Properties

Label 435.4.a.i.1.4
Level $435$
Weight $4$
Character 435.1
Self dual yes
Analytic conductor $25.666$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.218728\) of defining polynomial
Character \(\chi\) \(=\) 435.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.218728 q^{2} -3.00000 q^{3} -7.95216 q^{4} +5.00000 q^{5} -0.656184 q^{6} -21.0000 q^{7} -3.48919 q^{8} +9.00000 q^{9} +1.09364 q^{10} -1.46553 q^{11} +23.8565 q^{12} -79.4367 q^{13} -4.59329 q^{14} -15.0000 q^{15} +62.8541 q^{16} -65.4406 q^{17} +1.96855 q^{18} +116.908 q^{19} -39.7608 q^{20} +63.0000 q^{21} -0.320553 q^{22} -177.448 q^{23} +10.4676 q^{24} +25.0000 q^{25} -17.3750 q^{26} -27.0000 q^{27} +166.995 q^{28} +29.0000 q^{29} -3.28092 q^{30} +77.7850 q^{31} +41.6614 q^{32} +4.39659 q^{33} -14.3137 q^{34} -105.000 q^{35} -71.5694 q^{36} +175.767 q^{37} +25.5710 q^{38} +238.310 q^{39} -17.4459 q^{40} +62.4580 q^{41} +13.7799 q^{42} +66.0473 q^{43} +11.6541 q^{44} +45.0000 q^{45} -38.8128 q^{46} +179.320 q^{47} -188.562 q^{48} +98.0000 q^{49} +5.46820 q^{50} +196.322 q^{51} +631.693 q^{52} +676.773 q^{53} -5.90566 q^{54} -7.32765 q^{55} +73.2729 q^{56} -350.723 q^{57} +6.34312 q^{58} +415.156 q^{59} +119.282 q^{60} -426.377 q^{61} +17.0138 q^{62} -189.000 q^{63} -493.720 q^{64} -397.183 q^{65} +0.961658 q^{66} +79.1909 q^{67} +520.394 q^{68} +532.343 q^{69} -22.9665 q^{70} +218.606 q^{71} -31.4027 q^{72} +1024.13 q^{73} +38.4453 q^{74} -75.0000 q^{75} -929.669 q^{76} +30.7761 q^{77} +52.1251 q^{78} +1053.21 q^{79} +314.270 q^{80} +81.0000 q^{81} +13.6613 q^{82} -1179.75 q^{83} -500.986 q^{84} -327.203 q^{85} +14.4464 q^{86} -87.0000 q^{87} +5.11351 q^{88} +1411.60 q^{89} +9.84277 q^{90} +1668.17 q^{91} +1411.09 q^{92} -233.355 q^{93} +39.2223 q^{94} +584.539 q^{95} -124.984 q^{96} +884.714 q^{97} +21.4353 q^{98} -13.1898 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} - 21 q^{3} + 22 q^{4} + 35 q^{5} + 6 q^{6} - 50 q^{7} - 33 q^{8} + 63 q^{9} - 10 q^{10} + 76 q^{11} - 66 q^{12} + 30 q^{13} + 89 q^{14} - 105 q^{15} + 138 q^{16} - 140 q^{17} - 18 q^{18} + 90 q^{19}+ \cdots + 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.218728 0.0773321 0.0386660 0.999252i \(-0.487689\pi\)
0.0386660 + 0.999252i \(0.487689\pi\)
\(3\) −3.00000 −0.577350
\(4\) −7.95216 −0.994020
\(5\) 5.00000 0.447214
\(6\) −0.656184 −0.0446477
\(7\) −21.0000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) −3.48919 −0.154202
\(9\) 9.00000 0.333333
\(10\) 1.09364 0.0345840
\(11\) −1.46553 −0.0401704 −0.0200852 0.999798i \(-0.506394\pi\)
−0.0200852 + 0.999798i \(0.506394\pi\)
\(12\) 23.8565 0.573898
\(13\) −79.4367 −1.69475 −0.847376 0.530994i \(-0.821819\pi\)
−0.847376 + 0.530994i \(0.821819\pi\)
\(14\) −4.59329 −0.0876863
\(15\) −15.0000 −0.258199
\(16\) 62.8541 0.982095
\(17\) −65.4406 −0.933628 −0.466814 0.884355i \(-0.654598\pi\)
−0.466814 + 0.884355i \(0.654598\pi\)
\(18\) 1.96855 0.0257774
\(19\) 116.908 1.41160 0.705802 0.708409i \(-0.250587\pi\)
0.705802 + 0.708409i \(0.250587\pi\)
\(20\) −39.7608 −0.444539
\(21\) 63.0000 0.654654
\(22\) −0.320553 −0.00310646
\(23\) −177.448 −1.60871 −0.804356 0.594148i \(-0.797489\pi\)
−0.804356 + 0.594148i \(0.797489\pi\)
\(24\) 10.4676 0.0890284
\(25\) 25.0000 0.200000
\(26\) −17.3750 −0.131059
\(27\) −27.0000 −0.192450
\(28\) 166.995 1.12711
\(29\) 29.0000 0.185695
\(30\) −3.28092 −0.0199671
\(31\) 77.7850 0.450664 0.225332 0.974282i \(-0.427653\pi\)
0.225332 + 0.974282i \(0.427653\pi\)
\(32\) 41.6614 0.230149
\(33\) 4.39659 0.0231924
\(34\) −14.3137 −0.0721994
\(35\) −105.000 −0.507093
\(36\) −71.5694 −0.331340
\(37\) 175.767 0.780973 0.390486 0.920609i \(-0.372307\pi\)
0.390486 + 0.920609i \(0.372307\pi\)
\(38\) 25.5710 0.109162
\(39\) 238.310 0.978465
\(40\) −17.4459 −0.0689611
\(41\) 62.4580 0.237910 0.118955 0.992900i \(-0.462046\pi\)
0.118955 + 0.992900i \(0.462046\pi\)
\(42\) 13.7799 0.0506257
\(43\) 66.0473 0.234235 0.117118 0.993118i \(-0.462635\pi\)
0.117118 + 0.993118i \(0.462635\pi\)
\(44\) 11.6541 0.0399301
\(45\) 45.0000 0.149071
\(46\) −38.8128 −0.124405
\(47\) 179.320 0.556521 0.278260 0.960506i \(-0.410242\pi\)
0.278260 + 0.960506i \(0.410242\pi\)
\(48\) −188.562 −0.567013
\(49\) 98.0000 0.285714
\(50\) 5.46820 0.0154664
\(51\) 196.322 0.539031
\(52\) 631.693 1.68462
\(53\) 676.773 1.75400 0.876999 0.480492i \(-0.159542\pi\)
0.876999 + 0.480492i \(0.159542\pi\)
\(54\) −5.90566 −0.0148826
\(55\) −7.32765 −0.0179647
\(56\) 73.2729 0.174848
\(57\) −350.723 −0.814990
\(58\) 6.34312 0.0143602
\(59\) 415.156 0.916080 0.458040 0.888932i \(-0.348552\pi\)
0.458040 + 0.888932i \(0.348552\pi\)
\(60\) 119.282 0.256655
\(61\) −426.377 −0.894951 −0.447475 0.894296i \(-0.647677\pi\)
−0.447475 + 0.894296i \(0.647677\pi\)
\(62\) 17.0138 0.0348508
\(63\) −189.000 −0.377964
\(64\) −493.720 −0.964297
\(65\) −397.183 −0.757916
\(66\) 0.961658 0.00179351
\(67\) 79.1909 0.144399 0.0721993 0.997390i \(-0.476998\pi\)
0.0721993 + 0.997390i \(0.476998\pi\)
\(68\) 520.394 0.928045
\(69\) 532.343 0.928790
\(70\) −22.9665 −0.0392145
\(71\) 218.606 0.365404 0.182702 0.983168i \(-0.441516\pi\)
