 −0.0860663
\(136\) 1126.75 0.710426
\(137\) 1128.30 0.703628 0.351814 0.936070i \(-0.385565\pi\)
0.351814 + 0.936070i \(0.385565\pi\)
\(138\) −563.915 −0.347852
\(139\) 1331.04 0.812212 0.406106 0.913826i \(-0.366886\pi\)
0.406106 + 0.913826i \(0.366886\pi\)
\(140\) −674.090 −0.406936
\(141\) −1472.34 −0.879388
\(142\) −971.176 −0.573938
\(143\) −291.724 −0.170596
\(144\) 182.608 0.105676
\(145\) 145.000 0.0830455
\(146\) 176.451 0.100022
\(147\) −478.374 −0.268406
\(148\) −2367.18 −1.31474
\(149\) 2689.78 1.47890 0.739448 0.673214i \(-0.235087\pi\)
0.739448 + 0.673214i \(0.235087\pi\)
\(150\) −105.681 −0.0575257
\(151\) −1784.39 −0.961667 −0.480834 0.876812i \(-0.659666\pi\)
−0.480834 + 0.876812i \(0.659666\pi\)
\(152\) 2005.47 1.07017
\(153\) −513.518 −0.271343
\(154\) 377.660 0.197615
\(155\) 1464.76 0.759050
\(156\) −440.228 −0.225939
\(157\) −984.642 −0.500529 −0.250264 0.968178i \(-0.580518\pi\)
−0.250264 + 0.968178i \(0.580518\pi\)
\(158\) −502.984 −0.253261
\(159\) 1249.87 0.623405
\(160\) 932.854 0.460929
\(161\) 2990.23 1.46375
\(162\) 114.136 0.0553541
\(163\) −646.272 −0.310552 −0.155276 0.987871i \(-0.549627\pi\)
−0.155276 + 0.987871i \(0.549627\pi\)
\(164\) −1430.95 −0.681333
\(165\) −179.351 −0.0846211
\(166\) 1334.94 0.624167
\(167\) −160.346 −0.0742993 −0.0371496 0.999310i \(-0.511828\pi\)
−0.0371496 + 0.999310i \(0.511828\pi\)
\(168\) 1327.96 0.609848
\(169\) −1601.73 −0.729051
\(170\) −401.995 −0.181362
\(171\) −913.997 −0.408743
\(172\) 495.585 0.219698
\(173\) 2583.11 1.13520 0.567602 0.823303i \(-0.307871\pi\)
0.567602 + 0.823303i \(0.307871\pi\)
\(174\) −122.590 −0.0534113
\(175\) 560.389 0.242065
\(176\) 242.600 0.103901
\(177\) −961.273 −0.408213
\(178\) −1707.88 −0.719162
\(179\) 3663.85 1.52988 0.764941 0.644100i \(-0.222768\pi\)
0.764941 + 0.644100i \(0.222768\pi\)
\(180\) −270.651 −0.112073
\(181\) 3394.16 1.39384 0.696922 0.717147i \(-0.254553\pi\)
0.696922 + 0.717147i \(0.254553\pi\)
\(182\) −770.630 −0.313862
\(183\) −1836.31 −0.741770
\(184\) −2634.32 −1.05546
\(185\) 1967.90 0.782071
\(186\) −1238.39 −0.488188
\(187\) −682.223 −0.266787
\(188\) −2951.79 −1.14511
\(189\) −605.221 −0.232928
\(190\) −715.500 −0.273199
\(191\) −634.977 −0.240551 −0.120276 0.992741i \(-0.538378\pi\)
−0.120276 + 0.992741i \(0.538378\pi\)
\(192\) −301.729 −0.113413
\(193\) −2438.75 −0.909559 −0.454780 0.890604i \(-0.650282\pi\)
−0.454780 + 0.890604i \(0.650282\pi\)
\(194\) −841.704 −0.311499
\(195\) 365.974 0.134400
\(196\) −959.057 −0.349511
\(197\) −4985.61 −1.80310 −0.901549 0.432677i \(-0.857569\pi\)
−0.901549 + 0.432677i \(0.857569\pi\)
\(198\) 151.633 0.0544247
\(199\) 1111.42 0.395913 0.197957 0.980211i \(-0.436569\pi\)
0.197957 + 0.980211i \(0.436569\pi\)
\(200\) −493.690 −0.174546
\(201\) −1708.90 −0.599684
\(202\) −448.326 −0.156159
\(203\) 650.052 0.224752
\(204\) −1029.51 −0.353335
\(205\) 1189.59 0.405290
\(206\) −887.162 −0.300056
\(207\) 1200.60 0.403127
\(208\) −495.035 −0.165021
\(209\) −1214.27 −0.401880
\(210\) −473.782 −0.155686
\(211\) −4654.76 −1.51870 −0.759352 0.650680i \(-0.774484\pi\)
−0.759352 + 0.650680i \(0.774484\pi\)
\(212\) 2505.78 0.811781
\(213\) 2067.67 0.665139
\(214\) 1009.09 0.322336
\(215\) −411.993 −0.130687
\(216\) 533.185 0.167957
\(217\) 6566.71 2.05427
\(218\) 2775.30 0.862233
\(219\) −375.672 −0.115916
\(220\) −359.568 −0.110191
\(221\) 1392.10 0.423724
\(222\) −1663.77 −0.502994
\(223\) −751.947 −0.225803 −0.112901 0.993606i \(-0.536014\pi\)
−0.112901 + 0.993606i \(0.536014\pi\)
\(224\) 4182.09 1.24745
\(225\) 225.000 0.0666667
\(226\) 1559.39 0.458977
\(227\) −1076.59 −0.314784 −0.157392 0.987536i \(-0.550309\pi\)
−0.157392 + 0.987536i \(0.550309\pi\)
\(228\) −1832.40 −0.532254
\(229\) −3048.93 −0.879822 −0.439911 0.898041i \(-0.644990\pi\)
−0.439911 + 0.898041i \(0.644990\pi\)
\(230\) 939.858 0.269445
\(231\) −804.053 −0.229017
\(232\) −572.680 −0.162062
\(233\) 20.2258 0.00568686 0.00284343 0.999996i \(-0.499095\pi\)
0.00284343 + 0.999996i \(0.499095\pi\)
\(234\) −309.413 −0.0864400
\(235\) 2453.91 0.681171
\(236\) −1927.19 −0.531564
\(237\) 1070.87 0.293505
