Properties

Label 435.4.a.h.1.6
Level $435$
Weight $4$
Character 435.1
Self dual yes
Analytic conductor $25.666$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 49x^{4} + 27x^{3} + 692x^{2} - 82x - 2588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(5.42717\) of defining polynomial
Character \(\chi\) \(=\) 435.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.42717 q^{2} +3.00000 q^{3} +21.4542 q^{4} -5.00000 q^{5} +16.2815 q^{6} -10.2400 q^{7} +73.0180 q^{8} +9.00000 q^{9} -27.1358 q^{10} +12.6318 q^{11} +64.3625 q^{12} +84.2342 q^{13} -55.5740 q^{14} -15.0000 q^{15} +224.647 q^{16} +6.89181 q^{17} +48.8445 q^{18} -79.7045 q^{19} -107.271 q^{20} -30.7199 q^{21} +68.5548 q^{22} -73.8181 q^{23} +219.054 q^{24} +25.0000 q^{25} +457.153 q^{26} +27.0000 q^{27} -219.690 q^{28} +29.0000 q^{29} -81.4075 q^{30} +0.254654 q^{31} +635.056 q^{32} +37.8953 q^{33} +37.4030 q^{34} +51.1998 q^{35} +193.087 q^{36} +40.4065 q^{37} -432.570 q^{38} +252.703 q^{39} -365.090 q^{40} +208.354 q^{41} -166.722 q^{42} -194.427 q^{43} +271.004 q^{44} -45.0000 q^{45} -400.623 q^{46} -522.168 q^{47} +673.942 q^{48} -238.143 q^{49} +135.679 q^{50} +20.6754 q^{51} +1807.17 q^{52} -294.893 q^{53} +146.534 q^{54} -63.1589 q^{55} -747.701 q^{56} -239.114 q^{57} +157.388 q^{58} -196.229 q^{59} -321.812 q^{60} +189.313 q^{61} +1.38205 q^{62} -92.1597 q^{63} +1649.38 q^{64} -421.171 q^{65} +205.664 q^{66} -570.840 q^{67} +147.858 q^{68} -221.454 q^{69} +277.870 q^{70} -1126.87 q^{71} +657.162 q^{72} +581.431 q^{73} +219.293 q^{74} +75.0000 q^{75} -1709.99 q^{76} -129.349 q^{77} +1371.46 q^{78} -255.631 q^{79} -1123.24 q^{80} +81.0000 q^{81} +1130.77 q^{82} -983.081 q^{83} -659.069 q^{84} -34.4591 q^{85} -1055.19 q^{86} +87.0000 q^{87} +922.347 q^{88} +678.642 q^{89} -244.223 q^{90} -862.555 q^{91} -1583.70 q^{92} +0.763963 q^{93} -2833.89 q^{94} +398.523 q^{95} +1905.17 q^{96} -30.8442 q^{97} -1292.44 q^{98} +113.686 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 18 q^{3} + 51 q^{4} - 30 q^{5} + 3 q^{6} + 47 q^{7} + 51 q^{8} + 54 q^{9} - 5 q^{10} + 81 q^{11} + 153 q^{12} + 169 q^{13} - 30 q^{14} - 90 q^{15} + 131 q^{16} - q^{17} + 9 q^{18} + 116 q^{19}+ \cdots + 729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.42717 1.91879 0.959397 0.282060i \(-0.0910176\pi\)
0.959397 + 0.282060i \(0.0910176\pi\)
\(3\) 3.00000 0.577350
\(4\) 21.4542 2.68177
\(5\) −5.00000 −0.447214
\(6\) 16.2815 1.10782
\(7\) −10.2400 −0.552906 −0.276453 0.961027i \(-0.589159\pi\)
−0.276453 + 0.961027i \(0.589159\pi\)
\(8\) 73.0180 3.22697
\(9\) 9.00000 0.333333
\(10\) −27.1358 −0.858111
\(11\) 12.6318 0.346239 0.173119 0.984901i \(-0.444615\pi\)
0.173119 + 0.984901i \(0.444615\pi\)
\(12\) 64.3625 1.54832
\(13\) 84.2342 1.79710 0.898552 0.438866i \(-0.144620\pi\)
0.898552 + 0.438866i \(0.144620\pi\)
\(14\) −55.5740 −1.06091
\(15\) −15.0000 −0.258199
\(16\) 224.647 3.51012
\(17\) 6.89181 0.0983241 0.0491621 0.998791i \(-0.484345\pi\)
0.0491621 + 0.998791i \(0.484345\pi\)
\(18\) 48.8445 0.639598
\(19\) −79.7045 −0.962393 −0.481196 0.876613i \(-0.659798\pi\)
−0.481196 + 0.876613i \(0.659798\pi\)
\(20\) −107.271 −1.19932
\(21\) −30.7199 −0.319220
\(22\) 68.5548 0.664361
\(23\) −73.8181 −0.669223 −0.334612 0.942356i \(-0.608605\pi\)
−0.334612 + 0.942356i \(0.608605\pi\)
\(24\) 219.054 1.86309
\(25\) 25.0000 0.200000
\(26\) 457.153 3.44827
\(27\) 27.0000 0.192450
\(28\) −219.690 −1.48277
\(29\) 29.0000 0.185695
\(30\) −81.4075 −0.495430
\(31\) 0.254654 0.00147540 0.000737698 1.00000i \(-0.499765\pi\)
0.000737698 1.00000i \(0.499765\pi\)
\(32\) 635.056 3.50822
\(33\) 37.8953 0.199901
\(34\) 37.4030 0.188664
\(35\) 51.1998 0.247267
\(36\) 193.087 0.893923
\(37\) 40.4065 0.179535 0.0897674 0.995963i \(-0.471388\pi\)
0.0897674 + 0.995963i \(0.471388\pi\)
\(38\) −432.570 −1.84663
\(39\) 252.703 1.03756
\(40\) −365.090 −1.44314
\(41\) 208.354 0.793645 0.396822 0.917895i \(-0.370113\pi\)
0.396822 + 0.917895i \(0.370113\pi\)
\(42\) −166.722 −0.612518
\(43\) −194.427 −0.689531 −0.344766 0.938689i \(-0.612042\pi\)
−0.344766 + 0.938689i \(0.612042\pi\)
\(44\) 271.004 0.928532
\(45\) −45.0000 −0.149071
\(46\) −400.623 −1.28410
\(47\) −522.168 −1.62055 −0.810277 0.586047i \(-0.800683\pi\)
−0.810277 + 0.586047i \(0.800683\pi\)
\(48\) 673.942 2.02657
\(49\) −238.143 −0.694295
\(50\) 135.679 0.383759
\(51\) 20.6754 0.0567675
\(52\) 1807.17 4.81942
\(53\) −294.893 −0.764276 −0.382138 0.924105i \(-0.624812\pi\)
−0.382138 + 0.924105i \(0.624812\pi\)
\(54\) 146.534 0.369272
\(55\) −63.1589 −0.154843
\(56\) −747.701 −1.78421
\(57\) −239.114 −0.555638
\(58\) 157.388 0.356311
\(59\) −196.229 −0.432997 −0.216498 0.976283i \(-0.569464\pi\)
−0.216498 + 0.976283i \(0.569464\pi\)
\(60\) −321.812 −0.692430
\(61\) 189.313 0.397360 0.198680 0.980064i \(-0.436334\pi\)
0.198680 + 0.980064i \(0.436334\pi\)
\(62\) 1.38205 0.00283098
\(63\) −92.1597 −0.184302
\(64\) 1649.38 3.22144
\(65\) −421.171 −0.803690
\(66\) 205.664 0.383569
\(67\) −570.840 −1.04088 −0.520442 0.853897i \(-0.674233\pi\)
−0.520442 + 0.853897i \(0.674233\pi\)
\(68\) 147.858 0.263683