0.182702 + 0.983168i \(0.441516\pi\)
\(72\) −31.4027 −0.0514006
\(73\) 1024.13 1.64199 0.820996 0.570933i \(-0.193419\pi\)
0.820996 + 0.570933i \(0.193419\pi\)
\(74\) 38.4453 0.0603943
\(75\) −75.0000 −0.115470
\(76\) −929.669 −1.40316
\(77\) 30.7761 0.0455489
\(78\) 52.1251 0.0756667
\(79\) 1053.21 1.49994 0.749972 0.661470i \(-0.230067\pi\)
0.749972 + 0.661470i \(0.230067\pi\)
\(80\) 314.270 0.439206
\(81\) 81.0000 0.111111
\(82\) 13.6613 0.0183981
\(83\) −1179.75 −1.56017 −0.780084 0.625675i \(-0.784824\pi\)
−0.780084 + 0.625675i \(0.784824\pi\)
\(84\) −500.986 −0.650739
\(85\) −327.203 −0.417531
\(86\) 14.4464 0.0181139
\(87\) −87.0000 −0.107211
\(88\) 5.11351 0.00619434
\(89\) 1411.60 1.68123 0.840613 0.541637i \(-0.182195\pi\)
0.840613 + 0.541637i \(0.182195\pi\)
\(90\) 9.84277 0.0115280
\(91\) 1668.17 1.92167
\(92\) 1411.09 1.59909
\(93\) −233.355 −0.260191
\(94\) 39.2223 0.0430369
\(95\) 584.539 0.631288
\(96\) −124.984 −0.132877
\(97\) 884.714 0.926073 0.463037 0.886339i \(-0.346760\pi\)
0.463037 + 0.886339i \(0.346760\pi\)
\(98\) 21.4353 0.0220949
\(99\) −13.1898 −0.0133901
\(100\) −198.804 −0.198804
\(101\) −647.242 −0.637654 −0.318827 0.947813i \(-0.603289\pi\)
−0.318827 + 0.947813i \(0.603289\pi\)
\(102\) 42.9411 0.0416844
\(103\) −1550.51 −1.48326 −0.741631 0.670808i \(-0.765947\pi\)
−0.741631 + 0.670808i \(0.765947\pi\)
\(104\) 277.169 0.261334
\(105\) 315.000 0.292770
\(106\) 148.029 0.135640
\(107\) −1212.45 −1.09544 −0.547718 0.836663i \(-0.684503\pi\)
−0.547718 + 0.836663i \(0.684503\pi\)
\(108\) 214.708 0.191299
\(109\) −1128.35 −0.991528 −0.495764 0.868457i \(-0.665112\pi\)
−0.495764 + 0.868457i \(0.665112\pi\)
\(110\) −1.60276 −0.00138925
\(111\) −527.302 −0.450895
\(112\) −1319.94 −1.11359
\(113\) −825.104 −0.686896 −0.343448 0.939172i \(-0.611595\pi\)
−0.343448 + 0.939172i \(0.611595\pi\)
\(114\) −76.7130 −0.0630249
\(115\) −887.238 −0.719438
\(116\) −230.613 −0.184585
\(117\) −714.930 −0.564917
\(118\) 90.8063 0.0708424
\(119\) 1374.25 1.05864
\(120\) 52.3378 0.0398147
\(121\) −1328.85 −0.998386
\(122\) −93.2607 −0.0692084
\(123\) −187.374 −0.137357
\(124\) −618.558 −0.447969
\(125\) 125.000 0.0894427
\(126\) −41.3396 −0.0292288
\(127\) 2020.56 1.41178 0.705889 0.708322i \(-0.250548\pi\)
0.705889 + 0.708322i \(0.250548\pi\)
\(128\) −441.282 −0.304720
\(129\) −198.142 −0.135236
\(130\) −86.8752 −0.0586112
\(131\) 286.621 0.191162 0.0955809 0.995422i \(-0.469529\pi\)
0.0955809 + 0.995422i \(0.469529\pi\)
\(132\) −34.9624 −0.0230537
\(133\) −2455.06 −1.60061
\(134\) 17.3213 0.0111666
\(135\) −135.000 −0.0860663
\(136\) 228.335 0.143967
\(137\) 1903.55 1.18709 0.593545 0.804801i \(-0.297728\pi\)
0.593545 + 0.804801i \(0.297728\pi\)
\(138\) 116.438 0.0718253
\(139\) −1439.13 −0.878167 −0.439083 0.898446i \(-0.644697\pi\)
−0.439083 + 0.898446i \(0.644697\pi\)
\(140\) 834.977 0.504060
\(141\) −537.959 −0.321307
\(142\) 47.8152 0.0282575
\(143\) 116.417 0.0680788
\(144\) 565.687 0.327365
\(145\) 145.000 0.0830455
\(146\) 224.006 0.126979
\(147\) −294.000 −0.164957
\(148\) −1397.73 −0.776302
\(149\) 1733.83 0.953295 0.476647 0.879095i \(-0.341852\pi\)
0.476647 + 0.879095i \(0.341852\pi\)
\(150\) −16.4046 −0.00892954
\(151\) −2585.20 −1.39325 −0.696623 0.717437i \(-0.745315\pi\)
−0.696623 + 0.717437i \(0.745315\pi\)
\(152\) −407.913 −0.217672
\(153\) −588.966 −0.311209
\(154\) 6.73161 0.00352239
\(155\) 388.925 0.201543
\(156\) −1895.08 −0.972614
\(157\) 2911.36 1.47995 0.739975 0.672635i \(-0.234837\pi\)
0.739975 + 0.672635i \(0.234837\pi\)
\(158\) 230.367 0.115994
\(159\) −2030.32 −1.01267
\(160\) 208.307 0.102926
\(161\) 3726.40 1.82411
\(162\) 17.7170 0.00859245
\(163\) −2877.35 −1.38265 −0.691323 0.722546i \(-0.742972\pi\)
−0.691323 + 0.722546i \(0.742972\pi\)
\(164\) −496.676 −0.236487
\(165\) 21.9830 0.0103719
\(166\) −258.044 −0.120651
\(167\) 1135.80 0.526292 0.263146 0.964756i \(-0.415240\pi\)
0.263146 + 0.964756i \(0.415240\pi\)
\(168\) −219.819 −0.100949
\(169\) 4113.18 1.87218
\(170\) −71.5685 −0.0322886
\(171\) 1052.17 0.470535
\(172\) −525.219 −0.232835
\(173\) 3337.04 1.46653 0.733267 0.679941i \(-0.237995\pi\)
0.733267 + 0.679941i \(0.237995\pi\)
\(174\) −19.0294 −0.00829087
\(175\) −525.000 −0.226779
\(176\) −92.1145 −0.0394511
\(177\) −1245.47 −0.528899
\(178\) 308.756 0.130013
\(179\) −4693.70 −1.95991 −0.979955 0.199220i \(-0.936159\pi\)
−0.979955 + 0.199220i \(0.936159\pi\)
\(180\) −357.847 −0.148180
\(181\) 1068.75 0.438892 0.219446 0.975625i \(-0.429575\pi\)
0.219446 + 0.975625i \(0.429575\pi\)
\(182\) 364.876 0.148607
\(183\) 1279.13 0.516700
\(184\) 619.147 0.248066
\(185\) 878.837 0.349262
\(186\) −51.0413 −0.0201211
\(187\) 95.9052 0.0375042
\(188\) −1425.98 −0.553192
\(189\) 567.000 0.218218
\(190\) 127.855 0.0488188
\(191\) −1082.04 −0.409913 −0.204956 0.978771i \(-0.565705\pi\)
−0.204956 + 0.978771i \(0.565705\pi\)
\(192\) 1481.16 0.556737
\(193\) −4044.87 −1.50858 −0.754290 0.656541i \(-0.772019\pi\)
−0.754290 + 0.656541i \(0.772019\pi\)
\(194\) 193.512 0.0716152
\(195\) 1191.55 0.437583
\(196\) −779.311 −0.284006
\(197\) 1433.82 0.518556 0.259278 0.965803i \(-0.416515\pi\)
