Properties

Label 435.4.a.h.1.5
Level $435$
Weight $4$
Character 435.1
Self dual yes
Analytic conductor $25.666$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 49x^{4} + 27x^{3} + 692x^{2} - 82x - 2588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(4.39070\) of defining polynomial
Character \(\chi\) \(=\) 435.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.39070 q^{2} +3.00000 q^{3} +11.2783 q^{4} -5.00000 q^{5} +13.1721 q^{6} +31.5336 q^{7} +14.3939 q^{8} +9.00000 q^{9} -21.9535 q^{10} -5.28853 q^{11} +33.8348 q^{12} -5.98731 q^{13} +138.455 q^{14} -15.0000 q^{15} -27.0267 q^{16} +84.6758 q^{17} +39.5163 q^{18} +57.3480 q^{19} -56.3914 q^{20} +94.6008 q^{21} -23.2204 q^{22} +31.0898 q^{23} +43.1818 q^{24} +25.0000 q^{25} -26.2885 q^{26} +27.0000 q^{27} +355.645 q^{28} +29.0000 q^{29} -65.8606 q^{30} -14.6873 q^{31} -233.818 q^{32} -15.8656 q^{33} +371.786 q^{34} -157.668 q^{35} +101.504 q^{36} -7.76174 q^{37} +251.798 q^{38} -17.9619 q^{39} -71.9697 q^{40} -399.867 q^{41} +415.364 q^{42} -17.9967 q^{43} -59.6455 q^{44} -45.0000 q^{45} +136.506 q^{46} -262.798 q^{47} -81.0800 q^{48} +651.368 q^{49} +109.768 q^{50} +254.027 q^{51} -67.5265 q^{52} -64.9925 q^{53} +118.549 q^{54} +26.4427 q^{55} +453.893 q^{56} +172.044 q^{57} +127.330 q^{58} +122.788 q^{59} -169.174 q^{60} +264.384 q^{61} -64.4877 q^{62} +283.802 q^{63} -810.411 q^{64} +29.9366 q^{65} -69.6611 q^{66} +622.712 q^{67} +954.997 q^{68} +93.2694 q^{69} -692.274 q^{70} +327.717 q^{71} +129.545 q^{72} -833.518 q^{73} -34.0795 q^{74} +75.0000 q^{75} +646.787 q^{76} -166.767 q^{77} -78.8655 q^{78} -666.457 q^{79} +135.133 q^{80} +81.0000 q^{81} -1755.70 q^{82} -1320.72 q^{83} +1066.93 q^{84} -423.379 q^{85} -79.0180 q^{86} +87.0000 q^{87} -76.1229 q^{88} -189.059 q^{89} -197.582 q^{90} -188.801 q^{91} +350.640 q^{92} -44.0620 q^{93} -1153.87 q^{94} -286.740 q^{95} -701.453 q^{96} -137.630 q^{97} +2859.97 q^{98} -47.5968 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 18 q^{3} + 51 q^{4} - 30 q^{5} + 3 q^{6} + 47 q^{7} + 51 q^{8} + 54 q^{9} - 5 q^{10} + 81 q^{11} + 153 q^{12} + 169 q^{13} - 30 q^{14} - 90 q^{15} + 131 q^{16} - q^{17} + 9 q^{18} + 116 q^{19}+ \cdots + 729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.39070 1.55235 0.776174 0.630519i \(-0.217158\pi\)
0.776174 + 0.630519i \(0.217158\pi\)
\(3\) 3.00000 0.577350
\(4\) 11.2783 1.40978
\(5\) −5.00000 −0.447214
\(6\) 13.1721 0.896249
\(7\) 31.5336 1.70265 0.851327 0.524635i \(-0.175798\pi\)
0.851327 + 0.524635i \(0.175798\pi\)
\(8\) 14.3939 0.636128
\(9\) 9.00000 0.333333
\(10\) −21.9535 −0.694231