\(69\) −221.454 −0.386376
\(70\) 277.870 0.474454
\(71\) −1126.87 −1.88358 −0.941792 0.336196i \(-0.890859\pi\)
−0.941792 + 0.336196i \(0.890859\pi\)
\(72\) 657.162 1.07566
\(73\) 581.431 0.932210 0.466105 0.884729i \(-0.345657\pi\)
0.466105 + 0.884729i \(0.345657\pi\)
\(74\) 219.293 0.344490
\(75\) 75.0000 0.115470
\(76\) −1709.99 −2.58092
\(77\) −129.349 −0.191437
\(78\) 1371.46 1.99086
\(79\) −255.631 −0.364060 −0.182030 0.983293i \(-0.558267\pi\)
−0.182030 + 0.983293i \(0.558267\pi\)
\(80\) −1123.24 −1.56977
\(81\) 81.0000 0.111111
\(82\) 1130.77 1.52284
\(83\) −983.081 −1.30009 −0.650043 0.759897i \(-0.725249\pi\)
−0.650043 + 0.759897i \(0.725249\pi\)
\(84\) −659.069 −0.856075
\(85\) −34.4591 −0.0439719
\(86\) −1055.19 −1.32307
\(87\) 87.0000 0.107211
\(88\) 922.347 1.11730
\(89\) 678.642 0.808268 0.404134 0.914700i \(-0.367573\pi\)
0.404134 + 0.914700i \(0.367573\pi\)
\(90\) −244.223 −0.286037
\(91\) −862.555 −0.993630
\(92\) −1583.70 −1.79470
\(93\) 0.763963 0.000851820 0
\(94\) −2833.89 −3.10951
\(95\) 398.523 0.430395
\(96\) 1905.17 2.02547
\(97\) −30.8442 −0.0322861 −0.0161431 0.999870i \(-0.505139\pi\)
−0.0161431 + 0.999870i \(0.505139\pi\)
\(98\) −1292.44 −1.33221
\(99\) 113.686 0.115413
\(100\) 536.354 0.536354
\(101\) 1749.78 1.72386 0.861930 0.507028i \(-0.169256\pi\)
0.861930 + 0.507028i \(0.169256\pi\)
\(102\) 112.209 0.108925
\(103\) 1912.26 1.82933 0.914663 0.404217i \(-0.132456\pi\)
0.914663 + 0.404217i \(0.132456\pi\)
\(104\) 6150.61 5.79920
\(105\) 153.599 0.142760
\(106\) −1600.43 −1.46649
\(107\) 1719.25 1.55333 0.776663 0.629916i \(-0.216911\pi\)
0.776663 + 0.629916i \(0.216911\pi\)
\(108\) 579.262 0.516107
\(109\) −779.425 −0.684911 −0.342456 0.939534i \(-0.611259\pi\)
−0.342456 + 0.939534i \(0.611259\pi\)
\(110\) −342.774 −0.297111
\(111\) 121.220 0.103654
\(112\) −2300.38 −1.94076
\(113\) 766.529 0.638132 0.319066 0.947732i \(-0.396631\pi\)
0.319066 + 0.947732i \(0.396631\pi\)
\(114\) −1297.71 −1.06615
\(115\) 369.090 0.299286
\(116\) 622.170 0.497992
\(117\) 758.108 0.599035
\(118\) −1064.97 −0.830831
\(119\) −70.5719 −0.0543640
\(120\) −1095.27 −0.833200
\(121\) −1171.44 −0.880119
\(122\) 1027.43 0.762453
\(123\) 625.062 0.458211
\(124\) 5.46339 0.00395667
\(125\) −125.000 −0.0894427
\(126\) −500.166 −0.353637
\(127\) −1363.54 −0.952715 −0.476358 0.879252i \(-0.658043\pi\)
−0.476358 + 0.879252i \(0.658043\pi\)
\(128\) 3870.99 2.67305
\(129\) −583.281 −0.398101
\(130\) −2285.77 −1.54211
\(131\) −1346.83 −0.898269 −0.449134 0.893464i \(-0.648268\pi\)
−0.449134 + 0.893464i \(0.648268\pi\)
\(132\) 813.013 0.536088
\(133\) 816.171 0.532113
\(134\) −3098.05 −1.99724
\(135\) −135.000 −0.0860663
\(136\) 503.226 0.317289
\(137\) −2508.42 −1.56430 −0.782148 0.623093i \(-0.785876\pi\)
−0.782148 + 0.623093i \(0.785876\pi\)
\(138\) −1201.87 −0.741376
\(139\) 1363.95 0.832292 0.416146 0.909298i \(-0.363380\pi\)
0.416146 + 0.909298i \(0.363380\pi\)
\(140\) 1098.45 0.663113
\(141\) −1566.50 −0.935628
\(142\) −6115.69 −3.61421
\(143\) 1064.03 0.622227
\(144\) 2021.83 1.17004
\(145\) −145.000 −0.0830455
\(146\) 3155.52 1.78872
\(147\) −714.430 −0.400851
\(148\) 866.887 0.481471
\(149\) 2792.25 1.53523 0.767617 0.640909i \(-0.221442\pi\)
0.767617 + 0.640909i \(0.221442\pi\)
\(150\) 407.038 0.221563
\(151\) 306.493 0.165179 0.0825897 0.996584i \(-0.473681\pi\)
0.0825897 + 0.996584i \(0.473681\pi\)
\(152\) −5819.86 −3.10561
\(153\) 62.0263 0.0327747
\(154\) −701.999 −0.367329
\(155\) −1.27327 −0.000659817 0
\(156\) 5421.52 2.78249
\(157\) −1828.15 −0.929315 −0.464657 0.885491i \(-0.653822\pi\)
−0.464657 + 0.885491i \(0.653822\pi\)
\(158\) −1387.35 −0.698556
\(159\) −884.678 −0.441255
\(160\) −3175.28 −1.56892
\(161\) 755.894 0.370018
\(162\) 439.601 0.213199
\(163\) 2101.15 1.00966 0.504830 0.863219i \(-0.331555\pi\)
0.504830 + 0.863219i \(0.331555\pi\)
\(164\) 4470.06 2.12837
\(165\) −189.477 −0.0893984
\(166\) −5335.35 −2.49460
\(167\) 1564.53 0.724950 0.362475 0.931994i \(-0.381932\pi\)
0.362475 + 0.931994i \(0.381932\pi\)
\(168\) −2243.10 −1.03011
\(169\) 4898.40 2.22959
\(170\) −187.015 −0.0843730
\(171\) −717.341 −0.320798
\(172\) −4171.27 −1.84916
\(173\) −2695.23 −1.18448 −0.592239 0.805762i \(-0.701756\pi\)
−0.592239 + 0.805762i \(0.701756\pi\)
\(174\) 472.164 0.205716
\(175\) −255.999 −0.110581
\(176\) 2837.70 1.21534
\(177\) −588.686 −0.249991
\(178\) 3683.10 1.55090
\(179\) −3604.16 −1.50496 −0.752480 0.658615i \(-0.771143\pi\)
−0.752480 + 0.658615i \(0.771143\pi\)
\(180\) −965.437 −0.399775
\(181\) −2658.32 −1.09166 −0.545832 0.837894i \(-0.683786\pi\)
−0.545832 + 0.837894i \(0.683786\pi\)
\(182\) −4681.23 −1.90657
\(183\) 567.938 0.229416
\(184\) −5390.05 −2.15956
\(185\) −202.033 −0.0802904
\(186\) 4.14615 0.00163447
\(187\) 87.0559 0.0340436
\(188\) −11202.7 −4.34595
\(189\) −276.479 −0.106407
\(190\) 2162.85 0.825840
\(191\) −145.942 −0.0552877 −0.0276439 0.999618i \(-0.508800\pi\)
−0.0276439 + 0.999618i \(0.508800\pi\)
\(192\) 4948.13 1.85990
\(193\) 1151.46 0.429451 0.214725 0.976674i \(-0.431114\pi\)
0.214725 + 0.976674i \(0.431114\pi\)