\(238\) −1802.19 −0.490834
\(239\) 307.893 0.0833303 0.0416651 0.999132i \(-0.486734\pi\)
0.0416651 + 0.999132i \(0.486734\pi\)
\(240\) −304.346 −0.0818561
\(241\) 4530.44 1.21092 0.605459 0.795877i \(-0.292990\pi\)
0.605459 + 0.795877i \(0.292990\pi\)
\(242\) −1674.04 −0.444676
\(243\) −243.000 −0.0641500
\(244\) −3681.48 −0.965913
\(245\) 797.291 0.207906
\(246\) −1005.74 −0.260665
\(247\) 2477.77 0.638286
\(248\) −5785.12 −1.48127
\(249\) −2842.15 −0.723349
\(250\) 176.136 0.0445592
\(251\) −1320.51 −0.332070 −0.166035 0.986120i \(-0.553096\pi\)
−0.166035 + 0.986120i \(0.553096\pi\)
\(252\) −1213.36 −0.303312
\(253\) 1595.03 0.396358
\(254\) −3517.81 −0.869005
\(255\) 855.863 0.210181
\(256\) −2708.07 −0.661149
\(257\) −2205.98 −0.535430 −0.267715 0.963498i \(-0.586269\pi\)
−0.267715 + 0.963498i \(0.586269\pi\)
\(258\) 348.320 0.0840522
\(259\) 8822.34 2.11658
\(260\) 733.714 0.175011
\(261\) 261.000 0.0618984
\(262\) 3037.26 0.716194
\(263\) −6630.48 −1.55457 −0.777286 0.629147i \(-0.783404\pi\)
−0.777286 + 0.629147i \(0.783404\pi\)
\(264\) 708.352 0.165137
\(265\) −2083.12 −0.482887
\(266\) −3207.67 −0.739379
\(267\) 3636.14 0.833439
\(268\) −3426.05 −0.780893
\(269\) 4744.31 1.07534 0.537669 0.843156i \(-0.319305\pi\)
0.537669 + 0.843156i \(0.319305\pi\)
\(270\) −190.227 −0.0428771
\(271\) −5641.82 −1.26464 −0.632318 0.774709i \(-0.717896\pi\)
−0.632318 + 0.774709i \(0.717896\pi\)
\(272\) −1157.68 −0.258069
\(273\) 1640.70 0.363736
\(274\) 1589.87 0.350538
\(275\) 298.919 0.0655473
\(276\) 2406.99 0.524941
\(277\) −5431.05 −1.17805 −0.589025 0.808115i \(-0.700488\pi\)
−0.589025 + 0.808115i \(0.700488\pi\)
\(278\) 1875.55 0.404634
\(279\) 2636.58 0.565762
\(280\) −2213.27 −0.472386
\(281\) 9392.01 1.99388 0.996940 0.0781664i \(-0.0249065\pi\)
0.996940 + 0.0781664i \(0.0249065\pi\)
\(282\) −2074.66 −0.438100
\(283\) −6584.64 −1.38310 −0.691548 0.722331i \(-0.743071\pi\)
−0.691548 + 0.722331i \(0.743071\pi\)
\(284\) 4145.32 0.866125
\(285\) 1523.33 0.316611
\(286\) −411.064 −0.0849886
\(287\) 5333.07 1.09687
\(288\) 1679.14 0.343556
\(289\) −1657.44 −0.337358
\(290\) 204.317 0.0413722
\(291\) 1792.02 0.360997
\(292\) −753.157 −0.150942
\(293\) −1391.13 −0.277374 −0.138687 0.990336i \(-0.544288\pi\)
−0.138687 + 0.990336i \(0.544288\pi\)
\(294\) −674.071 −0.133716
\(295\) 1602.12 0.316200
\(296\) −7772.27 −1.52620
\(297\) −322.833 −0.0630729
\(298\) 3790.13 0.736766
\(299\) −3254.72 −0.629516
\(300\) 451.086 0.0868115
\(301\) −1847.01 −0.353688
\(302\) −2514.36 −0.479090
\(303\) 954.505 0.180973
\(304\) −2060.53 −0.388748
\(305\) 3060.52 0.574573
\(306\) −723.590 −0.135179
\(307\) −5027.84 −0.934704 −0.467352 0.884071i \(-0.654792\pi\)
−0.467352 + 0.884071i \(0.654792\pi\)
\(308\) −1611.99 −0.298219
\(309\) 1888.80 0.347735
\(310\) 2063.98 0.378149
\(311\) 939.987 0.171388 0.0856942 0.996321i \(-0.472689\pi\)
0.0856942 + 0.996321i \(0.472689\pi\)
\(312\) −1445.42 −0.262278
\(313\) −9028.02 −1.63033 −0.815166 0.579228i \(-0.803354\pi\)
−0.815166 + 0.579228i \(0.803354\pi\)
\(314\) −1387.45 −0.249357
\(315\) 1008.70 0.180425
\(316\) 2146.91 0.382194
\(317\) −2461.43 −0.436112 −0.218056 0.975936i \(-0.569972\pi\)
−0.218056 + 0.975936i \(0.569972\pi\)
\(318\) 1761.18 0.310572
\(319\) 346.746 0.0608591
\(320\) 502.881 0.0878497
\(321\) −2148.39 −0.373556
\(322\) 4213.49 0.729220
\(323\) 5794.49 0.998185
\(324\) −487.173 −0.0835344
\(325\) −609.956 −0.104105
\(326\) −910.652 −0.154713
\(327\) −5908.72 −0.999244
\(328\) −4698.31 −0.790916
\(329\) 11001.1 1.84350
\(330\) −252.722 −0.0421572
\(331\) 4350.92 0.722502 0.361251 0.932469i \(-0.382350\pi\)
0.361251 + 0.932469i \(0.382350\pi\)
\(332\) −5698.01 −0.941925
\(333\) 3542.23 0.582921
\(334\) −225.942 −0.0370149
\(335\) 2848.17 0.464514
\(336\) −1364.42 −0.221533
\(337\) 2324.77 0.375781 0.187890 0.982190i \(-0.439835\pi\)
0.187890 + 0.982190i \(0.439835\pi\)
\(338\) −2256.97 −0.363204
\(339\) −3320.00 −0.531910
\(340\) 1715.86 0.273692
\(341\) 3502.77 0.556262
\(342\) −1287.90 −0.203631
\(343\) −4114.20 −0.647655
\(344\) 1627.18 0.255033
\(345\) −2001.00 −0.312261
\(346\) 3639.82 0.565543