0.259278 + 0.965803i \(0.416515\pi\)
\(198\) −2.88497 −0.00103549
\(199\) 3460.17 1.23259 0.616293 0.787517i \(-0.288634\pi\)
0.616293 + 0.787517i \(0.288634\pi\)
\(200\) −87.2297 −0.0308403
\(201\) −237.573 −0.0833686
\(202\) −141.570 −0.0493111
\(203\) −609.000 −0.210559
\(204\) −1561.18 −0.535807
\(205\) 312.290 0.106397
\(206\) −339.139 −0.114704
\(207\) −1597.03 −0.536237
\(208\) −4992.92 −1.66441
\(209\) −171.332 −0.0567046
\(210\) 68.8994 0.0226405
\(211\) 2044.61 0.667093 0.333547 0.942734i \(-0.391755\pi\)
0.333547 + 0.942734i \(0.391755\pi\)
\(212\) −5381.81 −1.74351
\(213\) −655.817 −0.210966
\(214\) −265.196 −0.0847123
\(215\) 330.237 0.104753
\(216\) 94.2080 0.0296761
\(217\) −1633.48 −0.511005
\(218\) −246.802 −0.0766769
\(219\) −3072.39 −0.948005
\(220\) 58.2706 0.0178573
\(221\) 5198.39 1.58227
\(222\) −115.336 −0.0348686
\(223\) −2296.00 −0.689470 −0.344735 0.938700i \(-0.612031\pi\)
−0.344735 + 0.938700i \(0.612031\pi\)
\(224\) −874.890 −0.260965
\(225\) 225.000 0.0666667
\(226\) −180.473 −0.0531191
\(227\) −5953.92 −1.74086 −0.870431 0.492290i \(-0.836160\pi\)
−0.870431 + 0.492290i \(0.836160\pi\)
\(228\) 2789.01 0.810116
\(229\) 1286.19 0.371151 0.185576 0.982630i \(-0.440585\pi\)
0.185576 + 0.982630i \(0.440585\pi\)
\(230\) −194.064 −0.0556356
\(231\) −92.3284 −0.0262977
\(232\) −101.186 −0.0286345
\(233\) 203.636 0.0572559 0.0286280 0.999590i \(-0.490886\pi\)
0.0286280 + 0.999590i \(0.490886\pi\)
\(234\) −156.375 −0.0436862
\(235\) 896.599 0.248884
\(236\) −3301.39 −0.910601
\(237\) −3159.63 −0.865993
\(238\) 300.588 0.0818665
\(239\) 2264.94 0.612998 0.306499 0.951871i \(-0.400842\pi\)
0.306499 + 0.951871i \(0.400842\pi\)
\(240\) −942.811 −0.253576
\(241\) −3584.42 −0.958060 −0.479030 0.877799i \(-0.659012\pi\)
−0.479030 + 0.877799i \(0.659012\pi\)
\(242\) −290.657 −0.0772073
\(243\) −243.000 −0.0641500
\(244\) 3390.62 0.889599
\(245\) 490.000 0.127775
\(246\) −40.9840 −0.0106221
\(247\) −9286.76 −2.39232
\(248\) −271.406 −0.0694932
\(249\) 3539.24 0.900763
\(250\) 27.3410 0.00691679
\(251\) −4549.43 −1.14405 −0.572027 0.820235i \(-0.693843\pi\)
−0.572027 + 0.820235i \(0.693843\pi\)
\(252\) 1502.96 0.375704
\(253\) 260.055 0.0646225
\(254\) 441.954 0.109176
\(255\) 981.609 0.241062
\(256\) 3853.24 0.940732
\(257\) 1342.72 0.325901 0.162951 0.986634i \(-0.447899\pi\)
0.162951 + 0.986634i \(0.447899\pi\)
\(258\) −43.3392 −0.0104581
\(259\) −3691.12 −0.885540
\(260\) 3158.46 0.753383
\(261\) 261.000 0.0618984
\(262\) 62.6921 0.0147829
\(263\) 6631.18 1.55474 0.777369 0.629045i \(-0.216554\pi\)
0.777369 + 0.629045i \(0.216554\pi\)
\(264\) −15.3405 −0.00357630
\(265\) 3383.86 0.784412
\(266\) −536.991 −0.123778
\(267\) −4234.79 −0.970656
\(268\) −629.739 −0.143535
\(269\) 5563.54 1.26102 0.630511 0.776180i \(-0.282845\pi\)
0.630511 + 0.776180i \(0.282845\pi\)
\(270\) −29.5283 −0.00665569
\(271\) −3556.15 −0.797125 −0.398562 0.917141i \(-0.630491\pi\)
−0.398562 + 0.917141i \(0.630491\pi\)
\(272\) −4113.21 −0.916912
\(273\) −5004.51 −1.10948
\(274\) 416.360 0.0918002
\(275\) −36.6383 −0.00803407
\(276\) −4233.27 −0.923236
\(277\) 7099.67 1.53999 0.769996 0.638049i \(-0.220258\pi\)
0.769996 + 0.638049i \(0.220258\pi\)
\(278\) −314.778 −0.0679105
\(279\) 700.065 0.150221
\(280\) 366.365 0.0781945
\(281\) 1382.11 0.293415 0.146708 0.989180i \(-0.453132\pi\)
0.146708 + 0.989180i \(0.453132\pi\)
\(282\) −117.667 −0.0248474
\(283\) −1867.69 −0.392305 −0.196153 0.980573i \(-0.562845\pi\)
−0.196153 + 0.980573i \(0.562845\pi\)
\(284\) −1738.39 −0.363219
\(285\) −1753.62 −0.364475
\(286\) 25.4636 0.00526467
\(287\) −1311.62 −0.269764
\(288\) 374.953 0.0767164
\(289\) −630.524 −0.128338
\(290\) 31.7156 0.00642208
\(291\) −2654.14 −0.534669
\(292\) −8144.05 −1.63217
\(293\) 4914.25 0.979842 0.489921 0.871767i \(-0.337026\pi\)
0.489921 + 0.871767i \(0.337026\pi\)
\(294\) −64.3060 −0.0127565
\(295\) 2075.78 0.409683
\(296\) −613.285 −0.120427
\(297\) 39.5693 0.00773079
\(298\) 379.237 0.0737203
\(299\) 14095.8 2.72637
\(300\) 596.412 0.114780
\(301\) −1386.99 −0.265598
\(302\) −565.455 −0.107743
\(303\) 1941.73 0.368150
\(304\) 7348.13 1.38633
\(305\) −2131.89 −0.400234
\(306\) −128.823 −0.0240665
\(307\) −2357.55 −0.438282 −0.219141 0.975693i \(-0.570326\pi\)
−0.219141 + 0.975693i \(0.570326\pi\)
\(308\) −244.737 −0.0452765
\(309\) 4651.52 0.856361
\(310\) 85.0688 0.0155858
\(311\) 9821.76 1.79081 0.895404 0.445255i \(-0.146887\pi\)
0.895404 + 0.445255i \(0.146887\pi\)
\(312\) −831.508 −0.150881
\(313\) −823.712 −0.148751 −0.0743753 0.997230i \(-0.523696\pi\)
−0.0743753 + 0.997230i \(0.523696\pi\)
\(314\) 636.797 0.114448
\(315\) −945.000 −0.169031
\(316\) −8375.30 −1.49097
\(317\) −657.982 −0.116580 −0.0582901 0.998300i \(-0.518565\pi\)
−0.0582901 + 0.998300i \(0.518565\pi\)
\(318\) −444.088 −0.0783120
\(319\) −42.5004 −0.00745945
\(320\) −2468.60 −0.431247
\(321\) 3637.34 0.632450
\(322\) 815.068 0.141062
\(323\) −7650.51 −1.31791
\(324\) −644.125 −0.110447
\(325\) −1985.92 −0.338950
\(326\) −629.357 −0.106923
\(327\) 3385.06 0.572459
\(328\) −217.928 −0.0366861