\(194\) −167.397 −0.0619504
\(195\) −1263.51 −0.464011
\(196\) −5109.16 −1.86194
\(197\) 4328.08 1.56529 0.782647 0.622466i \(-0.213869\pi\)
0.782647 + 0.622466i \(0.213869\pi\)
\(198\) 616.993 0.221454
\(199\) 1532.72 0.545988 0.272994 0.962016i \(-0.411986\pi\)
0.272994 + 0.962016i \(0.411986\pi\)
\(200\) 1825.45 0.645394
\(201\) −1712.52 −0.600955
\(202\) 9496.36 3.30773
\(203\) −296.959 −0.102672
\(204\) 443.574 0.152237
\(205\) −1041.77 −0.354929
\(206\) 10378.2 3.51010
\(207\) −664.363 −0.223074
\(208\) 18923.0 6.30805
\(209\) −1006.81 −0.333218
\(210\) 833.610 0.273926
\(211\) 5345.39 1.74404 0.872019 0.489472i \(-0.162810\pi\)
0.872019 + 0.489472i \(0.162810\pi\)
\(212\) −6326.67 −2.04961
\(213\) −3380.60 −1.08749
\(214\) 9330.65 2.98051
\(215\) 972.135 0.308368
\(216\) 1971.48 0.621030
\(217\) −2.60765 −0.000815755 0
\(218\) −4230.07 −1.31420
\(219\) 1744.29 0.538212
\(220\) −1355.02 −0.415252
\(221\) 580.526 0.176699
\(222\) 657.879 0.198892
\(223\) 3783.05 1.13602 0.568008 0.823023i \(-0.307714\pi\)
0.568008 + 0.823023i \(0.307714\pi\)
\(224\) −6502.95 −1.93972
\(225\) 225.000 0.0666667
\(226\) 4160.08 1.22444
\(227\) −4348.46 −1.27144 −0.635721 0.771919i \(-0.719297\pi\)
−0.635721 + 0.771919i \(0.719297\pi\)
\(228\) −5129.98 −1.49009
\(229\) −3068.67 −0.885517 −0.442759 0.896641i \(-0.646000\pi\)
−0.442759 + 0.896641i \(0.646000\pi\)
\(230\) 2003.12 0.574268
\(231\) −388.047 −0.110526
\(232\) 2117.52 0.599233
\(233\) −275.696 −0.0775170 −0.0387585 0.999249i \(-0.512340\pi\)
−0.0387585 + 0.999249i \(0.512340\pi\)
\(234\) 4114.38 1.14942
\(235\) 2610.84 0.724734
\(236\) −4209.92 −1.16120
\(237\) −766.894 −0.210190
\(238\) −383.006 −0.104313
\(239\) 3132.87 0.847901 0.423950 0.905685i \(-0.360643\pi\)
0.423950 + 0.905685i \(0.360643\pi\)
\(240\) −3369.71 −0.906308
\(241\) 5699.61 1.52342 0.761710 0.647918i \(-0.224360\pi\)
0.761710 + 0.647918i \(0.224360\pi\)
\(242\) −6357.59 −1.68877
\(243\) 243.000 0.0641500
\(244\) 4061.54 1.06563
\(245\) 1190.72 0.310498
\(246\) 3392.32 0.879212
\(247\) −6713.85 −1.72952
\(248\) 18.5943 0.00476105
\(249\) −2949.24 −0.750605
\(250\) −678.396 −0.171622
\(251\) 1714.12 0.431054 0.215527 0.976498i \(-0.430853\pi\)
0.215527 + 0.976498i \(0.430853\pi\)
\(252\) −1977.21 −0.494255
\(253\) −932.454 −0.231711
\(254\) −7400.17 −1.82806
\(255\) −103.377 −0.0253872
\(256\) 7813.52 1.90760
\(257\) −803.085 −0.194922 −0.0974612 0.995239i \(-0.531072\pi\)
−0.0974612 + 0.995239i \(0.531072\pi\)
\(258\) −3165.56 −0.763874
\(259\) −413.761 −0.0992659
\(260\) −9035.87 −2.15531
\(261\) 261.000 0.0618984
\(262\) −7309.48 −1.72359
\(263\) −1694.24 −0.397230 −0.198615 0.980078i \(-0.563644\pi\)
−0.198615 + 0.980078i \(0.563644\pi\)
\(264\) 2767.04 0.645074
\(265\) 1474.46 0.341794
\(266\) 4429.50 1.02101
\(267\) 2035.92 0.466654
\(268\) −12246.9 −2.79141
\(269\) 3364.95 0.762693 0.381347 0.924432i \(-0.375460\pi\)
0.381347 + 0.924432i \(0.375460\pi\)
\(270\) −732.668 −0.165143
\(271\) 8044.10 1.80312 0.901558 0.432658i \(-0.142424\pi\)
0.901558 + 0.432658i \(0.142424\pi\)
\(272\) 1548.23 0.345129
\(273\) −2587.66 −0.573673
\(274\) −13613.6 −3.00156
\(275\) 315.795 0.0692477
\(276\) −4751.11 −1.03617
\(277\) −6971.54 −1.51220 −0.756100 0.654456i \(-0.772898\pi\)
−0.756100 + 0.654456i \(0.772898\pi\)
\(278\) 7402.38 1.59700
\(279\) 2.29189 0.000491798 0
\(280\) 3738.51 0.797923
\(281\) −1916.94 −0.406957 −0.203478 0.979079i \(-0.565225\pi\)
−0.203478 + 0.979079i \(0.565225\pi\)
\(282\) −8501.68 −1.79528
\(283\) 2036.63 0.427792 0.213896 0.976856i \(-0.431385\pi\)
0.213896 + 0.976856i \(0.431385\pi\)
\(284\) −24176.0 −5.05134
\(285\) 1195.57 0.248489
\(286\) 5774.66 1.19393
\(287\) −2133.54 −0.438811
\(288\) 5715.50 1.16941
\(289\) −4865.50 −0.990332
\(290\) −786.939 −0.159347
\(291\) −92.5325 −0.0186404
\(292\) 12474.1 2.49997
\(293\) −1754.55 −0.349836 −0.174918 0.984583i \(-0.555966\pi\)
−0.174918 + 0.984583i \(0.555966\pi\)
\(294\) −3877.33 −0.769151
\(295\) 981.143 0.193642
\(296\) 2950.40 0.579353
\(297\) 341.058 0.0666337
\(298\) 15154.0 2.94580
\(299\) −6218.01 −1.20266
\(300\) 1609.06 0.309664
\(301\) 1990.92 0.381246
\(302\) 1663.39 0.316945
\(303\) 5249.35 0.995271
\(304\) −17905.4 −3.37811
\(305\) −946.563 −0.177705
\(306\) 336.627 0.0628879
\(307\) 8909.41 1.65631 0.828154 0.560500i \(-0.189391\pi\)
0.828154 + 0.560500i \(0.189391\pi\)
\(308\) −2775.07 −0.513391
\(309\) 5736.78 1.05616
\(310\) −6.91026 −0.00126605
\(311\) −7422.88 −1.35342 −0.676709 0.736251i \(-0.736595\pi\)
−0.676709 + 0.736251i \(0.736595\pi\)
\(312\) 18451.8 3.34817
\(313\) −1453.62 −0.262504 −0.131252 0.991349i \(-0.541900\pi\)
−0.131252 + 0.991349i \(0.541900\pi\)
\(314\) −9921.69 −1.78316
\(315\) 460.798 0.0824224
\(316\) −5484.35 −0.976326
\(317\) 5203.30 0.921912 0.460956 0.887423i \(-0.347507\pi\)
0.460956 + 0.887423i \(0.347507\pi\)
\(318\) −4801.29 −0.846677
\(319\) 366.322 0.0642949
\(320\) −8246.88 −1.44067
\(321\) 5157.74 0.896813
\(322\) 4102.37 0.709987
\(323\) −549.309 −0.0946264
\(324\) 1737.79 0.297974
\(325\) 2105.86 0.359421