\(347\) 3384.11 0.523541 0.261770 0.965130i \(-0.415694\pi\)
0.261770 + 0.965130i \(0.415694\pi\)
\(348\) 523.260 0.0806025
\(349\) 3876.35 0.594545 0.297273 0.954793i \(-0.403923\pi\)
0.297273 + 0.954793i \(0.403923\pi\)
\(350\) 789.637 0.120594
\(351\) 658.753 0.100176
\(352\) 2230.78 0.337787
\(353\) 7741.90 1.16731 0.583654 0.812003i \(-0.301623\pi\)
0.583654 + 0.812003i \(0.301623\pi\)
\(354\) −1354.52 −0.203366
\(355\) −3446.12 −0.515214
\(356\) 7289.83 1.08528
\(357\) 3836.93 0.568829
\(358\) 5162.68 0.762168
\(359\) −6553.34 −0.963432 −0.481716 0.876327i \(-0.659986\pi\)
−0.481716 + 0.876327i \(0.659986\pi\)
\(360\) −888.642 −0.130099
\(361\) 3454.46 0.503639
\(362\) 4782.66 0.694395
\(363\) 3564.11 0.515336
\(364\) 3289.32 0.473647
\(365\) 626.120 0.0897880
\(366\) −2587.52 −0.369540
\(367\) −5.48077 −0.000779547 0 −0.000389774 1.00000i \(-0.500124\pi\)
−0.000389774 1.00000i \(0.500124\pi\)
\(368\) 2706.65 0.383407
\(369\) 2141.26 0.302086
\(370\) 2772.94 0.389618
\(371\) −9338.88 −1.30687
\(372\) 5285.87 0.736720
\(373\) 12616.7 1.75139 0.875696 0.482862i \(-0.160403\pi\)
0.875696 + 0.482862i \(0.160403\pi\)
\(374\) −961.311 −0.132910
\(375\) −375.000 −0.0516398
\(376\) −9691.75 −1.32929
\(377\) −707.549 −0.0966595
\(378\) −852.808 −0.116042
\(379\) −7220.33 −0.978585 −0.489292 0.872120i \(-0.662745\pi\)
−0.489292 + 0.872120i \(0.662745\pi\)
\(380\) 3054.01 0.412282
\(381\) 7489.57 1.00709
\(382\) −894.737 −0.119840
\(383\) 3257.70 0.434624 0.217312 0.976102i \(-0.430271\pi\)
0.217312 + 0.976102i \(0.430271\pi\)
\(384\) 4052.54 0.538555
\(385\) 1340.09 0.177395
\(386\) −3436.41 −0.453131
\(387\) −741.588 −0.0974083
\(388\) 3592.69 0.470080
\(389\) 12382.6 1.61395 0.806973 0.590588i \(-0.201104\pi\)
0.806973 + 0.590588i \(0.201104\pi\)
\(390\) 515.688 0.0669561
\(391\) −7611.46 −0.984470
\(392\) −3148.92 −0.405725
\(393\) −6466.46 −0.829999
\(394\) −7025.16 −0.898280
\(395\) −1784.79 −0.227348
\(396\) −647.223 −0.0821318
\(397\) 9539.00 1.20592 0.602958 0.797773i \(-0.293989\pi\)
0.602958 + 0.797773i \(0.293989\pi\)
\(398\) 1566.09 0.197239
\(399\) 6829.26 0.856868
\(400\) 507.244 0.0634055
\(401\) 460.813 0.0573863 0.0286932 0.999588i \(-0.490865\pi\)
0.0286932 + 0.999588i \(0.490865\pi\)
\(402\) −2407.99 −0.298755
\(403\) −7147.54 −0.883484
\(404\) 1913.62 0.235658
\(405\) 405.000 0.0496904
\(406\) 915.979 0.111969
\(407\) 4705.95 0.573133
\(408\) −3380.25 −0.410165
\(409\) 12769.1 1.54374 0.771871 0.635780i \(-0.219321\pi\)
0.771871 + 0.635780i \(0.219321\pi\)
\(410\) 1676.23 0.201910
\(411\) −3384.89 −0.406240
\(412\) 3786.72 0.452812
\(413\) 7182.50 0.855757
\(414\) 1691.74 0.200833
\(415\) 4736.92 0.560304
\(416\) −4552.00 −0.536491
\(417\) −3993.13 −0.468931
\(418\) −1711.01 −0.200211
\(419\) 4192.84 0.488863 0.244432 0.969667i \(-0.421399\pi\)
0.244432 + 0.969667i \(0.421399\pi\)
\(420\) 2022.27 0.234944
\(421\) −9960.32 −1.15306 −0.576528 0.817078i \(-0.695593\pi\)
−0.576528 + 0.817078i \(0.695593\pi\)
\(422\) −6558.95 −0.756599
\(423\) 4417.03 0.507715
\(424\) 8227.33 0.942346
\(425\) −1426.44 −0.162806
\(426\) 2913.53 0.331364
\(427\) 13720.7 1.55501
\(428\) −4307.15 −0.486435
\(429\) 875.172 0.0984935
\(430\) −580.534 −0.0651066
\(431\) −898.036 −0.100364 −0.0501820 0.998740i \(-0.515980\pi\)
−0.0501820 + 0.998740i \(0.515980\pi\)
\(432\) −547.823 −0.0610120
\(433\) −13076.0 −1.45126 −0.725629 0.688086i \(-0.758451\pi\)
−0.725629 + 0.688086i \(0.758451\pi\)
\(434\) 9253.05 1.02341
\(435\) −435.000 −0.0479463
\(436\) −11845.9 −1.30119
\(437\) −13547.4 −1.48298
\(438\) −529.354 −0.0577477
\(439\) −64.6529 −0.00702897 −0.00351448 0.999994i \(-0.501119\pi\)
−0.00351448 + 0.999994i \(0.501119\pi\)
\(440\) −1180.59 −0.127914
\(441\) 1435.12 0.154964
\(442\) 1961.59 0.211094
\(443\) 101.758 0.0109135 0.00545676 0.999985i \(-0.498263\pi\)
0.00545676 + 0.999985i \(0.498263\pi\)
\(444\) 7101.55 0.759064
\(445\) −6060.23 −0.645579
\(446\) −1059.56 −0.112492
\(447\) −8069.34 −0.853841
\(448\) 2254.47 0.237754
\(449\) 12597.0 1.32403 0.662016 0.749489i \(-0.269701\pi\)
0.662016 + 0.749489i \(0.269701\pi\)
\(450\) 317.044 0.0332125
