Properties

Label 435.4.a.i
Level $435$
Weight $4$
Character orbit 435.a
Self dual yes
Analytic conductor $25.666$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 3 q^{3} + (\beta_{2} + \beta_1 + 3) q^{4} + 5 q^{5} + 3 \beta_1 q^{6} + (\beta_{5} + \beta_{4} - \beta_1 - 6) q^{7} + (\beta_{5} - \beta_{4} + \beta_{3} + \cdots - 4) q^{8}+ \cdots + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} - 3 q^{3} + (\beta_{2} + \beta_1 + 3) q^{4} + 5 q^{5} + 3 \beta_1 q^{6} + (\beta_{5} + \beta_{4} - \beta_1 - 6) q^{7} + (\beta_{5} - \beta_{4} + \beta_{3} + \cdots - 4) q^{8}+ \cdots + ( - 9 \beta_{6} + 9 \beta_{5} + \cdots + 108) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} - 21 q^{3} + 22 q^{4} + 35 q^{5} + 6 q^{6} - 50 q^{7} - 33 q^{8} + 63 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q - 2 q^{2} - 21 q^{3} + 22 q^{4} + 35 q^{5} + 6 q^{6} - 50 q^{7} - 33 q^{8} + 63 q^{9} - 10 q^{10} + 76 q^{11} - 66 q^{12} + 30 q^{13} + 89 q^{14} - 105 q^{15} + 138 q^{16} - 140 q^{17} - 18 q^{18} + 90 q^{19} + 110 q^{20} + 150 q^{21} + 61 q^{22} + 34 q^{23} + 99 q^{24} + 175 q^{25} - 241 q^{26} - 189 q^{27} - 57 q^{28} + 203 q^{29} + 30 q^{30} + 524 q^{31} - 6 q^{32} - 228 q^{33} + 255 q^{34} - 250 q^{35} + 198 q^{36} - 28 q^{37} + 222 q^{38} - 90 q^{39} - 165 q^{40} + 1532 q^{41} - 267 q^{42} - 464 q^{43} + 1475 q^{44} + 315 q^{45} + 72 q^{46} - 360 q^{47} - 414 q^{48} + 569 q^{49} - 50 q^{50} + 420 q^{51} - 205 q^{52} + 282 q^{53} + 54 q^{54} + 380 q^{55} + 1102 q^{56} - 270 q^{57} - 58 q^{58} + 766 q^{59} - 330 q^{60} + 1200 q^{61} + 2856 q^{62} - 450 q^{63} + 701 q^{64} + 150 q^{65} - 183 q^{66} + 1546 q^{67} + 1801 q^{68} - 102 q^{69} + 445 q^{70} + 1802 q^{71} - 297 q^{72} - 220 q^{73} + 1594 q^{74} - 525 q^{75} + 1960 q^{76} + 3222 q^{77} + 723 q^{78} + 1298 q^{79} + 690 q^{80} + 567 q^{81} + 856 q^{82} + 1652 q^{83} + 171 q^{84} - 700 q^{85} + 7628 q^{86} - 609 q^{87} + 550 q^{88} + 2846 q^{89} - 90 q^{90} - 816 q^{91} + 472 q^{92} - 1572 q^{93} + 745 q^{94} + 450 q^{95} + 18 q^{96} + 1110 q^{97} - 761 q^{98} + 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 11 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{6} - 7\nu^{5} + 115\nu^{4} + 125\nu^{3} - 1654\nu^{2} + 897\nu + 3640 ) / 159 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 7\nu^{6} - 55\nu^{5} - 164\nu^{4} + 1709\nu^{3} + 65\nu^{2} - 9102\nu - 974 ) / 318 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 11\nu^{6} - 41\nu^{5} - 394\nu^{4} + 1141\nu^{3} + 3373\nu^{2} - 4536\nu - 6982 ) / 318 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 17\nu^{6} - 20\nu^{5} - 580\nu^{4} + 448\nu^{3} + 4042\nu^{2} - 867\nu - 4069 ) / 159 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + \beta_{4} - \beta_{3} + 20\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} - 4\beta_{5} + 2\beta_{4} + \beta_{3} + 27\beta_{2} + 27\beta _1 + 218 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3\beta_{6} - 39\beta_{5} + 29\beta_{4} - 31\beta_{3} + 9\beta_{2} + 474\beta _1 + 118 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 47\beta_{6} - 156\beta_{5} + 76\beta_{4} + 24\beta_{3} + 694\beta_{2} + 765\beta _1 + 5095 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.24052
3.57720
2.27711
−0.218728
−1.40909
−2.58378
−4.88324
−5.24052 −3.00000 19.4631 5.00000 15.7216 −18.4475 −60.0724 9.00000 −26.2026
1.2 −3.57720 −3.00000 4.79637 5.00000 10.7316 15.0281 11.4600 9.00000 −17.8860
1.3 −2.27711 −3.00000 −2.81476 5.00000 6.83134 −26.8439 24.6264 9.00000 −11.3856
1.4 0.218728 −3.00000 −7.95216 5.00000 −0.656184 −21.0000 −3.48919 9.00000 1.09364
1.5 1.40909 −3.00000 −6.01448 5.00000 −4.22726 22.4156 −19.7476 9.00000 7.04543
1.6 2.58378 −3.00000 −1.32408 5.00000 −7.75134 −26.6398 −24.0914 9.00000 12.9189
1.7 4.88324 −3.00000 15.8460 5.00000 −14.6497 5.48750 38.3141 9.00000 24.4162
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.4.a.i 7
3.b odd 2 1 1305.4.a.n 7
5.b even 2 1 2175.4.a.n 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.4.a.i 7 1.a even 1 1 trivial
1305.4.a.n 7 3.b odd 2 1
2175.4.a.n 7 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{7} + 2T_{2}^{6} - 37T_{2}^{5} - 55T_{2}^{4} + 336T_{2}^{3} + 227T_{2}^{2} - 824T_{2} + 166 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(435))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 2 T^{6} + \cdots + 166 \) Copy content Toggle raw display
$3$ \( (T + 3)^{7} \) Copy content Toggle raw display
$5$ \( (T - 5)^{7} \) Copy content Toggle raw display
$7$ \( T^{7} + 50 T^{6} + \cdots - 512109952 \) Copy content Toggle raw display
$11$ \( T^{7} - 76 T^{6} + \cdots + 340000992 \) Copy content Toggle raw display
$13$ \( T^{7} + \cdots - 330782597664 \) Copy content Toggle raw display
$17$ \( T^{7} + \cdots + 4628388110976 \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots - 1327363884544 \) Copy content Toggle raw display
$23$ \( T^{7} + \cdots - 61779908096 \) Copy content Toggle raw display
$29$ \( (T - 29)^{7} \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots + 206419680059392 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots - 20\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots - 56\!\cdots\!48 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots - 52\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots - 46\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots - 84\!\cdots\!08 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots - 50\!\cdots\!08 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots - 44\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( T^{7} + \cdots - 53\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots - 21\!\cdots\!32 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots + 88\!\cdots\!68 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots + 49\!\cdots\!36 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots - 11\!\cdots\!68 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots - 50\!\cdots\!48 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots - 22\!\cdots\!96 \) Copy content Toggle raw display
show more
show less