\(326\) 11403.3 1.93733
\(327\) −2338.27 −0.395434
\(328\) 15213.6 2.56107
\(329\) 5346.98 0.896014
\(330\) −1028.32 −0.171537
\(331\) −10985.0 −1.82414 −0.912070 0.410035i \(-0.865516\pi\)
−0.912070 + 0.410035i \(0.865516\pi\)
\(332\) −21091.2 −3.48653
\(333\) 363.659 0.0598449
\(334\) 8490.94 1.39103
\(335\) 2854.20 0.465498
\(336\) −6901.14 −1.12050
\(337\) 2295.27 0.371013 0.185507 0.982643i \(-0.440607\pi\)
0.185507 + 0.982643i \(0.440607\pi\)
\(338\) 26584.4 4.27812
\(339\) 2299.59 0.368426
\(340\) −739.290 −0.117922
\(341\) 3.21674 0.000510839 0
\(342\) −3893.13 −0.615545
\(343\) 5950.88 0.936786
\(344\) −14196.7 −2.22510
\(345\) 1107.27 0.172793
\(346\) −14627.5 −2.27277
\(347\) −5313.01 −0.821952 −0.410976 0.911646i \(-0.634812\pi\)
−0.410976 + 0.911646i \(0.634812\pi\)
\(348\) 1866.51 0.287516
\(349\) 2086.08 0.319958 0.159979 0.987120i \(-0.448857\pi\)
0.159979 + 0.987120i \(0.448857\pi\)
\(350\) −1389.35 −0.212182
\(351\) 2274.32 0.345853
\(352\) 8021.89 1.21468
\(353\) 5382.37 0.811543 0.405772 0.913975i \(-0.367003\pi\)
0.405772 + 0.913975i \(0.367003\pi\)
\(354\) −3194.90 −0.479681
\(355\) 5634.33 0.842364
\(356\) 14559.7 2.16759
\(357\) −211.716 −0.0313871
\(358\) −19560.4 −2.88771
\(359\) −7990.36 −1.17469 −0.587347 0.809335i \(-0.699827\pi\)
−0.587347 + 0.809335i \(0.699827\pi\)
\(360\) −3285.81 −0.481048
\(361\) −506.193 −0.0737998
\(362\) −14427.1 −2.09468
\(363\) −3514.31 −0.508137
\(364\) −18505.4 −2.66469
\(365\) −2907.16 −0.416897
\(366\) 3082.29 0.440202
\(367\) −429.201 −0.0610466 −0.0305233 0.999534i \(-0.509717\pi\)
−0.0305233 + 0.999534i \(0.509717\pi\)
\(368\) −16583.0 −2.34905
\(369\) 1875.19 0.264548
\(370\) −1096.46 −0.154061
\(371\) 3019.69 0.422572
\(372\) 16.3902 0.00228438
\(373\) 6270.80 0.870482 0.435241 0.900314i \(-0.356663\pi\)
0.435241 + 0.900314i \(0.356663\pi\)
\(374\) 472.467 0.0653227
\(375\) −375.000 −0.0516398
\(376\) −38127.7 −5.22948
\(377\) 2442.79 0.333714
\(378\) −1500.50 −0.204173
\(379\) 10417.0 1.41183 0.705917 0.708294i \(-0.250535\pi\)
0.705917 + 0.708294i \(0.250535\pi\)
\(380\) 8549.96 1.15422
\(381\) −4090.63 −0.550050
\(382\) −792.049 −0.106086
\(383\) 10769.3 1.43677 0.718387 0.695644i \(-0.244881\pi\)
0.718387 + 0.695644i \(0.244881\pi\)
\(384\) 11613.0 1.54329
\(385\) 646.745 0.0856134
\(386\) 6249.18 0.824028
\(387\) −1749.84 −0.229844
\(388\) −661.736 −0.0865839
\(389\) −11121.7 −1.44960 −0.724798 0.688961i \(-0.758067\pi\)
−0.724798 + 0.688961i \(0.758067\pi\)
\(390\) −6857.30 −0.890340
\(391\) −508.740 −0.0658008
\(392\) −17388.7 −2.24047
\(393\) −4040.49 −0.518616
\(394\) 23489.2 3.00348
\(395\) 1278.16 0.162813
\(396\) 2439.04 0.309511
\(397\) 11286.7 1.42686 0.713432 0.700724i \(-0.247140\pi\)
0.713432 + 0.700724i \(0.247140\pi\)
\(398\) 8318.33 1.04764
\(399\) 2448.51 0.307215
\(400\) 5616.19 0.702023
\(401\) −15418.0 −1.92005 −0.960023 0.279922i \(-0.909691\pi\)
−0.960023 + 0.279922i \(0.909691\pi\)
\(402\) −9294.14 −1.15311
\(403\) 21.4506 0.00265144
\(404\) 37540.1 4.62299
\(405\) −405.000 −0.0496904
\(406\) −1611.65 −0.197006
\(407\) 510.406 0.0621619
\(408\) 1509.68 0.183187
\(409\) 13849.5 1.67437 0.837183 0.546922i \(-0.184201\pi\)
0.837183 + 0.546922i \(0.184201\pi\)
\(410\) −5653.86 −0.681035
\(411\) −7525.25 −0.903147
\(412\) 41025.9 4.90583
\(413\) 2009.37 0.239406
\(414\) −3605.61 −0.428034
\(415\) 4915.40 0.581416
\(416\) 53493.4 6.30464
\(417\) 4091.85 0.480524
\(418\) −5464.13 −0.639376
\(419\) −2793.33 −0.325688 −0.162844 0.986652i \(-0.552067\pi\)
−0.162844 + 0.986652i \(0.552067\pi\)
\(420\) 3295.35 0.382849
\(421\) −3643.79 −0.421823 −0.210911 0.977505i \(-0.567643\pi\)
−0.210911 + 0.977505i \(0.567643\pi\)
\(422\) 29010.4 3.34645
\(423\) −4699.51 −0.540185
\(424\) −21532.4 −2.46629
\(425\) 172.295 0.0196648
\(426\) −18347.1 −2.08666
\(427\) −1938.55 −0.219703
\(428\) 36885.0 4.16566
\(429\) 3192.08 0.359243
\(430\) 5275.94 0.591694
\(431\) 5834.03 0.652007 0.326004 0.945369i \(-0.394298\pi\)
0.326004 + 0.945369i \(0.394298\pi\)
\(432\) 6065.48 0.675522
\(433\) 7919.15 0.878915 0.439457 0.898263i \(-0.355171\pi\)
0.439457 + 0.898263i \(0.355171\pi\)
\(434\) −14.1522 −0.00156527
\(435\) −435.000 −0.0479463
\(436\) −16721.9 −1.83677
\(437\) 5883.63 0.644056
\(438\) 9466.57 1.03272
\(439\) 11696.0 1.27158 0.635788 0.771864i \(-0.280675\pi\)
0.635788 + 0.771864i \(0.280675\pi\)
\(440\) −4611.73 −0.499672
\(441\) −2143.29 −0.231432
\(442\) 3150.61 0.339049
\(443\) −2786.16 −0.298814 −0.149407 0.988776i \(-0.547736\pi\)
−0.149407 + 0.988776i \(0.547736\pi\)
\(444\) 2600.66 0.277977
\(445\) −3393.21 −0.361468
\(446\) 20531.2 2.17978
\(447\) 8376.74 0.886368
\(448\) −16889.5 −1.78115
\(449\) 11013.8 1.15762 0.578811 0.815462i \(-0.303517\pi\)
0.578811 + 0.815462i \(0.303517\pi\)
\(450\) 1221.11 0.127920
\(451\) 2631.88 0.274790
\(452\) 16445.2 1.71132
\(453\) 919.480 0.0953663
\(454\) −23599.8 −2.43963
\(455\) 4312.77 0.444365
\(456\) −17459.6 −1.79303
\(457\) 12773.5 1.30748 0.653739 0.756720i \(-0.273199\pi\)
0.653739 + 0.756720i \(0.273199\pi\)
\(458\) −16654.2 −1.69912