\(11\) −5.28853 −0.144959 −0.0724797 0.997370i \(-0.523091\pi\)
−0.0724797 + 0.997370i \(0.523091\pi\)
\(12\) 33.8348 0.813940
\(13\) −5.98731 −0.127737 −0.0638685 0.997958i \(-0.520344\pi\)
−0.0638685 + 0.997958i \(0.520344\pi\)
\(14\) 138.455 2.64311
\(15\) −15.0000 −0.258199
\(16\) −27.0267 −0.422292
\(17\) 84.6758 1.20805 0.604026 0.796965i \(-0.293562\pi\)
0.604026 + 0.796965i \(0.293562\pi\)
\(18\) 39.5163 0.517449
\(19\) 57.3480 0.692449 0.346225 0.938152i \(-0.387464\pi\)
0.346225 + 0.938152i \(0.387464\pi\)
\(20\) −56.3914 −0.630475
\(21\) 94.6008 0.983028
\(22\) −23.2204 −0.225027
\(23\) 31.0898 0.281855 0.140928 0.990020i \(-0.454991\pi\)
0.140928 + 0.990020i \(0.454991\pi\)
\(24\) 43.1818 0.367269
\(25\) 25.0000 0.200000
\(26\) −26.2885 −0.198292
\(27\) 27.0000 0.192450
\(28\) 355.645 2.40038
\(29\) 29.0000 0.185695
\(30\) −65.8606 −0.400815
\(31\) −14.6873 −0.0850942 −0.0425471 0.999094i \(-0.513547\pi\)
−0.0425471 + 0.999094i \(0.513547\pi\)
\(32\) −233.818 −1.29167
\(33\) −15.8656 −0.0836923
\(34\) 371.786 1.87532
\(35\) −157.668 −0.761450
\(36\) 101.504 0.469928
\(37\) −7.76174 −0.0344871 −0.0172435 0.999851i \(-0.505489\pi\)
−0.0172435 + 0.999851i \(0.505489\pi\)
\(38\) 251.798 1.07492
\(39\) −17.9619 −0.0737490
\(40\) −71.9697 −0.284485
\(41\) −399.867 −1.52314 −0.761569 0.648084i \(-0.775571\pi\)
−0.761569 + 0.648084i \(0.775571\pi\)
\(42\) 415.364 1.52600
\(43\) −17.9967 −0.0638247 −0.0319124 0.999491i \(-0.510160\pi\)
−0.0319124 + 0.999491i \(0.510160\pi\)
\(44\) −59.6455 −0.204361
\(45\) −45.0000 −0.149071
\(46\) 136.506 0.437538
\(47\) −262.798 −0.815595 −0.407798 0.913072i \(-0.633703\pi\)
−0.407798 + 0.913072i \(0.633703\pi\)
\(48\) −81.0800 −0.243810
\(49\) 651.368 1.89903
\(50\) 109.768 0.310470
\(51\) 254.027 0.697469
\(52\) −67.5265 −0.180082
\(53\) −64.9925 −0.168442 −0.0842209 0.996447i \(-0.526840\pi\)
−0.0842209 + 0.996447i \(0.526840\pi\)
\(54\) 118.549 0.298750
\(55\) 26.4427 0.0648278
\(56\) 453.893 1.08311
\(57\) 172.044 0.399786
\(58\) 127.330 0.288264
\(59\) 122.788 0.270942 0.135471 0.990781i \(-0.456745\pi\)
0.135471 + 0.990781i \(0.456745\pi\)
\(60\) −169.174 −0.364005
\(61\) 264.384 0.554932 0.277466 0.960735i \(-0.410505\pi\)
0.277466 + 0.960735i \(0.410505\pi\)
\(62\) −64.4877 −0.132096
\(63\) 283.802 0.567552
\(64\) −810.411 −1.58283
\(65\) 29.9366 0.0571257
\(66\) −69.6611 −0.129920
\(67\) 622.712 1.13547 0.567734 0.823212i \(-0.307820\pi\)
0.567734 + 0.823212i \(0.307820\pi\)
\(68\) 954.997 1.70309
\(69\) 93.2694 0.162729
\(70\) −692.274 −1.18204
\(71\) 327.717 0.547786 0.273893 0.961760i \(-0.411689\pi\)
0.273893 + 0.961760i \(0.411689\pi\)