\(451\) 2844.73 0.297013
\(452\) −6656.01 −0.692638
\(453\) 5353.18 0.555219
\(454\) −1517.01 −0.156821
\(455\) −2734.50 −0.281748
\(456\) −6016.41 −0.617861
\(457\) 4595.05 0.470344 0.235172 0.971954i \(-0.424435\pi\)
0.235172 + 0.971954i \(0.424435\pi\)
\(458\) −4296.21 −0.438316
\(459\) 1540.55 0.156660
\(460\) −4011.65 −0.406618
\(461\) 3826.24 0.386564 0.193282 0.981143i \(-0.438087\pi\)
0.193282 + 0.981143i \(0.438087\pi\)
\(462\) −1132.98 −0.114093
\(463\) 14390.6 1.44447 0.722233 0.691650i \(-0.243116\pi\)
0.722233 + 0.691650i \(0.243116\pi\)
\(464\) 588.403 0.0588705
\(465\) −4394.29 −0.438237
\(466\) 28.4999 0.00283312
\(467\) −11750.2 −1.16431 −0.582156 0.813077i \(-0.697791\pi\)
−0.582156 + 0.813077i \(0.697791\pi\)
\(468\) 1320.68 0.130446
\(469\) 12768.7 1.25715
\(470\) 3457.76 0.339350
\(471\) 2953.93 0.288980
\(472\) −6327.61 −0.617059
\(473\) −985.221 −0.0957727
\(474\) 1508.95 0.146220
\(475\) −2538.88 −0.245246
\(476\) 7692.38 0.740714
\(477\) −3749.62 −0.359923
\(478\) 433.848 0.0415141
\(479\) −2420.75 −0.230912 −0.115456 0.993313i \(-0.536833\pi\)
−0.115456 + 0.993313i \(0.536833\pi\)
\(480\) −2798.56 −0.266117
\(481\) −9602.68 −0.910280
\(482\) 6383.78 0.603264
\(483\) −8970.70 −0.845095
\(484\) 7145.41 0.671057
\(485\) −2986.70 −0.279627
\(486\) −342.408 −0.0319587
\(487\) 5597.36 0.520822 0.260411 0.965498i \(-0.416142\pi\)
0.260411 + 0.965498i \(0.416142\pi\)
\(488\) −12087.6 −1.12127
\(489\) 1938.81 0.179297
\(490\) 1123.45 0.103576
\(491\) 7787.76 0.715797 0.357899 0.933760i \(-0.383493\pi\)
0.357899 + 0.933760i \(0.383493\pi\)
\(492\) 4292.85 0.393368
\(493\) −1654.67 −0.151161
\(494\) 3491.39 0.317986
\(495\) 538.054 0.0488560
\(496\) 5943.94 0.538086
\(497\) −15449.4 −1.39436
\(498\) −4004.83 −0.360363
\(499\) 758.279 0.0680265 0.0340133 0.999421i \(-0.489171\pi\)
0.0340133 + 0.999421i \(0.489171\pi\)
\(500\) −751.810 −0.0672439
\(501\) 481.039 0.0428967
\(502\) −1860.71 −0.165433
\(503\) −9841.58 −0.872394 −0.436197 0.899851i \(-0.643675\pi\)
−0.436197 + 0.899851i \(0.643675\pi\)
\(504\) −3983.88 −0.352096
\(505\) −1590.84 −0.140181
\(506\) 2247.53 0.197460
\(507\) 4805.18 0.420918
\(508\) 15015.3 1.31141
\(509\) 10862.8 0.945947 0.472974 0.881077i \(-0.343181\pi\)
0.472974 + 0.881077i \(0.343181\pi\)
\(510\) 1205.98 0.104710
\(511\) 2806.97 0.243000
\(512\) 6990.87 0.603429
\(513\) 2741.99 0.235988
\(514\) −3108.42 −0.266744
\(515\) −3148.01 −0.269355
\(516\) −1486.75 −0.126842
\(517\) 5868.15 0.499190
\(518\) 12431.4 1.05445
\(519\) −7749.33 −0.655410
\(520\) 2409.03 0.203160
\(521\) 16027.8 1.34777 0.673886 0.738836i \(-0.264624\pi\)
0.673886 + 0.738836i \(0.264624\pi\)
\(522\) 367.771 0.0308370
\(523\) 3028.25 0.253186 0.126593 0.991955i \(-0.459596\pi\)
0.126593 + 0.991955i \(0.459596\pi\)
\(524\) −12964.1 −1.08080
\(525\) −1681.17 −0.139757
\(526\) −9342.91 −0.774468
\(527\) −16715.2 −1.38164
\(528\) −727.799 −0.0599875
\(529\) 5628.49 0.462603
\(530\) −2935.30 −0.240568
\(531\) 2883.82 0.235682
\(532\) 13691.5 1.11579
\(533\) −5804.78 −0.471731
\(534\) 5123.63 0.415208
\(535\) 3580.65 0.289356
\(536\) −11248.9 −0.906489
\(537\) −10991.5 −0.883278
\(538\) 6685.14 0.535719
\(539\) 1906.60 0.152362
\(540\) 811.954 0.0647055
\(541\) −5465.05 −0.434308 −0.217154 0.976137i \(-0.569677\pi\)
−0.217154 + 0.976137i \(0.569677\pi\)
\(542\) −7949.81 −0.630025
\(543\) −10182.5 −0.804736
\(544\) −10645.3 −0.838993
\(545\) 9847.86 0.774011
\(546\) 2311.89 0.181208
\(547\) 5025.89 0.392855 0.196427 0.980518i \(-0.437066\pi\)
0.196427 + 0.980518i \(0.437066\pi\)
\(548\) −6786.12 −0.528994
\(549\) 5508.93 0.428261
\(550\) 421.203 0.0326548
\(551\) −2945.10 −0.227705
\(552\) 7902.97 0.609371
\(553\) −8001.42 −0.615289
\(554\) −7652.81 −0.586890
\(555\) −5903.71 −0.451529
\(556\) −8005.52 −0.610629
\(557\) −13090.4 −0.995794 −0.497897 0.867236i \(-0.665894\pi\)
−0.497897 + 0.867236i \(0.665894\pi\)
\(558\) 3715.16 0.281855
\(559\) 2010.38 0.152111
\(560\) 2274.03 0.171599
\(561\) 2046.67 0.154029
\(562\) 13234.1 0.993325
\(563\) −18020.8 −1.34900 −0.674501 0.738274i \(-0.735641\pi\)