\(459\) 186.079 0.0189225
\(460\) 7918.52 0.802615
\(461\) −13343.4 −1.34808 −0.674039 0.738696i \(-0.735442\pi\)
−0.674039 + 0.738696i \(0.735442\pi\)
\(462\) −2106.00 −0.212077
\(463\) 17265.4 1.73303 0.866514 0.499153i \(-0.166355\pi\)
0.866514 + 0.499153i \(0.166355\pi\)
\(464\) 6514.78 0.651812
\(465\) −3.81981 −0.000380945 0
\(466\) −1496.25 −0.148739
\(467\) −16016.7 −1.58708 −0.793538 0.608521i \(-0.791763\pi\)
−0.793538 + 0.608521i \(0.791763\pi\)
\(468\) 16264.6 1.60647
\(469\) 5845.38 0.575511
\(470\) 14169.5 1.39062
\(471\) −5484.46 −0.536540
\(472\) −14328.2 −1.39727
\(473\) −2455.96 −0.238742
\(474\) −4162.06 −0.403312
\(475\) −1992.61 −0.192479
\(476\) −1514.06 −0.145792
\(477\) −2654.03 −0.254759
\(478\) 17002.6 1.62695
\(479\) −5847.01 −0.557738 −0.278869 0.960329i \(-0.589960\pi\)
−0.278869 + 0.960329i \(0.589960\pi\)
\(480\) −9525.84 −0.905819
\(481\) 3403.61 0.322643
\(482\) 30932.7 2.92313
\(483\) 2267.68 0.213630
\(484\) −25132.2 −2.36028
\(485\) 154.221 0.0144388
\(486\) 1318.80 0.123091
\(487\) −342.662 −0.0318840 −0.0159420 0.999873i \(-0.505075\pi\)
−0.0159420 + 0.999873i \(0.505075\pi\)
\(488\) 13823.2 1.28227
\(489\) 6303.44 0.582927
\(490\) 6462.22 0.595782
\(491\) −1673.48 −0.153815 −0.0769073 0.997038i \(-0.524505\pi\)
−0.0769073 + 0.997038i \(0.524505\pi\)
\(492\) 13410.2 1.22882
\(493\) 199.863 0.0182583
\(494\) −36437.2 −3.31859
\(495\) −568.430 −0.0516142
\(496\) 57.2074 0.00517881
\(497\) 11539.1 1.04144
\(498\) −16006.0 −1.44026
\(499\) 10918.2 0.979487 0.489743 0.871867i \(-0.337090\pi\)
0.489743 + 0.871867i \(0.337090\pi\)
\(500\) −2681.77 −0.239865
\(501\) 4693.58 0.418550
\(502\) 9302.84 0.827103
\(503\) 16957.6 1.50319 0.751595 0.659625i \(-0.229285\pi\)
0.751595 + 0.659625i \(0.229285\pi\)
\(504\) −6729.31 −0.594737
\(505\) −8748.91 −0.770933
\(506\) −5060.58 −0.444606
\(507\) 14695.2 1.28725
\(508\) −29253.6 −2.55496
\(509\) −226.179 −0.0196959 −0.00984795 0.999952i \(-0.503135\pi\)
−0.00984795 + 0.999952i \(0.503135\pi\)
\(510\) −561.045 −0.0487128
\(511\) −5953.83 −0.515425
\(512\) 11437.3 0.987234
\(513\) −2152.02 −0.185213
\(514\) −4358.48 −0.374016
\(515\) −9561.30 −0.818100
\(516\) −12513.8 −1.06762
\(517\) −6595.91 −0.561099
\(518\) −2245.55 −0.190471
\(519\) −8085.70 −0.683859
\(520\) −30753.0 −2.59348
\(521\) −2051.24 −0.172489 −0.0862443 0.996274i \(-0.527487\pi\)
−0.0862443 + 0.996274i \(0.527487\pi\)
\(522\) 1416.49 0.118770
\(523\) −11922.9 −0.996852 −0.498426 0.866932i \(-0.666088\pi\)
−0.498426 + 0.866932i \(0.666088\pi\)
\(524\) −28895.1 −2.40895
\(525\) −767.997 −0.0638441
\(526\) −9194.94 −0.762203
\(527\) 1.75503 0.000145067 0
\(528\) 8513.09 0.701676
\(529\) −6717.89 −0.552140
\(530\) 8002.16 0.655833
\(531\) −1766.06 −0.144332
\(532\) 17510.3 1.42700
\(533\) 17550.5 1.42626
\(534\) 11049.3 0.895412
\(535\) −8596.24 −0.694669
\(536\) −41681.6 −3.35890
\(537\) −10812.5 −0.868889
\(538\) 18262.1 1.46345
\(539\) −3008.17 −0.240392
\(540\) −2896.31 −0.230810
\(541\) 12876.2 1.02327 0.511635 0.859203i \(-0.329040\pi\)
0.511635 + 0.859203i \(0.329040\pi\)
\(542\) 43656.7 3.45981
\(543\) −7974.96 −0.630273
\(544\) 4376.69 0.344943
\(545\) 3897.12 0.306302
\(546\) −14043.7 −1.10076
\(547\) 9065.39 0.708607 0.354304 0.935130i \(-0.384718\pi\)
0.354304 + 0.935130i \(0.384718\pi\)
\(548\) −53816.0 −4.19508
\(549\) 1703.81 0.132453
\(550\) 1713.87 0.132872
\(551\) −2311.43 −0.178712
\(552\) −16170.1 −1.24682
\(553\) 2617.65 0.201291
\(554\) −37835.7 −2.90160
\(555\) −606.098 −0.0463557
\(556\) 29262.4 2.23202
\(557\) −19520.2 −1.48492 −0.742458 0.669893i \(-0.766340\pi\)
−0.742458 + 0.669893i \(0.766340\pi\)
\(558\) 12.4385 0.000943660 0
\(559\) −16377.4 −1.23916
\(560\) 11501.9 0.867936
\(561\) 261.168 0.0196551
\(562\) −10403.5 −0.780866
\(563\) 9786.46 0.732593 0.366297 0.930498i \(-0.380626\pi\)
0.366297 + 0.930498i \(0.380626\pi\)
\(564\) −33608.0 −2.50914
\(565\) −3832.64 −0.285381
\(566\) 11053.1 0.820844
\(567\) −829.437 −0.0614340
\(568\) −82281.5 −6.07826
\(569\) 13236.9 0.975257 0.487628 0.873051i \(-0.337862\pi\)
0.487628 + 0.873051i \(0.337862\pi\)
\(570\) 6488.55 0.476799
\(571\) −21385.2 −1.56733 −0.783663 0.621186i \(-0.786651\pi\)
−0.783663 + 0.621186i \(0.786651\pi\)
\(572\) 22827.8 1.66867
\(573\) −437.825 −0.0319204
\(574\) −11579.1 −0.841987
\(575\) −1845.45 −0.133845
\(576\) 14844.4 1.07381
\(577\) 1531.13 0.110471 0.0552356 0.998473i \(-0.482409\pi\)
0.0552356 + 0.998473i \(0.482409\pi\)
\(578\) −26405.9 −1.90024
\(579\) 3454.39 0.247944
\(580\) −3110.85 −0.222709
\(581\) 10066.7 0.718825
\(582\) −502.190 −0.0357671
\(583\) −3725.02 −0.264622
\(584\) 42454.9 3.00821
\(585\) −3790.54 −0.267897
\(586\) −9522.25 −0.671263
\(587\) 2742.12 0.192810 0.0964050 0.995342i \(-0.469266\pi\)
0.0964050 + 0.995342i \(0.469266\pi\)
\(588\) −15327.5 −1.07499
\(589\) −20.2971 −0.00141991
\(590\) 5324.83 0.371559
\(591\) 12984.2 0.903723
\(592\) 9077.22 0.630188
\(593\) −8476.47 −0.586993 −0.293497 0.955960i \(-0.594819\pi\)
−0.293497 + 0.955960i \(0.594819\pi\)
\(594\) 1850.98 0.127856
\(595\) 352.859 0.0243123