\(329\) −3765.71 −0.631035
\(330\) 4.80829 0.000802084 0
\(331\) 8443.16 1.40205 0.701024 0.713138i \(-0.252727\pi\)
0.701024 + 0.713138i \(0.252727\pi\)
\(332\) 9381.53 1.55084
\(333\) 1581.91 0.260324
\(334\) 248.431 0.0406993
\(335\) 395.955 0.0645770
\(336\) 3959.81 0.642932
\(337\) 6836.82 1.10512 0.552560 0.833473i \(-0.313651\pi\)
0.552560 + 0.833473i \(0.313651\pi\)
\(338\) 899.669 0.144780
\(339\) 2475.31 0.396580
\(340\) 2601.97 0.415034
\(341\) −113.996 −0.0181033
\(342\) 230.139 0.0363874
\(343\) 5145.00 0.809924
\(344\) −230.451 −0.0361195
\(345\) 2661.71 0.415368
\(346\) 729.904 0.113410
\(347\) 7797.57 1.20633 0.603164 0.797617i \(-0.293907\pi\)
0.603164 + 0.797617i \(0.293907\pi\)
\(348\) 691.838 0.106570
\(349\) 7869.23 1.20696 0.603482 0.797377i \(-0.293780\pi\)
0.603482 + 0.797377i \(0.293780\pi\)
\(350\) −114.832 −0.0175373
\(351\) 2144.79 0.326155
\(352\) −61.0561 −0.00924517
\(353\) 943.862 0.142314 0.0711568 0.997465i \(-0.477331\pi\)
0.0711568 + 0.997465i \(0.477331\pi\)
\(354\) −272.419 −0.0409009
\(355\) 1093.03 0.163414
\(356\) −11225.2 −1.67117
\(357\) −4122.76 −0.611203
\(358\) −1026.64 −0.151564
\(359\) 5181.28 0.761720 0.380860 0.924633i \(-0.375628\pi\)
0.380860 + 0.924633i \(0.375628\pi\)
\(360\) −157.013 −0.0229870
\(361\) 6808.42 0.992625
\(362\) 233.766 0.0339405
\(363\) 3986.56 0.576419
\(364\) −13265.5 −1.91018
\(365\) 5120.66 0.734321
\(366\) 279.782 0.0399575
\(367\) 7016.17 0.997933 0.498966 0.866621i \(-0.333713\pi\)
0.498966 + 0.866621i \(0.333713\pi\)
\(368\) −11153.3 −1.57991
\(369\) 562.122 0.0793033
\(370\) 192.226 0.0270091
\(371\) −14212.2 −1.98885
\(372\) 1855.68 0.258635
\(373\) −4322.19 −0.599985 −0.299993 0.953942i \(-0.596984\pi\)
−0.299993 + 0.953942i \(0.596984\pi\)
\(374\) 20.9772 0.00290028
\(375\) −375.000 −0.0516398
\(376\) −625.680 −0.0858164
\(377\) −2303.66 −0.314707
\(378\) 124.019 0.0168752
\(379\) −6955.45 −0.942684 −0.471342 0.881951i \(-0.656230\pi\)
−0.471342 + 0.881951i \(0.656230\pi\)
\(380\) −4648.34 −0.627513
\(381\) −6061.68 −0.815090
\(382\) −236.672 −0.0316994
\(383\) −8543.13 −1.13977 −0.569887 0.821723i \(-0.693013\pi\)
−0.569887 + 0.821723i \(0.693013\pi\)
\(384\) 1323.85 0.175930
\(385\) 153.881 0.0203701
\(386\) −884.727 −0.116662
\(387\) 594.426 0.0780785
\(388\) −7035.38 −0.920535
\(389\) 5928.65 0.772736 0.386368 0.922345i \(-0.373729\pi\)
0.386368 + 0.922345i \(0.373729\pi\)
\(390\) 260.626 0.0338392
\(391\) 11612.3 1.50194
\(392\) −341.940 −0.0440576
\(393\) −859.863 −0.110367
\(394\) 313.617 0.0401010
\(395\) 5266.06 0.670795
\(396\) 104.887 0.0133100
\(397\) 10989.4 1.38927 0.694637 0.719360i \(-0.255565\pi\)
0.694637 + 0.719360i \(0.255565\pi\)
\(398\) 756.836 0.0953185
\(399\) 7365.19 0.924112
\(400\) 1571.35 0.196419
\(401\) 797.168 0.0992735 0.0496368 0.998767i \(-0.484194\pi\)
0.0496368 + 0.998767i \(0.484194\pi\)
\(402\) −51.9639 −0.00644707
\(403\) −6178.98 −0.763764
\(404\) 5146.97 0.633840
\(405\) 405.000 0.0496904
\(406\) −133.205 −0.0162829
\(407\) −257.592 −0.0313720
\(408\) −685.004 −0.0831194
\(409\) −7879.82 −0.952645 −0.476323 0.879271i \(-0.658031\pi\)
−0.476323 + 0.879271i \(0.658031\pi\)
\(410\) 68.3067 0.00822787
\(411\) −5710.66 −0.685367
\(412\) 12329.9 1.47439
\(413\) −8718.27 −1.03874
\(414\) −349.315 −0.0414683
\(415\) −5898.73 −0.697728
\(416\) −3309.45 −0.390046
\(417\) 4317.38 0.507010
\(418\) −37.4751 −0.00438509
\(419\) 9358.61 1.09116 0.545582 0.838057i \(-0.316309\pi\)
0.545582 + 0.838057i \(0.316309\pi\)
\(420\) −2504.93 −0.291019
\(421\) −3252.50 −0.376525 −0.188263 0.982119i \(-0.560286\pi\)
−0.188263 + 0.982119i \(0.560286\pi\)
\(422\) 447.213 0.0515877
\(423\) 1613.88 0.185507
\(424\) −2361.39 −0.270470
\(425\) −1636.02 −0.186726
\(426\) −143.446 −0.0163145
\(427\) 8953.92 1.01478
\(428\) 9641.57 1.08888
\(429\) −349.250 −0.0393053
\(430\) 72.2321 0.00810079
\(431\) 4340.20 0.485058 0.242529 0.970144i \(-0.422023\pi\)
0.242529 + 0.970144i \(0.422023\pi\)
\(432\) −1697.06 −0.189004
\(433\) 2983.79 0.331159 0.165579 0.986196i \(-0.447051\pi\)
0.165579 + 0.986196i \(0.447051\pi\)
\(434\) −357.289 −0.0395171
\(435\) −435.000 −0.0479463
\(436\) 8972.84 0.985598
\(437\) −20745.0 −2.27086
\(438\) −672.019 −0.0733112
\(439\) −6943.69 −0.754907 −0.377454 0.926028i \(-0.623200\pi\)
−0.377454 + 0.926028i \(0.623200\pi\)
\(440\) 25.5675 0.00277019
\(441\) 882.000 0.0952380
\(442\) 1137.03 0.122360
\(443\) 13772.2 1.47706 0.738528 0.674223i \(-0.235521\pi\)
0.738528 + 0.674223i \(0.235521\pi\)
\(444\) 4193.19 0.448198
\(445\) 7057.99 0.751867
\(446\) −502.201 −0.0533182
\(447\) −5201.49 −0.550385
\(448\) 10368.1 1.09341
\(449\) 6057.15 0.636648 0.318324 0.947982i \(-0.396880\pi\)
0.318324 + 0.947982i \(0.396880\pi\)
\(450\) 49.2138 0.00515547
\(451\) −91.5341 −0.00955693
\(452\) 6561.36 0.682788
\(453\) 7755.59 0.804391
\(454\) −1302.29 −0.134624
\(455\) 8340.85 0.859396
\(456\) 1223.74 0.125673
\(457\) −18653.8 −1.90938 −0.954690 0.297603i \(-0.903813\pi\)
−0.954690 + 0.297603i \(0.903813\pi\)
\(458\) 281.325 0.0287019
\(459\) 1766.90 0.179677
\(460\) 7055.45 0.715135