\(72\) 129.545 0.212043
\(73\) −833.518 −1.33638 −0.668191 0.743989i \(-0.732931\pi\)
−0.668191 + 0.743989i \(0.732931\pi\)
\(74\) −34.0795 −0.0535360
\(75\) 75.0000 0.115470
\(76\) 646.787 0.976204
\(77\) −166.767 −0.246816
\(78\) −78.8655 −0.114484
\(79\) −666.457 −0.949143 −0.474571 0.880217i \(-0.657397\pi\)
−0.474571 + 0.880217i \(0.657397\pi\)
\(80\) 135.133 0.188855
\(81\) 81.0000 0.111111
\(82\) −1755.70 −2.36444
\(83\) −1320.72 −1.74660 −0.873301 0.487182i \(-0.838025\pi\)
−0.873301 + 0.487182i \(0.838025\pi\)
\(84\) 1066.93 1.38586
\(85\) −423.379 −0.540257
\(86\) −79.0180 −0.0990782
\(87\) 87.0000 0.107211
\(88\) −76.1229 −0.0922128
\(89\) −189.059 −0.225172 −0.112586 0.993642i \(-0.535913\pi\)
−0.112586 + 0.993642i \(0.535913\pi\)
\(90\) −197.582 −0.231410
\(91\) −188.801 −0.217492
\(92\) 350.640 0.397355
\(93\) −44.0620 −0.0491292
\(94\) −1153.87 −1.26609
\(95\) −286.740 −0.309673
\(96\) −701.453 −0.745747
\(97\) −137.630 −0.144064 −0.0720321 0.997402i \(-0.522948\pi\)
−0.0720321 + 0.997402i \(0.522948\pi\)
\(98\) 2859.97 2.94796
\(99\) −47.5968 −0.0483198
\(100\) 281.957 0.281957
\(101\) −1721.15 −1.69565 −0.847826 0.530275i \(-0.822089\pi\)
−0.847826 + 0.530275i \(0.822089\pi\)
\(102\) 1115.36 1.08272
\(103\) 797.585 0.762994 0.381497 0.924370i \(-0.375409\pi\)
0.381497 + 0.924370i \(0.375409\pi\)
\(104\) −86.1810 −0.0812571
\(105\) −473.004 −0.439624
\(106\) −285.363 −0.261480
\(107\) −778.452 −0.703325 −0.351662 0.936127i \(-0.614384\pi\)
−0.351662 + 0.936127i \(0.614384\pi\)
\(108\) 304.513 0.271313
\(109\) 721.205 0.633752 0.316876 0.948467i \(-0.397366\pi\)
0.316876 + 0.948467i \(0.397366\pi\)
\(110\) 116.102 0.100635
\(111\) −23.2852 −0.0199111
\(112\) −852.249 −0.719017
\(113\) −559.024 −0.465386 −0.232693 0.972550i \(-0.574754\pi\)
−0.232693 + 0.972550i \(0.574754\pi\)
\(114\) 755.394 0.620607
\(115\) −155.449 −0.126050
\(116\) 327.070 0.261790
\(117\) −53.8858 −0.0425790
\(118\) 539.124 0.420597
\(119\) 2670.13 2.05690
\(120\) −215.909 −0.164248
\(121\) −1303.03 −0.978987
\(122\) 1160.83 0.861448
\(123\) −1199.60 −0.879384
\(124\) −165.648 −0.119965
\(125\) −125.000 −0.0894427
\(126\) 1246.09 0.881038
\(127\) −626.324 −0.437616 −0.218808 0.975768i \(-0.570217\pi\)
−0.218808 + 0.975768i \(0.570217\pi\)
\(128\) −1687.73 −1.16544
\(129\) −53.9900 −0.0368492
\(130\) 131.443 0.0886790
\(131\) 1764.12 1.17658 0.588289 0.808651i \(-0.299802\pi\)
0.588289 + 0.808651i \(0.299802\pi\)
\(132\) −178.937 −0.117988
\(133\) 1808.39 1.17900
\(134\) 2734.14 1.76264
\(135\) −135.000 −0.0860663
\(136\) 1218.82 0.768476
\(137\) −433.723 −0.270478 −0.135239 0.990813i \(-0.543180\pi\)