\(596\) 59905.3 4.11714
\(597\) 4598.16 0.315226
\(598\) −33746.2 −2.30767
\(599\) −14839.1 −1.01220 −0.506100 0.862475i \(-0.668913\pi\)
−0.506100 + 0.862475i \(0.668913\pi\)
\(600\) 5476.35 0.372618
\(601\) −13198.6 −0.895814 −0.447907 0.894080i \(-0.647830\pi\)
−0.447907 + 0.894080i \(0.647830\pi\)
\(602\) 10805.1 0.731532
\(603\) −5137.56 −0.346961
\(604\) 6575.56 0.442973
\(605\) 5857.19 0.393601
\(606\) 28489.1 1.90972
\(607\) 2310.67 0.154509 0.0772547 0.997011i \(-0.475385\pi\)
0.0772547 + 0.997011i \(0.475385\pi\)
\(608\) −50616.8 −3.37629
\(609\) −890.877 −0.0592777
\(610\) −5137.15 −0.340979
\(611\) −43984.4 −2.91231
\(612\) 1330.72 0.0878942
\(613\) −3944.92 −0.259925 −0.129962 0.991519i \(-0.541486\pi\)
−0.129962 + 0.991519i \(0.541486\pi\)
\(614\) 48352.9 3.17811
\(615\) −3125.31 −0.204918
\(616\) −9444.80 −0.617762
\(617\) −26587.7 −1.73482 −0.867408 0.497598i \(-0.834216\pi\)
−0.867408 + 0.497598i \(0.834216\pi\)
\(618\) 31134.5 2.02656
\(619\) 8691.35 0.564353 0.282177 0.959362i \(-0.408944\pi\)
0.282177 + 0.959362i \(0.408944\pi\)
\(620\) −27.3170 −0.00176948
\(621\) −1993.09 −0.128792
\(622\) −40285.2 −2.59693
\(623\) −6949.26 −0.446896
\(624\) 56769.0 3.64195
\(625\) 625.000 0.0400000
\(626\) −7889.06 −0.503690
\(627\) −3020.43 −0.192383
\(628\) −39221.5 −2.49221
\(629\) 278.474 0.0176526
\(630\) 2500.83 0.158151
\(631\) −19396.9 −1.22374 −0.611869 0.790959i \(-0.709582\pi\)
−0.611869 + 0.790959i \(0.709582\pi\)
\(632\) −18665.7 −1.17481
\(633\) 16036.2 1.00692
\(634\) 28239.2 1.76896
\(635\) 6817.71 0.426067
\(636\) −18980.0 −1.18334
\(637\) −20059.8 −1.24772
\(638\) 1988.09 0.123369
\(639\) −10141.8 −0.627861
\(640\) −19355.0 −1.19543
\(641\) −11088.7 −0.683273 −0.341636 0.939832i \(-0.610981\pi\)
−0.341636 + 0.939832i \(0.610981\pi\)
\(642\) 27991.9 1.72080
\(643\) −3896.33 −0.238968 −0.119484 0.992836i \(-0.538124\pi\)
−0.119484 + 0.992836i \(0.538124\pi\)
\(644\) 16217.1 0.992302
\(645\) 2916.41 0.178036
\(646\) −2981.19 −0.181569
\(647\) 14565.2 0.885034 0.442517 0.896760i \(-0.354086\pi\)
0.442517 + 0.896760i \(0.354086\pi\)
\(648\) 5914.45 0.358552
\(649\) −2478.72 −0.149920
\(650\) 11428.8 0.689655
\(651\) −7.82295 −0.000470976 0
\(652\) 45078.3 2.70767
\(653\) 27443.4 1.64463 0.822314 0.569034i \(-0.192683\pi\)
0.822314 + 0.569034i \(0.192683\pi\)
\(654\) −12690.2 −0.758756
\(655\) 6734.16 0.401718
\(656\) 46806.2 2.78579
\(657\) 5232.88 0.310737
\(658\) 29019.0 1.71927
\(659\) 10355.6 0.612135 0.306068 0.952010i \(-0.400987\pi\)
0.306068 + 0.952010i \(0.400987\pi\)
\(660\) −4065.06 −0.239746
\(661\) 9704.01 0.571017 0.285508 0.958376i \(-0.407838\pi\)
0.285508 + 0.958376i \(0.407838\pi\)
\(662\) −59617.4 −3.50015
\(663\) 1741.58 0.102017
\(664\) −71782.6 −4.19534
\(665\) −4080.85 −0.237968
\(666\) 1973.64 0.114830
\(667\) −2140.72 −0.124272
\(668\) 33565.6 1.94415
\(669\) 11349.1 0.655879
\(670\) 15490.2 0.893194
\(671\) 2391.35 0.137582
\(672\) −19508.8 −1.11990
\(673\) 16876.5 0.966629 0.483315 0.875447i \(-0.339433\pi\)
0.483315 + 0.875447i \(0.339433\pi\)
\(674\) 12456.8 0.711898
\(675\) 675.000 0.0384900
\(676\) 105091. 5.97924
\(677\) −1095.44 −0.0621880 −0.0310940 0.999516i \(-0.509899\pi\)
−0.0310940 + 0.999516i \(0.509899\pi\)
\(678\) 12480.2 0.706933
\(679\) 315.843 0.0178512
\(680\) −2516.13 −0.141896
\(681\) −13045.4 −0.734067
\(682\) 17.4578 0.000980195 0
\(683\) −23004.5 −1.28879 −0.644394 0.764693i \(-0.722890\pi\)
−0.644394 + 0.764693i \(0.722890\pi\)
\(684\) −15389.9 −0.860305
\(685\) 12542.1 0.699574
\(686\) 32296.4 1.79750
\(687\) −9206.01 −0.511254
\(688\) −43677.5 −2.42034
\(689\) −24840.0 −1.37348
\(690\) 6009.35 0.331554
\(691\) 4973.91 0.273830 0.136915 0.990583i \(-0.456281\pi\)
0.136915 + 0.990583i \(0.456281\pi\)
\(692\) −57824.0 −3.17650
\(693\) −1164.14 −0.0638125
\(694\) −28834.6 −1.57716
\(695\) −6819.75 −0.372212
\(696\) 6352.56 0.345967
\(697\) 1435.94 0.0780344
\(698\) 11321.5 0.613933
\(699\) −827.089 −0.0447545
\(700\) −5492.24 −0.296553
\(701\) 19281.6 1.03888 0.519440 0.854507i \(-0.326141\pi\)
0.519440 + 0.854507i \(0.326141\pi\)
\(702\) 12343.1 0.663621
\(703\) −3220.58 −0.172783
\(704\) 20834.6 1.11539
\(705\) 7832.52 0.418425
\(706\) 29211.0 1.55718
\(707\) −17917.7 −0.953132
\(708\) −12629.8 −0.670417
\(709\) 35391.4 1.87468 0.937342 0.348412i \(-0.113279\pi\)
0.937342 + 0.348412i \(0.113279\pi\)
\(710\) 30578.5 1.61632
\(711\) −2300.68 −0.121353
\(712\) 49553.0 2.60826
\(713\) −18.7981 −0.000987369 0
\(714\) −1149.02 −0.0602253
\(715\) −5320.14 −0.278268
\(716\) −77324.3 −4.03596
\(717\) 9398.60 0.489536
\(718\) −43365.0 −2.25399
\(719\) −19325.0 −1.00237 −0.501183 0.865341i \(-0.667102\pi\)
−0.501183 + 0.865341i \(0.667102\pi\)
\(720\) −10109.1 −0.523257
\(721\) −19581.5 −1.01145
\(722\) −2747.19 −0.141607
\(723\) 17098.8 0.879547
\(724\) −57032.0 −2.92759
\(725\) 725.000 0.0371391
\(726\) −19072.8 −0.975010
\(727\) 16887.9 0.861537 0.430768 0.902462i \(-0.358243\pi\)
0.430768 + 0.902462i \(0.358243\pi\)
\(728\) −62982.0 −3.20641
\(729\) 729.000 0.0370370
\(730\) −15777.6 −0.799940