\(461\) −2879.46 −0.290910 −0.145455 0.989365i \(-0.546465\pi\)
−0.145455 + 0.989365i \(0.546465\pi\)
\(462\) −20.1948 −0.00203365
\(463\) 7645.28 0.767400 0.383700 0.923458i \(-0.374650\pi\)
0.383700 + 0.923458i \(0.374650\pi\)
\(464\) 1822.77 0.182370
\(465\) −1166.77 −0.116361
\(466\) 44.5409 0.00442772
\(467\) 7486.58 0.741837 0.370918 0.928665i \(-0.379043\pi\)
0.370918 + 0.928665i \(0.379043\pi\)
\(468\) 5685.24 0.561539
\(469\) −1663.01 −0.163733
\(470\) 196.111 0.0192467
\(471\) −8734.09 −0.854449
\(472\) −1448.56 −0.141261
\(473\) −96.7944 −0.00940932
\(474\) −691.101 −0.0669690
\(475\) 2922.69 0.282321
\(476\) −10928.3 −1.05230
\(477\) 6090.96 0.584666
\(478\) 495.405 0.0474044
\(479\) 13351.7 1.27361 0.636803 0.771027i \(-0.280257\pi\)
0.636803 + 0.771027i \(0.280257\pi\)
\(480\) −624.922 −0.0594243
\(481\) −13962.4 −1.32355
\(482\) −784.013 −0.0740888
\(483\) −11179.2 −1.05315
\(484\) 10567.2 0.992416
\(485\) 4423.57 0.414152
\(486\) −53.1509 −0.00496086
\(487\) −3228.98 −0.300450 −0.150225 0.988652i \(-0.548000\pi\)
−0.150225 + 0.988652i \(0.548000\pi\)
\(488\) 1487.71 0.138003
\(489\) 8632.05 0.798271
\(490\) 107.177 0.00988113
\(491\) −7804.20 −0.717309 −0.358655 0.933470i \(-0.616764\pi\)
−0.358655 + 0.933470i \(0.616764\pi\)
\(492\) 1490.03 0.136536
\(493\) −1897.78 −0.173370
\(494\) −2031.28 −0.185003
\(495\) −65.9489 −0.00598824
\(496\) 4889.10 0.442595
\(497\) −4590.72 −0.414330
\(498\) 774.131 0.0696579
\(499\) −3990.42 −0.357988 −0.178994 0.983850i \(-0.557284\pi\)
−0.178994 + 0.983850i \(0.557284\pi\)
\(500\) −994.020 −0.0889078
\(501\) −3407.40 −0.303855
\(502\) −995.089 −0.0884721
\(503\) 6235.12 0.552704 0.276352 0.961056i \(-0.410874\pi\)
0.276352 + 0.961056i \(0.410874\pi\)
\(504\) 659.456 0.0582828
\(505\) −3236.21 −0.285167
\(506\) 56.8813 0.00499739
\(507\) −12339.6 −1.08090
\(508\) −16067.8 −1.40334
\(509\) −13441.4 −1.17049 −0.585246 0.810856i \(-0.699002\pi\)
−0.585246 + 0.810856i \(0.699002\pi\)
\(510\) 214.706 0.0186418
\(511\) −21506.8 −1.86184
\(512\) 4373.07 0.377469
\(513\) −3156.51 −0.271663
\(514\) 293.691 0.0252026
\(515\) −7752.53 −0.663335
\(516\) 1575.66 0.134427
\(517\) −262.798 −0.0223556
\(518\) −807.351 −0.0684806
\(519\) −10011.1 −0.846703
\(520\) 1385.85 0.116872
\(521\) 11314.2 0.951407 0.475703 0.879606i \(-0.342194\pi\)
0.475703 + 0.879606i \(0.342194\pi\)
\(522\) 57.0881 0.00478674
\(523\) 12003.7 1.00361 0.501804 0.864982i \(-0.332670\pi\)
0.501804 + 0.864982i \(0.332670\pi\)
\(524\) −2279.26 −0.190019
\(525\) 1575.00 0.130931
\(526\) 1450.43 0.120231
\(527\) −5090.30 −0.420753
\(528\) 276.344 0.0227771
\(529\) 19320.6 1.58795
\(530\) 740.146 0.0606602
\(531\) 3736.40 0.305360
\(532\) 19523.0 1.59104
\(533\) −4961.46 −0.403198
\(534\) −926.268 −0.0750628
\(535\) −6062.23 −0.489894
\(536\) −276.312 −0.0222665
\(537\) 14081.1 1.13155
\(538\) 1216.90 0.0975174
\(539\) −143.622 −0.0114772
\(540\) 1073.54 0.0855516
\(541\) 2058.05 0.163553 0.0817767 0.996651i \(-0.473941\pi\)
0.0817767 + 0.996651i \(0.473941\pi\)
\(542\) −777.830 −0.0616433
\(543\) −3206.25 −0.253395
\(544\) −2726.35 −0.214874
\(545\) −5641.76 −0.443425
\(546\) −1094.63 −0.0857980
\(547\) −2919.73 −0.228224 −0.114112 0.993468i \(-0.536402\pi\)
−0.114112 + 0.993468i \(0.536402\pi\)
\(548\) −15137.3 −1.17999
\(549\) −3837.39 −0.298317
\(550\) −8.01382 −0.000621292 0
\(551\) 3390.32 0.262128
\(552\) −1857.44 −0.143221
\(553\) −22117.4 −1.70078
\(554\) 1552.90 0.119091
\(555\) −2636.51 −0.201646
\(556\) 11444.2 0.872915
\(557\) 3685.44 0.280354 0.140177 0.990126i \(-0.455233\pi\)
0.140177 + 0.990126i \(0.455233\pi\)
\(558\) 153.124 0.0116169
\(559\) −5246.58 −0.396971
\(560\) −6599.68 −0.498013
\(561\) −287.716 −0.0216531
\(562\) 302.306 0.0226904
\(563\) −9449.71 −0.707385 −0.353693 0.935362i \(-0.615074\pi\)
−0.353693 + 0.935362i \(0.615074\pi\)
\(564\) 4277.94 0.319386
\(565\) −4125.52 −0.307189
\(566\) −408.515 −0.0303378
\(567\) −1701.00 −0.125988
\(568\) −762.756 −0.0563460
\(569\) 2727.43 0.200949 0.100474 0.994940i \(-0.467964\pi\)
0.100474 + 0.994940i \(0.467964\pi\)
\(570\) −383.565 −0.0281856
\(571\) −9211.18 −0.675089 −0.337545 0.941310i \(-0.609596\pi\)
−0.337545 + 0.941310i \(0.609596\pi\)
\(572\) −925.765 −0.0676716
\(573\) 3246.11 0.236663
\(574\) −286.888 −0.0208614
\(575\) −4436.19 −0.321742
\(576\) −4443.48 −0.321432
\(577\) 18864.4 1.36107 0.680534 0.732717i \(-0.261748\pi\)
0.680534 + 0.732717i \(0.261748\pi\)
\(578\) −137.913 −0.00992463
\(579\) 12134.6 0.870980
\(580\) −1153.06 −0.0825488
\(581\) 24774.7 1.76906
\(582\) −580.536 −0.0413470
\(583\) −991.831 −0.0704587
\(584\) −3573.38 −0.253198
\(585\) −3574.65 −0.252639
\(586\) 1074.88 0.0757732
\(587\) −14024.1 −0.986092 −0.493046 0.870003i \(-0.664117\pi\)
−0.493046 + 0.870003i \(0.664117\pi\)
\(588\) 2337.93 0.163971
\(589\) 9093.66 0.636159
\(590\) 454.032 0.0316817
\(591\) −4301.46 −0.299388
\(592\) 11047.7 0.766989
\(593\) −17324.6 −1.19973 −0.599863 0.800102i \(-0.704778\pi\)
−0.599863 + 0.800102i \(0.704778\pi\)
\(594\) 8.65492 0.000597838 0
\(595\) 6871.27 0.473436
\(596\) −13787.7 −0.947594
\(597\) −10380.5 −0.711634
\(598\) 3083.16 0.210836