−0.674501 + 0.738274i \(0.735641\pi\)
\(564\) 8855.38 0.661132
\(565\) 5533.33 0.412016
\(566\) −9278.32 −0.689040
\(567\) 1815.66 0.134481
\(568\) 13610.5 1.00543
\(569\) 1614.50 0.118951 0.0594755 0.998230i \(-0.481057\pi\)
0.0594755 + 0.998230i \(0.481057\pi\)
\(570\) 2146.50 0.157732
\(571\) 20589.2 1.50899 0.754493 0.656308i \(-0.227883\pi\)
0.754493 + 0.656308i \(0.227883\pi\)
\(572\) 1754.57 0.128256
\(573\) 1904.93 0.138882
\(574\) 7514.75 0.546445
\(575\) 3334.99 0.241876
\(576\) 905.186 0.0654793
\(577\) −7402.23 −0.534071 −0.267035 0.963687i \(-0.586044\pi\)
−0.267035 + 0.963687i \(0.586044\pi\)
\(578\) −2335.47 −0.168067
\(579\) 7316.25 0.525134
\(580\) −872.099 −0.0624344
\(581\) 21236.1 1.51639
\(582\) 2525.11 0.179844
\(583\) −4981.48 −0.353880
\(584\) −2472.87 −0.175220
\(585\) −1097.92 −0.0775956
\(586\) −1960.22 −0.138184
\(587\) −3667.75 −0.257895 −0.128947 0.991651i \(-0.541160\pi\)
−0.128947 + 0.991651i \(0.541160\pi\)
\(588\) 2877.17 0.201790
\(589\) −29750.9 −2.08126
\(590\) 2257.53 0.157527
\(591\) 14956.8 1.04102
\(592\) 7985.66 0.554406
\(593\) −5461.87 −0.378233 −0.189116 0.981955i \(-0.560562\pi\)
−0.189116 + 0.981955i \(0.560562\pi\)
\(594\) −454.899 −0.0314221
\(595\) −6394.89 −0.440613
\(596\) −16177.6 −1.11185
\(597\) −3334.27 −0.228581
\(598\) −4586.18 −0.313617
\(599\) −20067.3 −1.36883 −0.684415 0.729092i \(-0.739942\pi\)
−0.684415 + 0.729092i \(0.739942\pi\)
\(600\) 1481.07 0.100774
\(601\) 15179.5 1.03026 0.515130 0.857112i \(-0.327744\pi\)
0.515130 + 0.857112i \(0.327744\pi\)
\(602\) −2602.60 −0.176203
\(603\) 5126.70 0.346228
\(604\) 10732.2 0.722991
\(605\) −5940.18 −0.399178
\(606\) 1344.98 0.0901585
\(607\) −28792.4 −1.92528 −0.962642 0.270777i \(-0.912719\pi\)
−0.962642 + 0.270777i \(0.912719\pi\)
\(608\) −18947.2 −1.26384
\(609\) −1950.16 −0.129761
\(610\) 4312.53 0.286245
\(611\) −11974.2 −0.792838
\(612\) 3088.54 0.203998
\(613\) −8519.17 −0.561315 −0.280657 0.959808i \(-0.590552\pi\)
−0.280657 + 0.959808i \(0.590552\pi\)
\(614\) −7084.66 −0.465657
\(615\) −3568.77 −0.233994
\(616\) −5292.71 −0.346184
\(617\) −2412.39 −0.157405 −0.0787026 0.996898i \(-0.525078\pi\)
−0.0787026 + 0.996898i \(0.525078\pi\)
\(618\) 2661.49 0.173237
\(619\) 3151.33 0.204625 0.102312 0.994752i \(-0.467376\pi\)
0.102312 + 0.994752i \(0.467376\pi\)
\(620\) −8809.79 −0.570661
\(621\) −3601.79 −0.232746
\(622\) 1324.52 0.0853835
\(623\) −27168.7 −1.74718
\(624\) 1485.10 0.0952752
\(625\) 625.000 0.0400000
\(626\) −12721.2 −0.812210
\(627\) 3642.81 0.232025
\(628\) 5922.11 0.376302
\(629\) −22456.7 −1.42354
\(630\) 1421.35 0.0898854
\(631\) −21769.1 −1.37340 −0.686700 0.726941i \(-0.740942\pi\)
−0.686700 + 0.726941i \(0.740942\pi\)
\(632\) 7049.06 0.443665
\(633\) 13964.3 0.876824
\(634\) −3468.36 −0.217265
\(635\) −12482.6 −0.780090
\(636\) −7517.33 −0.468682
\(637\) −3890.50 −0.241989
\(638\) 488.595 0.0303192
\(639\) −6203.02 −0.384018
\(640\) −6754.23 −0.417163
\(641\) 12175.8 0.750260 0.375130 0.926972i \(-0.377598\pi\)
0.375130 + 0.926972i \(0.377598\pi\)
\(642\) −3027.27 −0.186101
\(643\) −25531.4 −1.56588 −0.782938 0.622100i \(-0.786280\pi\)
−0.782938 + 0.622100i \(0.786280\pi\)
\(644\) −17984.7 −1.10046
\(645\) 1235.98 0.0754522
\(646\) 8164.93 0.497283
\(647\) 15379.5 0.934512 0.467256 0.884122i \(-0.345243\pi\)
0.467256 + 0.884122i \(0.345243\pi\)
\(648\) −1599.56 −0.0969699
\(649\) 3831.24 0.231725
\(650\) −859.481 −0.0518640
\(651\) −19700.1 −1.18603
\(652\) 3886.99 0.233476
\(653\) −23529.2 −1.41006 −0.705029 0.709179i \(-0.749066\pi\)
−0.705029 + 0.709179i \(0.749066\pi\)
\(654\) −8325.89 −0.497810
\(655\) 10777.4 0.642915
\(656\) 4827.30 0.287308
\(657\) 1127.02 0.0669240
\(658\) 15501.6 0.918409
\(659\) −5060.62 −0.299141 −0.149570 0.988751i \(-0.547789\pi\)
−0.149570 + 0.988751i \(0.547789\pi\)
\(660\) 1078.71 0.0636190
\(661\) −17178.7 −1.01085 −0.505426 0.862870i \(-0.668665\pi\)
−0.505426 + 0.862870i \(0.668665\pi\)
\(662\) 6130.82 0.359941
\(663\) −4176.31 −0.244637
\(664\) −18708.5 −1.09342
\(665\) −11382.1 −0.663727
\(666\) 4991.30 0.290404
\(667\) 3868.59 0.224576
\(668\) 964.400 0.0558589