\(731\) −1339.95 −0.0677975
\(732\) 12184.6 0.615241
\(733\) 6698.16 0.337520 0.168760 0.985657i \(-0.446024\pi\)
0.168760 + 0.985657i \(0.446024\pi\)
\(734\) −2329.35 −0.117136
\(735\) 3572.15 0.179266
\(736\) −46878.6 −2.34778
\(737\) −7210.73 −0.360394
\(738\) 10176.9 0.507613
\(739\) 4934.50 0.245627 0.122814 0.992430i \(-0.460808\pi\)
0.122814 + 0.992430i \(0.460808\pi\)
\(740\) −4334.44 −0.215320
\(741\) −20141.5 −0.998540
\(742\) 16388.4 0.810829
\(743\) −5140.65 −0.253825 −0.126913 0.991914i \(-0.540507\pi\)
−0.126913 + 0.991914i \(0.540507\pi\)
\(744\) 55.7830 0.00274880
\(745\) −13961.2 −0.686578
\(746\) 34032.7 1.67027
\(747\) −8847.73 −0.433362
\(748\) 1867.71 0.0912971
\(749\) −17605.0 −0.858843
\(750\) −2035.19 −0.0990861
\(751\) 9625.37 0.467690 0.233845 0.972274i \(-0.424869\pi\)
0.233845 + 0.972274i \(0.424869\pi\)
\(752\) −117304. −5.68834
\(753\) 5142.37 0.248869
\(754\) 13257.4 0.640328
\(755\) −1532.47 −0.0738704
\(756\) −5931.62 −0.285358
\(757\) −5128.83 −0.246249 −0.123125 0.992391i \(-0.539291\pi\)
−0.123125 + 0.992391i \(0.539291\pi\)
\(758\) 56534.8 2.70902
\(759\) −2797.36 −0.133778
\(760\) 29099.3 1.38887
\(761\) −25024.7 −1.19204 −0.596022 0.802968i \(-0.703253\pi\)
−0.596022 + 0.802968i \(0.703253\pi\)
\(762\) −22200.5 −1.05543
\(763\) 7981.28 0.378692
\(764\) −3131.05 −0.148269
\(765\) −310.132 −0.0146573
\(766\) 58446.7 2.75687
\(767\) −16529.2 −0.778140
\(768\) 23440.6 1.10135
\(769\) −26474.8 −1.24149 −0.620746 0.784012i \(-0.713170\pi\)
−0.620746 + 0.784012i \(0.713170\pi\)
\(770\) 3509.99 0.164274
\(771\) −2409.26 −0.112539
\(772\) 24703.6 1.15169
\(773\) −24685.1 −1.14859 −0.574295 0.818648i \(-0.694724\pi\)
−0.574295 + 0.818648i \(0.694724\pi\)
\(774\) −9496.69 −0.441023
\(775\) 6.36636 0.000295079 0
\(776\) −2252.18 −0.104186
\(777\) −1241.28 −0.0573112
\(778\) −60359.4 −2.78148
\(779\) −16606.8 −0.763798
\(780\) −27107.6 −1.24437
\(781\) −14234.3 −0.652170
\(782\) −2761.02 −0.126258
\(783\) 783.000 0.0357371
\(784\) −53498.3 −2.43706
\(785\) 9140.76 0.415602
\(786\) −21928.4 −0.995116
\(787\) −35383.4 −1.60265 −0.801323 0.598232i \(-0.795870\pi\)
−0.801323 + 0.598232i \(0.795870\pi\)
\(788\) 92855.3 4.19776
\(789\) −5082.73 −0.229341
\(790\) 6936.77 0.312404
\(791\) −7849.22 −0.352827
\(792\) 8301.12 0.372434
\(793\) 15946.6 0.714098
\(794\) 61255.0 2.73786
\(795\) 4423.39 0.197335
\(796\) 32883.2 1.46421
\(797\) −24869.4 −1.10529 −0.552647 0.833415i \(-0.686382\pi\)
−0.552647 + 0.833415i \(0.686382\pi\)
\(798\) 13288.5 0.589483
\(799\) −3598.69 −0.159340
\(800\) 15876.4 0.701644
\(801\) 6107.77 0.269423
\(802\) −83676.1 −3.68417
\(803\) 7344.51 0.322767
\(804\) −36740.7 −1.61162
\(805\) −3779.47 −0.165477
\(806\) 116.416 0.00508757
\(807\) 10094.8 0.440341
\(808\) 127765. 5.56284
\(809\) 834.568 0.0362693 0.0181346 0.999836i \(-0.494227\pi\)
0.0181346 + 0.999836i \(0.494227\pi\)
\(810\) −2198.00 −0.0953456
\(811\) −17419.5 −0.754232 −0.377116 0.926166i \(-0.623084\pi\)
−0.377116 + 0.926166i \(0.623084\pi\)
\(812\) −6371.00 −0.275343
\(813\) 24132.3 1.04103
\(814\) 2770.06 0.119276
\(815\) −10505.7 −0.451533
\(816\) 4644.69 0.199260
\(817\) 15496.7 0.663600
\(818\) 75163.8 3.21276
\(819\) −7762.99 −0.331210
\(820\) −22350.3 −0.951837
\(821\) 20163.7 0.857148 0.428574 0.903507i \(-0.359016\pi\)
0.428574 + 0.903507i \(0.359016\pi\)
\(822\) −40840.8 −1.73295
\(823\) 10456.9 0.442898 0.221449 0.975172i \(-0.428921\pi\)
0.221449 + 0.975172i \(0.428921\pi\)
\(824\) 139629. 5.90318
\(825\) 947.384 0.0399802
\(826\) 10905.2 0.459371
\(827\) −10943.6 −0.460154 −0.230077 0.973172i \(-0.573898\pi\)
−0.230077 + 0.973172i \(0.573898\pi\)
\(828\) −14253.3 −0.598234
\(829\) −33775.8 −1.41506 −0.707528 0.706685i \(-0.750190\pi\)
−0.707528 + 0.706685i \(0.750190\pi\)
\(830\) 26676.7 1.11562
\(831\) −20914.6 −0.873069
\(832\) 138934. 5.78926
\(833\) −1641.24 −0.0682660
\(834\) 22207.1 0.922027
\(835\) −7822.63 −0.324207
\(836\) −21600.3 −0.893613
\(837\) 6.87567 0.000283940 0
\(838\) −15159.9 −0.624927
\(839\) 39087.3 1.60840 0.804198 0.594361i \(-0.202595\pi\)
0.804198 + 0.594361i \(0.202595\pi\)
\(840\) 11215.5 0.460681
\(841\) 841.000 0.0344828
\(842\) −19775.4 −0.809391
\(843\) −5750.81 −0.234957
\(844\) 114681. 4.67711
\(845\) −24492.0 −0.997101
\(846\) −25505.1 −1.03650
\(847\) 11995.5 0.486623
\(848\) −66246.9 −2.68270
\(849\) 6109.89 0.246986
\(850\) 935.076 0.0377327
\(851\) −2982.73 −0.120149
\(852\) −72527.9 −2.91639
\(853\) 47274.9 1.89761 0.948806 0.315859i \(-0.102293\pi\)
0.948806 + 0.315859i \(0.102293\pi\)
\(854\) −10520.9 −0.421565
\(855\) 3586.70 0.143465
\(856\) 125536. 5.01254
\(857\) 15482.0 0.617099 0.308550 0.951208i \(-0.400156\pi\)
0.308550 + 0.951208i \(0.400156\pi\)
\(858\) 17324.0 0.689313
\(859\) −32719.1 −1.29960 −0.649802 0.760103i \(-0.725148\pi\)
−0.649802 + 0.760103i \(0.725148\pi\)
\(860\) 20856.3 0.826971
\(861\) −6400.61 −0.253348
\(862\) 31662.2 1.25107
\(863\) −1741.34 −0.0686858 −0.0343429 0.999410i \(-0.510934\pi\)
−0.0343429 + 0.999410i \(0.510934\pi\)
\(864\) 17146.5 0.675158
\(865\) 13476.2 0.529715