\(599\) −8141.83 −0.555369 −0.277685 0.960672i \(-0.589567\pi\)
−0.277685 + 0.960672i \(0.589567\pi\)
\(600\) 261.689 0.0178057
\(601\) 400.990 0.0272158 0.0136079 0.999907i \(-0.495668\pi\)
0.0136079 + 0.999907i \(0.495668\pi\)
\(602\) −303.375 −0.0205393
\(603\) 712.718 0.0481329
\(604\) 20557.9 1.38491
\(605\) −6644.26 −0.446492
\(606\) 424.710 0.0284698
\(607\) −19203.1 −1.28407 −0.642034 0.766677i \(-0.721909\pi\)
−0.642034 + 0.766677i \(0.721909\pi\)
\(608\) 4870.54 0.324879
\(609\) 1827.00 0.121566
\(610\) −466.303 −0.0309509
\(611\) −14244.6 −0.943164
\(612\) 4683.55 0.309348
\(613\) 6903.39 0.454853 0.227427 0.973795i \(-0.426969\pi\)
0.227427 + 0.973795i \(0.426969\pi\)
\(614\) −515.663 −0.0338933
\(615\) −936.871 −0.0614281
\(616\) −107.384 −0.00702372
\(617\) −18090.6 −1.18039 −0.590193 0.807262i \(-0.700948\pi\)
−0.590193 + 0.807262i \(0.700948\pi\)
\(618\) 1017.42 0.0662242
\(619\) −23420.2 −1.52074 −0.760369 0.649492i \(-0.774982\pi\)
−0.760369 + 0.649492i \(0.774982\pi\)
\(620\) −3092.79 −0.200338
\(621\) 4791.08 0.309597
\(622\) 2148.30 0.138487
\(623\) −29643.5 −1.90633
\(624\) 14978.8 0.960946
\(625\) 625.000 0.0400000
\(626\) −180.169 −0.0115032
\(627\) 513.995 0.0327384
\(628\) −23151.6 −1.47110
\(629\) −11502.3 −0.729138
\(630\) −206.698 −0.0130715
\(631\) 10835.5 0.683607 0.341803 0.939771i \(-0.388962\pi\)
0.341803 + 0.939771i \(0.388962\pi\)
\(632\) −3674.85 −0.231294
\(633\) −6133.83 −0.385146
\(634\) −143.919 −0.00901539
\(635\) 10102.8 0.631366
\(636\) 16145.4 1.00662
\(637\) −7784.79 −0.484214
\(638\) −9.29603 −0.000576855 0
\(639\) 1967.45 0.121801
\(640\) −2206.41 −0.136275
\(641\) −910.547 −0.0561068 −0.0280534 0.999606i \(-0.508931\pi\)
−0.0280534 + 0.999606i \(0.508931\pi\)
\(642\) 795.589 0.0489087
\(643\) −81.2497 −0.00498316 −0.00249158 0.999997i \(-0.500793\pi\)
−0.00249158 + 0.999997i \(0.500793\pi\)
\(644\) −29632.9 −1.81320
\(645\) −990.710 −0.0604793
\(646\) −1673.38 −0.101917
\(647\) −29487.9 −1.79179 −0.895895 0.444266i \(-0.853465\pi\)
−0.895895 + 0.444266i \(0.853465\pi\)
\(648\) −282.624 −0.0171335
\(649\) −608.424 −0.0367993
\(650\) −434.376 −0.0262117
\(651\) 4900.45 0.295029
\(652\) 22881.1 1.37438
\(653\) 28469.2 1.70610 0.853051 0.521827i \(-0.174749\pi\)
0.853051 + 0.521827i \(0.174749\pi\)
\(654\) 740.407 0.0442694
\(655\) 1433.11 0.0854902
\(656\) 3925.74 0.233650
\(657\) 9217.18 0.547331
\(658\) −823.668 −0.0487993
\(659\) 1953.52 0.115476 0.0577378 0.998332i \(-0.481611\pi\)
0.0577378 + 0.998332i \(0.481611\pi\)
\(660\) −174.812 −0.0103099
\(661\) −16092.8 −0.946956 −0.473478 0.880806i \(-0.657002\pi\)
−0.473478 + 0.880806i \(0.657002\pi\)
\(662\) 1846.76 0.108423
\(663\) −15595.2 −0.913523
\(664\) 4116.35 0.240581
\(665\) −12275.3 −0.715814
\(666\) 346.008 0.0201314
\(667\) −5145.98 −0.298730
\(668\) −9032.06 −0.523145
\(669\) 6888.01 0.398066
\(670\) 86.6064 0.00499388
\(671\) 624.868 0.0359505
\(672\) 2624.67 0.150668
\(673\) −843.429 −0.0483088 −0.0241544 0.999708i \(-0.507689\pi\)
−0.0241544 + 0.999708i \(0.507689\pi\)
\(674\) 1495.40 0.0854612
\(675\) −675.000 −0.0384900
\(676\) −32708.7 −1.86099
\(677\) 11706.7 0.664588 0.332294 0.943176i \(-0.392177\pi\)
0.332294 + 0.943176i \(0.392177\pi\)
\(678\) 541.420 0.0306683
\(679\) −18579.0 −1.05007
\(680\) 1141.67 0.0643840
\(681\) 17861.8 1.00509
\(682\) −24.9342 −0.00139997
\(683\) 5775.22 0.323547 0.161774 0.986828i \(-0.448279\pi\)
0.161774 + 0.986828i \(0.448279\pi\)
\(684\) −8367.02 −0.467721
\(685\) 9517.76 0.530883
\(686\) 1125.36 0.0626331
\(687\) −3858.56 −0.214284
\(688\) 4151.35 0.230042
\(689\) −53760.6 −2.97259
\(690\) 582.192 0.0321212
\(691\) 20629.4 1.13571 0.567857 0.823127i \(-0.307773\pi\)
0.567857 + 0.823127i \(0.307773\pi\)
\(692\) −26536.6 −1.45776
\(693\) 276.985 0.0151830
\(694\) 1705.55 0.0932878
\(695\) −7195.64 −0.392728
\(696\) 303.559 0.0165322
\(697\) −4087.29 −0.222119
\(698\) 1721.22 0.0933370
\(699\) −610.908 −0.0330567
\(700\) 4174.88 0.225422
\(701\) −5797.19 −0.312350 −0.156175 0.987729i \(-0.549916\pi\)
−0.156175 + 0.987729i \(0.549916\pi\)
\(702\) 469.126 0.0252222
\(703\) 20548.6 1.10242
\(704\) 723.562 0.0387362
\(705\) −2689.80 −0.143693
\(706\) 206.449 0.0110054
\(707\) 13592.1 0.723031
\(708\) 9904.16 0.525736
\(709\) −4622.24 −0.244841 −0.122420 0.992478i \(-0.539066\pi\)
−0.122420 + 0.992478i \(0.539066\pi\)
\(710\) 239.076 0.0126371
\(711\) 9478.90 0.499981
\(712\) −4925.33 −0.259248
\(713\) −13802.8 −0.724989
\(714\) −901.764 −0.0472656
\(715\) 582.084 0.0304457
\(716\) 37325.1 1.94819
\(717\) −6794.81 −0.353915
\(718\) 1133.29 0.0589054
\(719\) 20648.1 1.07099 0.535497 0.844537i \(-0.320124\pi\)
0.535497 + 0.844537i \(0.320124\pi\)
\(720\) 2828.43 0.146402
\(721\) 32560.6 1.68186
\(722\) 1489.19 0.0767618
\(723\) 10753.2 0.553136
\(724\) −8498.87 −0.436268
\(725\) 725.000 0.0371391
\(726\) 871.972 0.0445757
\(727\) −17177.6 −0.876314 −0.438157 0.898898i \(-0.644369\pi\)
−0.438157 + 0.898898i \(0.644369\pi\)
\(728\) −5820.56 −0.296324
\(729\) 729.000 0.0370370
\(730\) 1120.03 0.0567866
\(731\) −4322.18 −0.218689
\(732\) −10171.9 −0.513610