\(669\) 2255.84 0.130367
\(670\) 4013.31 0.231415
\(671\) 7318.77 0.421070
\(672\) −12546.3 −0.720213
\(673\) −31040.4 −1.77789 −0.888944 0.458016i \(-0.848560\pi\)
−0.888944 + 0.458016i \(0.848560\pi\)
\(674\) 3275.80 0.187209
\(675\) −675.000 −0.0384900
\(676\) 9633.54 0.548108
\(677\) 11484.3 0.651960 0.325980 0.945377i \(-0.394306\pi\)
0.325980 + 0.945377i \(0.394306\pi\)
\(678\) −4678.16 −0.264991
\(679\) −13389.7 −0.756775
\(680\) 5633.75 0.317712
\(681\) 3229.77 0.181740
\(682\) 4935.70 0.277123
\(683\) 9670.23 0.541758 0.270879 0.962613i \(-0.412686\pi\)
0.270879 + 0.962613i \(0.412686\pi\)
\(684\) 5497.21 0.307297
\(685\) 5641.49 0.314672
\(686\) −5797.26 −0.322653
\(687\) 9146.80 0.507965
\(688\) −1671.85 −0.0926433
\(689\) 10164.9 0.562049
\(690\) −2819.57 −0.155564
\(691\) 32367.9 1.78196 0.890979 0.454045i \(-0.150019\pi\)
0.890979 + 0.454045i \(0.150019\pi\)
\(692\) −15536.1 −0.853457
\(693\) 2412.16 0.132223
\(694\) 4768.50 0.260821
\(695\) 6655.21 0.363232
\(696\) 1718.04 0.0935664
\(697\) −13575.0 −0.737719
\(698\) 5462.11 0.296195
\(699\) −60.6775 −0.00328331
\(700\) −3370.45 −0.181987
\(701\) 10458.3 0.563489 0.281744 0.959490i \(-0.409087\pi\)
0.281744 + 0.959490i \(0.409087\pi\)
\(702\) 928.239 0.0499062
\(703\) −39970.2 −2.14439
\(704\) 1202.57 0.0643798
\(705\) −7361.72 −0.393274
\(706\) 10909.0 0.581537
\(707\) −7131.93 −0.379383
\(708\) 5781.56 0.306899
\(709\) −12021.8 −0.636794 −0.318397 0.947958i \(-0.603144\pi\)
−0.318397 + 0.947958i \(0.603144\pi\)
\(710\) −4855.88 −0.256673
\(711\) −3212.62 −0.169455
\(712\) 23935.0 1.25983
\(713\) 39079.8 2.05267
\(714\) 5406.57 0.283383
\(715\) −1458.62 −0.0762927
\(716\) −22036.1 −1.15018
\(717\) −923.679 −0.0481108
\(718\) −9234.22 −0.479969
\(719\) −18959.8 −0.983421 −0.491711 0.870759i \(-0.663628\pi\)
−0.491711 + 0.870759i \(0.663628\pi\)
\(720\) 913.039 0.0472597
\(721\) −14112.9 −0.728975
\(722\) 4867.63 0.250906
\(723\) −13591.3 −0.699124
\(724\) −20414.1 −1.04790
\(725\) 725.000 0.0371391
\(726\) 5022.13 0.256734
\(727\) 20821.5 1.06221 0.531105 0.847306i \(-0.321777\pi\)
0.531105 + 0.847306i \(0.321777\pi\)
\(728\) 10800.0 0.549827
\(729\) 729.000 0.0370370
\(730\) 882.257 0.0447312
\(731\) 4701.46 0.237879
\(732\) 11044.4 0.557670
\(733\) 24886.4 1.25403 0.627013 0.779009i \(-0.284277\pi\)
0.627013 + 0.779009i \(0.284277\pi\)
\(734\) −7.72287 −0.000388360 0
\(735\) −2391.87 −0.120035
\(736\) 24888.5 1.24647
\(737\) 6810.97 0.340414
\(738\) 3017.22 0.150495
\(739\) −23608.7 −1.17518 −0.587591 0.809158i \(-0.699923\pi\)
−0.587591 + 0.809158i \(0.699923\pi\)
\(740\) −11835.9 −0.587969
\(741\) −7433.31 −0.368515
\(742\) −13159.3 −0.651068
\(743\) 27341.5 1.35002 0.675008 0.737810i \(-0.264140\pi\)
0.675008 + 0.737810i \(0.264140\pi\)
\(744\) 17355.3 0.855212
\(745\) 13448.9 0.661382
\(746\) 17778.1 0.872521
\(747\) 8526.45 0.417626
\(748\) 4103.22 0.200573
\(749\) 16052.5 0.783104
\(750\) −528.407 −0.0257263
\(751\) −13630.9 −0.662313 −0.331156 0.943576i \(-0.607439\pi\)
−0.331156 + 0.943576i \(0.607439\pi\)
\(752\) 9957.83 0.482879
\(753\) 3961.52 0.191721
\(754\) −996.997 −0.0481545
\(755\) −8921.96 −0.430071
\(756\) 3640.09 0.175117
\(757\) 30623.7 1.47033 0.735164 0.677890i \(-0.237105\pi\)
0.735164 + 0.677890i \(0.237105\pi\)
\(758\) −10174.1 −0.487518
\(759\) −4785.09 −0.228837
\(760\) 10027.4 0.478593
\(761\) 1659.21 0.0790358 0.0395179 0.999219i \(-0.487418\pi\)
0.0395179 + 0.999219i \(0.487418\pi\)
\(762\) 10553.4 0.501720
\(763\) 44149.1 2.09476
\(764\) 3819.06 0.180849
\(765\) −2567.59 −0.121348
\(766\) 4590.38 0.216524
\(767\) −7817.79 −0.368037
\(768\) 8124.20 0.381715
\(769\) 37688.8 1.76735 0.883676 0.468098i \(-0.155061\pi\)
0.883676 + 0.468098i \(0.155061\pi\)
\(770\) 1888.30 0.0883761
\(771\) 6617.95 0.309131
\(772\) 14667.8 0.683816
\(773\) 29767.0 1.38505 0.692526 0.721393i \(-0.256498\pi\)
0.692526 + 0.721393i \(0.256498\pi\)
\(774\) −1044.96 −0.0485276
\(775\) 7323.82 0.339457
\(776\) 11796.0 0.545687
\(777\) −26467.0 −1.22201
\(778\) 17448.2 0.804047
\(779\) −24161.8 −1.11128
\(780\) −2201.14 −0.101043
\(781\) −8240.89 −0.377570