\(866\) 42978.6 1.68646
\(867\) −14596.5 −0.571769
\(868\) −55.9449 −0.00218767
\(869\) −3229.08 −0.126052
\(870\) −2360.82 −0.0919991
\(871\) −48084.3 −1.87058
\(872\) −56912.0 −2.21019
\(873\) −277.598 −0.0107620
\(874\) 31931.5 1.23581
\(875\) 1280.00 0.0494534
\(876\) 37422.3 1.44336
\(877\) 11848.6 0.456213 0.228106 0.973636i \(-0.426747\pi\)
0.228106 + 0.973636i \(0.426747\pi\)
\(878\) 63476.4 2.43989
\(879\) −5263.65 −0.201978
\(880\) −14188.5 −0.543516
\(881\) −29332.3 −1.12171 −0.560857 0.827913i \(-0.689528\pi\)
−0.560857 + 0.827913i \(0.689528\pi\)
\(882\) −11632.0 −0.444070
\(883\) −25723.3 −0.980360 −0.490180 0.871621i \(-0.663069\pi\)
−0.490180 + 0.871621i \(0.663069\pi\)
\(884\) 12454.7 0.473865
\(885\) 2943.43 0.111799
\(886\) −15121.0 −0.573362
\(887\) 10959.8 0.414875 0.207437 0.978248i \(-0.433488\pi\)
0.207437 + 0.978248i \(0.433488\pi\)
\(888\) 8851.20 0.334490
\(889\) 13962.6 0.526762
\(890\) −18415.5 −0.693583
\(891\) 1023.17 0.0384710
\(892\) 81162.1 3.04653
\(893\) 41619.2 1.55961
\(894\) 45462.0 1.70076
\(895\) 18020.8 0.673039
\(896\) −39638.8 −1.47795
\(897\) −18654.0 −0.694359
\(898\) 59773.6 2.22124
\(899\) 7.38497 0.000273974 0
\(900\) 4827.18 0.178785
\(901\) −2032.34 −0.0751467
\(902\) 14283.7 0.527266
\(903\) 5972.77 0.220112
\(904\) 55970.3 2.05923
\(905\) 13291.6 0.488207
\(906\) 4990.17 0.182988
\(907\) −3053.42 −0.111783 −0.0558915 0.998437i \(-0.517800\pi\)
−0.0558915 + 0.998437i \(0.517800\pi\)
\(908\) −93292.4 −3.40971
\(909\) 15748.0 0.574620
\(910\) 23406.2 0.852644
\(911\) −32880.5 −1.19581 −0.597903 0.801568i \(-0.703999\pi\)
−0.597903 + 0.801568i \(0.703999\pi\)
\(912\) −53716.2 −1.95035
\(913\) −12418.1 −0.450140
\(914\) 69323.8 2.50878
\(915\) −2839.69 −0.102598
\(916\) −65835.7 −2.37475
\(917\) 13791.5 0.496658
\(918\) 1009.88 0.0363083
\(919\) −49962.9 −1.79339 −0.896694 0.442650i \(-0.854038\pi\)
−0.896694 + 0.442650i \(0.854038\pi\)
\(920\) 26950.2 0.965786
\(921\) 26728.2 0.956270
\(922\) −72416.8 −2.58668
\(923\) −94920.7 −3.38500
\(924\) −8325.22 −0.296406
\(925\) 1010.16 0.0359070
\(926\) 93702.3 3.32532
\(927\) 17210.3 0.609775
\(928\) 18416.6 0.651460
\(929\) −48163.6 −1.70096 −0.850482 0.526004i \(-0.823690\pi\)
−0.850482 + 0.526004i \(0.823690\pi\)
\(930\) −20.7308 −0.000730956 0
\(931\) 18981.1 0.668185
\(932\) −5914.83 −0.207883
\(933\) −22268.6 −0.781396
\(934\) −86925.3 −3.04527
\(935\) −435.279 −0.0152248
\(936\) 55355.5 1.93307
\(937\) 32244.1 1.12419 0.562097 0.827071i \(-0.309995\pi\)
0.562097 + 0.827071i \(0.309995\pi\)
\(938\) 31723.9 1.10429
\(939\) −4360.87 −0.151557
\(940\) 56013.4 1.94357
\(941\) 37391.5 1.29535 0.647677 0.761915i \(-0.275740\pi\)
0.647677 + 0.761915i \(0.275740\pi\)
\(942\) −29765.1 −1.02951
\(943\) −15380.3 −0.531125
\(944\) −44082.3 −1.51987
\(945\) 1382.39 0.0475866
\(946\) −13328.9 −0.458097
\(947\) 17887.8 0.613807 0.306903 0.951741i \(-0.400707\pi\)
0.306903 + 0.951741i \(0.400707\pi\)
\(948\) −16453.1 −0.563682
\(949\) 48976.4 1.67528
\(950\) −10814.2 −0.369327
\(951\) 15609.9 0.532266
\(952\) −5153.02 −0.175431
\(953\) 20302.3 0.690090 0.345045 0.938586i \(-0.387864\pi\)
0.345045 + 0.938586i \(0.387864\pi\)
\(954\) −14403.9 −0.488829
\(955\) 729.708 0.0247254
\(956\) 67213.0 2.27387
\(957\) 1098.97 0.0371207
\(958\) −31732.7 −1.07018
\(959\) 25686.1 0.864908
\(960\) −24740.6 −0.831772
\(961\) −29790.9 −0.999998
\(962\) 18472.0 0.619085
\(963\) 15473.2 0.517776
\(964\) 122280. 4.08546
\(965\) −5757.31 −0.192056
\(966\) 12307.1 0.409911
\(967\) −19313.4 −0.642273 −0.321137 0.947033i \(-0.604065\pi\)
−0.321137 + 0.947033i \(0.604065\pi\)
\(968\) −85536.0 −2.84012
\(969\) −1647.93 −0.0546326
\(970\) 836.983 0.0277050
\(971\) −25297.3 −0.836077 −0.418038 0.908429i \(-0.637282\pi\)
−0.418038 + 0.908429i \(0.637282\pi\)
\(972\) 5213.36 0.172036
\(973\) −13966.8 −0.460179
\(974\) −1859.68 −0.0611787
\(975\) 6317.57 0.207512
\(976\) 42528.6 1.39478
\(977\) 21461.4 0.702776 0.351388 0.936230i \(-0.385710\pi\)
0.351388 + 0.936230i \(0.385710\pi\)
\(978\) 34209.8 1.11852
\(979\) 8572.45 0.279854
\(980\) 25545.8 0.832684
\(981\) −7014.82 −0.228304
\(982\) −9082.24 −0.295138
\(983\) 14059.8 0.456193 0.228096 0.973639i \(-0.426750\pi\)
0.228096 + 0.973639i \(0.426750\pi\)
\(984\) 45640.7 1.47863
\(985\) −21640.4 −0.700021
\(986\) 1084.69 0.0350340
\(987\) 16040.9 0.517314
\(988\) −144040. −4.63818
\(989\) 14352.2 0.461450
\(990\) −3084.97 −0.0990370
\(991\) −60932.3 −1.95316 −0.976578 0.215162i \(-0.930972\pi\)
−0.976578 + 0.215162i \(0.930972\pi\)
\(992\) 161.720 0.00517601
\(993\) −32955.0 −1.05317
\(994\) 62624.5 1.99832
\(995\) −7663.60 −0.244173
\(996\) −63273.5 −2.01295
\(997\) −4183.32 −0.132886 −0.0664428 0.997790i \(-0.521165\pi\)
−0.0664428 + 0.997790i \(0.521165\pi\)
\(998\) 59254.7 1.87943
\(999\) 1090.98 0.0345515
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.4.a.h.1.6 6
3.2 odd 2 1305.4.a.h.1.1 6
5.4 even 2 2175.4.a.k.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.h.1.6 6 1.1 even 1 trivial
1305.4.a.h.1.1 6 3.2 odd 2
2175.4.a.k.1.1 6 5.4 even 2