\(733\) 23803.4 1.19945 0.599725 0.800206i \(-0.295277\pi\)
0.599725 + 0.800206i \(0.295277\pi\)
\(734\) 1534.63 0.0771722
\(735\) −1470.00 −0.0737711
\(736\) −7392.72 −0.370244
\(737\) −116.057 −0.00580055
\(738\) 122.952 0.00613269
\(739\) −16294.6 −0.811106 −0.405553 0.914072i \(-0.632921\pi\)
−0.405553 + 0.914072i \(0.632921\pi\)
\(740\) −6988.65 −0.347173
\(741\) 27860.3 1.38120
\(742\) −3108.62 −0.153802
\(743\) 25122.4 1.24045 0.620223 0.784426i \(-0.287042\pi\)
0.620223 + 0.784426i \(0.287042\pi\)
\(744\) 814.219 0.0401219
\(745\) 8669.15 0.426326
\(746\) −945.385 −0.0463981
\(747\) −10617.7 −0.520056
\(748\) −762.653 −0.0372799
\(749\) 25461.4 1.24211
\(750\) −82.0231 −0.00399341
\(751\) −29871.6 −1.45144 −0.725719 0.687991i \(-0.758493\pi\)
−0.725719 + 0.687991i \(0.758493\pi\)
\(752\) 11271.0 0.546556
\(753\) 13648.3 0.660520
\(754\) −503.876 −0.0243370
\(755\) −12926.0 −0.623079
\(756\) −4508.87 −0.216913
\(757\) 17699.3 0.849791 0.424896 0.905242i \(-0.360311\pi\)
0.424896 + 0.905242i \(0.360311\pi\)
\(758\) −1521.35 −0.0728997
\(759\) −780.164 −0.0373098
\(760\) −2039.56 −0.0973457
\(761\) 10189.2 0.485360 0.242680 0.970106i \(-0.421973\pi\)
0.242680 + 0.970106i \(0.421973\pi\)
\(762\) −1325.86 −0.0630326
\(763\) 23695.4 1.12429
\(764\) 8604.52 0.407462
\(765\) −2944.83 −0.139177
\(766\) −1868.62 −0.0881412
\(767\) −32978.6 −1.55253
\(768\) −11559.7 −0.543132
\(769\) −17537.6 −0.822395 −0.411197 0.911546i \(-0.634889\pi\)
−0.411197 + 0.911546i \(0.634889\pi\)
\(770\) 33.6580 0.00157526
\(771\) −4028.16 −0.188159
\(772\) 32165.4 1.49956
\(773\) −18819.3 −0.875659 −0.437830 0.899058i \(-0.644253\pi\)
−0.437830 + 0.899058i \(0.644253\pi\)
\(774\) 130.018 0.00603797
\(775\) 1944.62 0.0901329
\(776\) −3086.93 −0.142802
\(777\) 11073.3 0.511267
\(778\) 1296.76 0.0597573
\(779\) 7301.83 0.335835
\(780\) −9475.39 −0.434966
\(781\) −320.373 −0.0146784
\(782\) 2539.93 0.116148
\(783\) −783.000 −0.0357371
\(784\) 6159.70 0.280598
\(785\) 14556.8 0.661854
\(786\) −188.076 −0.00853494
\(787\) −11434.2 −0.517900 −0.258950 0.965891i \(-0.583376\pi\)
−0.258950 + 0.965891i \(0.583376\pi\)
\(788\) −11402.0 −0.515455
\(789\) −19893.5 −0.897628
\(790\) 1151.84 0.0518740
\(791\) 17327.2 0.778867
\(792\) 46.0216 0.00206478
\(793\) 33870.0 1.51672
\(794\) 2403.69 0.107435
\(795\) −10151.6 −0.452880
\(796\) −27515.8 −1.22522
\(797\) −14273.6 −0.634375 −0.317187 0.948363i \(-0.602738\pi\)
−0.317187 + 0.948363i \(0.602738\pi\)
\(798\) 1610.97 0.0714635
\(799\) −11734.8 −0.519583
\(800\) 1041.54 0.0460298
\(801\) 12704.4 0.560408
\(802\) 174.363 0.00767703
\(803\) −1500.89 −0.0659594
\(804\) 1889.22 0.0828700
\(805\) 18632.0 0.815766
\(806\) −1351.52 −0.0590635
\(807\) −16690.6 −0.728051
\(808\) 2258.35 0.0983273
\(809\) −92.7049 −0.00402884 −0.00201442 0.999998i \(-0.500641\pi\)
−0.00201442 + 0.999998i \(0.500641\pi\)
\(810\) 88.5849 0.00384266
\(811\) 20484.6 0.886946 0.443473 0.896288i \(-0.353746\pi\)
0.443473 + 0.896288i \(0.353746\pi\)
\(812\) 4842.86 0.209300
\(813\) 10668.5 0.460220
\(814\) −56.3427 −0.00242606
\(815\) −14386.7 −0.618338
\(816\) 12339.6 0.529379
\(817\) 7721.45 0.330648
\(818\) −1723.54 −0.0736700
\(819\) 15013.5 0.640556
\(820\) −2483.38 −0.105760
\(821\) 12828.4 0.545328 0.272664 0.962109i \(-0.412095\pi\)
0.272664 + 0.962109i \(0.412095\pi\)
\(822\) −1249.08 −0.0530009
\(823\) −7959.43 −0.337118 −0.168559 0.985692i \(-0.553911\pi\)
−0.168559 + 0.985692i \(0.553911\pi\)
\(824\) 5410.00 0.228721
\(825\) 109.915 0.00463847
\(826\) −1906.93 −0.0803277
\(827\) 15961.5 0.671144 0.335572 0.942015i \(-0.391070\pi\)
0.335572 + 0.942015i \(0.391070\pi\)
\(828\) 12699.8 0.533030
\(829\) −6830.19 −0.286155 −0.143077 0.989712i \(-0.545700\pi\)
−0.143077 + 0.989712i \(0.545700\pi\)
\(830\) −1290.22 −0.0539568
\(831\) −21299.0 −0.889115
\(832\) 39219.5 1.63424
\(833\) −6413.18 −0.266751
\(834\) 944.333 0.0392081
\(835\) 5679.00 0.235365
\(836\) 1362.46 0.0563655
\(837\) −2100.19 −0.0867304
\(838\) 2046.99 0.0843820
\(839\) 14841.7 0.610720 0.305360 0.952237i \(-0.401223\pi\)
0.305360 + 0.952237i \(0.401223\pi\)
\(840\) −1099.09 −0.0451456
\(841\) 841.000 0.0344828
\(842\) −711.413 −0.0291175
\(843\) −4146.33 −0.169404
\(844\) −16259.0 −0.663104
\(845\) 20565.9 0.837265
\(846\) 353.000 0.0143456
\(847\) 27905.9 1.13206
\(848\) 42537.9 1.72259
\(849\) 5603.06 0.226498
\(850\) −357.843 −0.0144399
\(851\) −31189.5 −1.25636
\(852\) 5215.16 0.209705
\(853\) −46778.2 −1.87767 −0.938836 0.344365i \(-0.888094\pi\)
−0.938836 + 0.344365i \(0.888094\pi\)
\(854\) 1958.47 0.0784749
\(855\) 5260.85 0.210429
\(856\) 4230.45 0.168918
\(857\) 14402.4 0.574070 0.287035 0.957920i \(-0.407330\pi\)
0.287035 + 0.957920i \(0.407330\pi\)
\(858\) −76.3909 −0.00303956
\(859\) 23353.0 0.927584 0.463792 0.885944i \(-0.346488\pi\)
0.463792 + 0.885944i \(0.346488\pi\)
\(860\) −2626.09 −0.104127
\(861\) 3934.86 0.155749
\(862\) 949.324 0.0375106
\(863\) 27267.6 1.07555 0.537776 0.843088i \(-0.319265\pi\)
0.537776 + 0.843088i \(0.319265\pi\)
\(864\) −1124.86 −0.0442922
\(865\) 16685.2 0.655854
\(866\) 652.639 0.0256092