\(782\) −10725.2 −0.490450
\(783\) −783.000 −0.0357371
\(784\) 3235.37 0.147384
\(785\) −4923.21 −0.223843
\(786\) −9111.79 −0.413495
\(787\) 3381.10 0.153142 0.0765712 0.997064i \(-0.475603\pi\)
0.0765712 + 0.997064i \(0.475603\pi\)
\(788\) 29985.9 1.35559
\(789\) 19891.4 0.897533
\(790\) −2514.92 −0.113262
\(791\) 24806.5 1.11507
\(792\) −2125.06 −0.0953416
\(793\) −14934.2 −0.668765
\(794\) 13441.3 0.600772
\(795\) 6249.37 0.278795
\(796\) −6684.64 −0.297652
\(797\) −40041.9 −1.77962 −0.889810 0.456331i \(-0.849163\pi\)
−0.889810 + 0.456331i \(0.849163\pi\)
\(798\) 9623.01 0.426881
\(799\) −28002.8 −1.23988
\(800\) 4664.27 0.206134
\(801\) −10908.4 −0.481186
\(802\) 649.325 0.0285891
\(803\) 1497.27 0.0658003
\(804\) 10278.1 0.450849
\(805\) 14951.2 0.654608
\(806\) −10071.5 −0.440140
\(807\) −14232.9 −0.620846
\(808\) 6283.06 0.273561
\(809\) −37278.9 −1.62010 −0.810048 0.586364i \(-0.800559\pi\)
−0.810048 + 0.586364i \(0.800559\pi\)
\(810\) 570.680 0.0247551
\(811\) 4707.22 0.203814 0.101907 0.994794i \(-0.467506\pi\)
0.101907 + 0.994794i \(0.467506\pi\)
\(812\) −3909.72 −0.168971
\(813\) 16925.5 0.730138
\(814\) 6631.09 0.285528
\(815\) −3231.36 −0.138883
\(816\) 3473.05 0.148996
\(817\) 8368.01 0.358335
\(818\) 17992.7 0.769072
\(819\) −4922.11 −0.210003
\(820\) −7154.76 −0.304701
\(821\) −36716.3 −1.56079 −0.780394 0.625289i \(-0.784981\pi\)
−0.780394 + 0.625289i \(0.784981\pi\)
\(822\) −4769.60 −0.202383
\(823\) −24668.7 −1.04483 −0.522415 0.852691i \(-0.674969\pi\)
−0.522415 + 0.852691i \(0.674969\pi\)
\(824\) 12433.1 0.525641
\(825\) −896.757 −0.0378437
\(826\) 10120.8 0.426327
\(827\) 4400.44 0.185028 0.0925140 0.995711i \(-0.470510\pi\)
0.0925140 + 0.995711i \(0.470510\pi\)
\(828\) −7220.97 −0.303075
\(829\) −25354.0 −1.06222 −0.531111 0.847302i \(-0.678225\pi\)
−0.531111 + 0.847302i \(0.678225\pi\)
\(830\) 6674.72 0.279136
\(831\) 16293.1 0.680148
\(832\) −2453.88 −0.102251
\(833\) −9098.29 −0.378436
\(834\) −5626.66 −0.233615
\(835\) −801.732 −0.0332276
\(836\) 7303.21 0.302137
\(837\) −7909.73 −0.326643
\(838\) 5908.07 0.243545
\(839\) 25121.5 1.03372 0.516860 0.856070i \(-0.327101\pi\)
0.516860 + 0.856070i \(0.327101\pi\)
\(840\) 6639.81 0.272732
\(841\) 841.000 0.0344828
\(842\) −14034.9 −0.574437
\(843\) −28176.0 −1.15117
\(844\) 27995.9 1.14178
\(845\) −8008.63 −0.326042
\(846\) 6223.97 0.252937
\(847\) −26630.5 −1.08032
\(848\) −8453.21 −0.342316
\(849\) 19753.9 0.798530
\(850\) −2009.97 −0.0811077
\(851\) 52503.6 2.11492
\(852\) −12436.0 −0.500058
\(853\) 26685.4 1.07115 0.535575 0.844488i \(-0.320095\pi\)
0.535575 + 0.844488i \(0.320095\pi\)
\(854\) 19333.6 0.774685
\(855\) −4569.98 −0.182796
\(856\) −14141.9 −0.564672
\(857\) 3968.30 0.158173 0.0790866 0.996868i \(-0.474800\pi\)
0.0790866 + 0.996868i \(0.474800\pi\)
\(858\) 1233.19 0.0490682
\(859\) −8041.36 −0.319403 −0.159702 0.987165i \(-0.551053\pi\)
−0.159702 + 0.987165i \(0.551053\pi\)
\(860\) 2477.92 0.0982517
\(861\) −15999.2 −0.633277
\(862\) −1265.41 −0.0500001
\(863\) 20859.3 0.822780 0.411390 0.911459i \(-0.365043\pi\)
0.411390 + 0.911459i \(0.365043\pi\)
\(864\) −5037.41 −0.198352
\(865\) 12915.5 0.507678
\(866\) −18425.3 −0.722998
\(867\) 4972.32 0.194774
\(868\) −39495.3 −1.54442
\(869\) −4268.06 −0.166610
\(870\) −612.952 −0.0238862
\(871\) −13898.1 −0.540663
\(872\) −38894.3 −1.51047
\(873\) −5376.06 −0.208422
\(874\) −19089.5 −0.738801
\(875\) 2801.95 0.108255
\(876\) 2259.47 0.0871466
\(877\) −3538.07 −0.136228 −0.0681141 0.997678i \(-0.521698\pi\)
−0.0681141 + 0.997678i \(0.521698\pi\)
\(878\) −91.1015 −0.00350174
\(879\) 4173.39 0.160142
\(880\) 1213.00 0.0464661
\(881\) 37143.5 1.42043 0.710213 0.703987i \(-0.248599\pi\)
0.710213 + 0.703987i \(0.248599\pi\)
\(882\) 2022.21 0.0772012
\(883\) 37855.2 1.44273 0.721364 0.692556i \(-0.243515\pi\)
0.721364 + 0.692556i \(0.243515\pi\)
\(884\) −8372.77 −0.318560
\(885\) −4806.37 −0.182558
\(886\) 143.386 0.00543697
\(887\) 6236.28 0.236070 0.118035 0.993009i \(-0.462341\pi\)
0.118035 + 0.993009i \(0.462341\pi\)
\(888\) 23316.8 0.881150
\(889\) −55961.0 −2.11122
\(890\) −8539.39 −0.321619
\(891\) 968.498 0.0364151
\(892\) 4522.57 0.169761
\(893\) −49841.4 −1.86772
\(894\) −11370.4 −0.425372
\(895\) 18319.2 0.684184
\(896\) −30280.0 −1.12900
\(897\) 9764.16 0.363451
\(898\) 17750.3 0.659616
\(899\) 8495.63 0.315178
\(900\) −1353.26 −0.0501206
\(901\) 23771.6 0.878963
\(902\) 4008.46 0.147968
\(903\) 5541.04 0.204202
\(904\) −21854.0 −0.804041
\(905\) 16970.8 0.623346
\(906\) 7543.08 0.276603
\(907\) −13383.7 −0.489965 −0.244982 0.969528i \(-0.578782\pi\)
−0.244982 + 0.969528i \(0.578782\pi\)
\(908\) 6475.14 0.236657
\(909\) −2863.52 −0.104485
\(910\) −3853.15 −0.140363
\(911\) 31847.2 1.15823 0.579114 0.815247i \(-0.303399\pi\)
0.579114 + 0.815247i \(0.303399\pi\)
\(912\) 6181.59 0.224444
\(913\) 11327.6 0.410613
\(914\) 6474.82 0.234319
\(915\) −9181.55 −0.331730
\(916\) 18337.7 0.661459
\(917\) 48316.5 1.73997
\(918\) 2170.77 0.0780459
\(919\) −41399.0 −1.48599 −0.742996 0.669296i \(-0.766596\pi\)
−0.742996 + 0.669296i \(0.766596\pi\)
\(920\) −13171.6 −0.472017
\(921\) 15083.5 0.539651
\(922\) 5391.50 0.192581
\(923\) 16815.9 0.599676
\(924\) 4835.96 0.172177
\(925\) 9839.52 0.349753
\(926\) 20277.6 0.719614
\(927\) −5666.41 −0.200765
\(928\) 5410.55 0.191390
\(929\) −36789.2 −1.29926 −0.649632 0.760249i \(-0.725077\pi\)
−0.649632 + 0.760249i \(0.725077\pi\)
\(930\) −6191.93 −0.218324
\(931\) −16193.8 −0.570065
\(932\) −121.648 −0.00427543
\(933\) −2819.96 −0.0989512
\(934\) −16557.0 −0.580045
\(935\) −3411.12 −0.119311
\(936\) 4336.26 0.151426
\(937\) 24811.5 0.865055 0.432528 0.901621i \(-0.357622\pi\)
0.432528 + 0.901621i \(0.357622\pi\)
\(938\) 17992.1 0.626295
\(939\) 27084.0 0.941272
\(940\) −14759.0 −0.512111
\(941\) −24449.4 −0.847002 −0.423501 0.905896i \(-0.639199\pi\)
−0.423501 + 0.905896i \(0.639199\pi\)
\(942\) 4162.34 0.143966
\(943\) 31738.2 1.09601
\(944\) 6501.33 0.224153
\(945\) −3026.10 −0.104168
\(946\) −1388.26 −0.0477127
\(947\) −30170.8 −1.03529 −0.517644 0.855596i \(-0.673191\pi\)
−0.517644 + 0.855596i \(0.673191\pi\)
\(948\) −6440.74 −0.220660
\(949\) −3055.25 −0.104507
\(950\) −3577.50 −0.122178
\(951\) 7384.28 0.251789
\(952\) 25256.7 0.859848
\(953\) 35385.1 1.20277 0.601383 0.798961i \(-0.294617\pi\)
0.601383 + 0.798961i \(0.294617\pi\)
\(954\) −5283.54 −0.179309
\(955\) −3174.89 −0.107578
\(956\) −1851.82 −0.0626485
\(957\) −1040.24 −0.0351370
\(958\) −3411.04 −0.115037
\(959\) 25291.4 0.851620
\(960\) −1508.64 −0.0507200
\(961\) 56030.4 1.88078
\(962\) −13531.0 −0.453489
\(963\) 6445.18 0.215673
\(964\) −27248.2 −0.910380
\(965\) −12193.7 −0.406767
\(966\) −12640.5 −0.421015
\(967\) 4813.01 0.160058 0.0800289 0.996793i \(-0.474499\pi\)
0.0800289 + 0.996793i \(0.474499\pi\)
\(968\) 23460.9 0.778988
\(969\) −17383.5 −0.576303
\(970\) −4208.52 −0.139307
\(971\) 6312.62 0.208632 0.104316 0.994544i \(-0.466735\pi\)
0.104316 + 0.994544i \(0.466735\pi\)
\(972\) 1461.52 0.0482286
\(973\) 29836.1 0.983043
\(974\) 7887.16 0.259467
\(975\) 1829.87 0.0601053
\(976\) 12419.4 0.407312
\(977\) 49628.0 1.62512 0.812560 0.582878i \(-0.198073\pi\)
0.812560 + 0.582878i \(0.198073\pi\)
\(978\) 2731.96 0.0893234
\(979\) −14492.2 −0.473106
\(980\) −4795.29 −0.156306
\(981\) 17726.2 0.576914
\(982\) 10973.6 0.356601
\(983\) −41462.3 −1.34531 −0.672657 0.739955i \(-0.734847\pi\)
−0.672657 + 0.739955i \(0.734847\pi\)
\(984\) 14094.9 0.456636
\(985\) −24928.1 −0.806370
\(986\) −2331.57 −0.0753066
\(987\) −33003.4 −1.06435
\(988\) −14902.5 −0.479870
\(989\) −10992.0 −0.353411
\(990\) 758.165 0.0243394
\(991\) −36195.5 −1.16023 −0.580114 0.814535i \(-0.696992\pi\)
−0.580114 + 0.814535i \(0.696992\pi\)
\(992\) 54656.4 1.74934
\(993\) −13052.8 −0.417137
\(994\) −21769.5 −0.694653
\(995\) 5557.12 0.177058
\(996\) 17094.0 0.543821
\(997\) 8511.65 0.270378 0.135189 0.990820i \(-0.456836\pi\)
0.135189 + 0.990820i \(0.456836\pi\)
\(998\) 1068.48 0.0338899
\(999\) −10626.7 −0.336550
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.4.a.i.1.5 7
3.2 odd 2 1305.4.a.n.1.3 7
5.4 even 2 2175.4.a.n.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.i.1.5 7 1.1 even 1 trivial
1305.4.a.n.1.3 7 3.2 odd 2
2175.4.a.n.1.3 7 5.4 even 2