\(867\) 1891.57 0.0740959
\(868\) 12989.7 0.507949
\(869\) −1543.51 −0.0602533
\(870\) −95.1468 −0.00370779
\(871\) −6290.66 −0.244720
\(872\) 3937.03 0.152895
\(873\) 7962.43 0.308691
\(874\) −4537.51 −0.175611
\(875\) −2625.00 −0.101419
\(876\) 24432.2 0.942336
\(877\) −10549.3 −0.406185 −0.203092 0.979160i \(-0.565099\pi\)
−0.203092 + 0.979160i \(0.565099\pi\)
\(878\) −1518.78 −0.0583786
\(879\) −14742.8 −0.565712
\(880\) −460.573 −0.0176431
\(881\) 25397.8 0.971251 0.485625 0.874167i \(-0.338592\pi\)
0.485625 + 0.874167i \(0.338592\pi\)
\(882\) 192.918 0.00736496
\(883\) −33416.7 −1.27357 −0.636785 0.771041i \(-0.719736\pi\)
−0.636785 + 0.771041i \(0.719736\pi\)
\(884\) −41338.4 −1.57281
\(885\) −6227.34 −0.236531
\(886\) 3012.36 0.114224
\(887\) −33336.9 −1.26194 −0.630971 0.775806i \(-0.717343\pi\)
−0.630971 + 0.775806i \(0.717343\pi\)
\(888\) 1839.86 0.0695288
\(889\) −42431.8 −1.60081
\(890\) 1543.78 0.0581434
\(891\) −118.708 −0.00446337
\(892\) 18258.2 0.685347
\(893\) 20963.9 0.785587
\(894\) −1137.71 −0.0425624
\(895\) −23468.5 −0.876498
\(896\) 9266.92 0.345520
\(897\) −42287.5 −1.57407
\(898\) 1324.87 0.0492333
\(899\) 2255.76 0.0836863
\(900\) −1789.24 −0.0662680
\(901\) −44288.4 −1.63758
\(902\) −20.0211 −0.000739057 0
\(903\) 4160.98 0.153343
\(904\) 2878.94 0.105921
\(905\) 5343.75 0.196279
\(906\) 1696.36 0.0622052
\(907\) 48386.2 1.77138 0.885688 0.464280i \(-0.153687\pi\)
0.885688 + 0.464280i \(0.153687\pi\)
\(908\) 47346.5 1.73045
\(909\) −5825.18 −0.212551
\(910\) 1824.38 0.0664589
\(911\) 44095.4 1.60367 0.801836 0.597545i \(-0.203857\pi\)
0.801836 + 0.597545i \(0.203857\pi\)
\(912\) −22044.4 −0.800397
\(913\) 1728.95 0.0626725
\(914\) −4080.10 −0.147656
\(915\) 6395.66 0.231075
\(916\) −10228.0 −0.368932
\(917\) −6019.04 −0.216757
\(918\) 386.470 0.0138948
\(919\) −27520.1 −0.987816 −0.493908 0.869514i \(-0.664432\pi\)
−0.493908 + 0.869514i \(0.664432\pi\)
\(920\) 3095.74 0.110939
\(921\) 7072.66 0.253043
\(922\) −629.818 −0.0224967
\(923\) −17365.3 −0.619270
\(924\) 734.210 0.0261404
\(925\) 4394.19 0.156195
\(926\) 1672.24 0.0593447
\(927\) −13954.6 −0.494420
\(928\) 1208.18 0.0427376
\(929\) 13243.5 0.467712 0.233856 0.972271i \(-0.424866\pi\)
0.233856 + 0.972271i \(0.424866\pi\)
\(930\) −255.206 −0.00899844
\(931\) 11457.0 0.403315
\(932\) −1619.34 −0.0569135
\(933\) −29465.3 −1.03392
\(934\) 1637.53 0.0573678
\(935\) 479.526 0.0167724
\(936\) 2494.52 0.0871112
\(937\) 48606.1 1.69466 0.847329 0.531069i \(-0.178210\pi\)
0.847329 + 0.531069i \(0.178210\pi\)
\(938\) −363.747 −0.0126618
\(939\) 2471.13 0.0858812
\(940\) −7129.89 −0.247395
\(941\) 38178.2 1.32261 0.661303 0.750118i \(-0.270004\pi\)
0.661303 + 0.750118i \(0.270004\pi\)
\(942\) −1910.39 −0.0660763
\(943\) −11083.0 −0.382728
\(944\) 26094.2 0.899677
\(945\) 2835.00 0.0975900
\(946\) −21.1717 −0.000727643 0
\(947\) −21472.2 −0.736803 −0.368402 0.929667i \(-0.620095\pi\)
−0.368402 + 0.929667i \(0.620095\pi\)
\(948\) 25125.9 0.860814
\(949\) −81353.6 −2.78277
\(950\) 639.275 0.0218325
\(951\) 1973.95 0.0673076
\(952\) −4795.03 −0.163243
\(953\) 5335.21 0.181348 0.0906739 0.995881i \(-0.471098\pi\)
0.0906739 + 0.995881i \(0.471098\pi\)
\(954\) 1332.26 0.0452134
\(955\) −5410.18 −0.183319
\(956\) −18011.1 −0.609332
\(957\) 127.501 0.00430671
\(958\) 2920.40 0.0984906
\(959\) −39974.6 −1.34603
\(960\) 7405.80 0.248980
\(961\) −23740.5 −0.796902
\(962\) −3053.97 −0.102353
\(963\) −10912.0 −0.365145
\(964\) 28503.8 0.952331
\(965\) −20224.3 −0.674658
\(966\) −2445.20 −0.0814422
\(967\) −4578.60 −0.152263 −0.0761313 0.997098i \(-0.524257\pi\)
−0.0761313 + 0.997098i \(0.524257\pi\)
\(968\) 4636.61 0.153953
\(969\) 22951.5 0.760898
\(970\) 967.559 0.0320273
\(971\) −13641.3 −0.450846 −0.225423 0.974261i \(-0.572376\pi\)
−0.225423 + 0.974261i \(0.572376\pi\)
\(972\) 1932.37 0.0637664
\(973\) 30221.7 0.995748
\(974\) −706.269 −0.0232344
\(975\) 5957.75 0.195693
\(976\) −26799.5 −0.878926
\(977\) 51144.7 1.67478 0.837391 0.546604i \(-0.184080\pi\)
0.837391 + 0.546604i \(0.184080\pi\)
\(978\) 1888.07 0.0617320
\(979\) −2068.74 −0.0675354
\(980\) −3896.56 −0.127011
\(981\) −10155.2 −0.330509
\(982\) −1707.00 −0.0554710
\(983\) 56699.8 1.83972 0.919859 0.392249i \(-0.128303\pi\)
0.919859 + 0.392249i \(0.128303\pi\)
\(984\) 653.783 0.0211807
\(985\) 7169.10 0.231905
\(986\) −415.098 −0.0134071
\(987\) 11297.1 0.364328
\(988\) 73849.8 2.37801
\(989\) −11719.9 −0.376817
\(990\) −14.4249 −0.000463083 0
\(991\) 52946.3 1.69717 0.848585 0.529059i \(-0.177455\pi\)
0.848585 + 0.529059i \(0.177455\pi\)
\(992\) 3240.63 0.103720
\(993\) −25329.5 −0.809473
\(994\) −1004.12 −0.0320410
\(995\) 17300.8 0.551229
\(996\) −28144.6 −0.895377
\(997\) −2112.74 −0.0671126 −0.0335563 0.999437i \(-0.510683\pi\)
−0.0335563 + 0.999437i \(0.510683\pi\)
\(998\) −872.818 −0.0276839
\(999\) −4745.72 −0.150298
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.4.a.i.1.4 7
3.2 odd 2 1305.4.a.n.1.4 7
5.4 even 2 2175.4.a.n.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.i.1.4 7 1.1 even 1 trivial
1305.4.a.n.1.4 7 3.2 odd 2
2175.4.a.n.1.4 7 5.4 even 2