−0.135239 + 0.990813i \(0.543180\pi\)
\(138\) 409.518 0.252613
\(139\) −504.659 −0.307947 −0.153974 0.988075i \(-0.549207\pi\)
−0.153974 + 0.988075i \(0.549207\pi\)
\(140\) −1778.22 −1.07348
\(141\) −788.393 −0.470884
\(142\) 1438.91 0.850355
\(143\) 31.6641 0.0185167
\(144\) −243.240 −0.140764
\(145\) −145.000 −0.0830455
\(146\) −3659.73 −2.07453
\(147\) 1954.11 1.09641
\(148\) −87.5391 −0.0486194
\(149\) −354.655 −0.194997 −0.0974983 0.995236i \(-0.531084\pi\)
−0.0974983 + 0.995236i \(0.531084\pi\)
\(150\) 329.303 0.179250
\(151\) −325.611 −0.175483 −0.0877413 0.996143i \(-0.527965\pi\)
−0.0877413 + 0.996143i \(0.527965\pi\)
\(152\) 825.464 0.440487
\(153\) 762.082 0.402684
\(154\) −732.222 −0.383144
\(155\) 73.4366 0.0380553
\(156\) −202.580 −0.103970
\(157\) −2690.09 −1.36747 −0.683733 0.729732i \(-0.739645\pi\)
−0.683733 + 0.729732i \(0.739645\pi\)
\(158\) −2926.22 −1.47340
\(159\) −194.978 −0.0972499
\(160\) 1169.09 0.577653
\(161\) 980.374 0.479902
\(162\) 355.647 0.172483
\(163\) 1411.51 0.678270 0.339135 0.940738i \(-0.389866\pi\)
0.339135 + 0.940738i \(0.389866\pi\)
\(164\) −4509.81 −2.14730
\(165\) 79.3280 0.0374283
\(166\) −5798.89 −2.71133
\(167\) −2538.25 −1.17614 −0.588072 0.808809i \(-0.700113\pi\)
−0.588072 + 0.808809i \(0.700113\pi\)
\(168\) 1361.68 0.625332
\(169\) −2161.15 −0.983683
\(170\) −1858.93 −0.838667
\(171\) 516.132 0.230816
\(172\) −202.971 −0.0899791
\(173\) −305.030 −0.134052 −0.0670260 0.997751i \(-0.521351\pi\)
−0.0670260 + 0.997751i \(0.521351\pi\)
\(174\) 381.991 0.166429
\(175\) 788.340 0.340531
\(176\) 142.932 0.0612152
\(177\) 368.363 0.156429
\(178\) −830.104 −0.349545
\(179\) 3093.43 1.29170 0.645849 0.763465i \(-0.276504\pi\)
0.645849 + 0.763465i \(0.276504\pi\)
\(180\) −507.522 −0.210158
\(181\) 2800.38 1.15000 0.575001 0.818153i \(-0.305002\pi\)
0.575001 + 0.818153i \(0.305002\pi\)
\(182\) −828.971 −0.337623
\(183\) 793.151 0.320390
\(184\) 447.505 0.179296
\(185\) 38.8087 0.0154231
\(186\) −193.463 −0.0762656
\(187\) −447.811 −0.175118
\(188\) −2963.91 −1.14981
\(189\) 851.407 0.327676
\(190\) −1258.99 −0.480720
\(191\) 4208.78 1.59443 0.797217 0.603693i \(-0.206305\pi\)
0.797217 + 0.603693i \(0.206305\pi\)
\(192\) −2431.23 −0.913849
\(193\) −247.563 −0.0923315 −0.0461658 0.998934i \(-0.514700\pi\)
−0.0461658 + 0.998934i \(0.514700\pi\)
\(194\) −604.293 −0.223638
\(195\) 89.8097 0.0329816
\(196\) 7346.31 2.67723
\(197\) −4574.07 −1.65426 −0.827129 0.562013i \(-0.810027\pi\)
−0.827129 + 0.562013i \(0.810027\pi\)
\(198\) −208.983 −0.0750091
\(199\) 2601.05 0.926551 0.463276 0.886214i \(-0.346674\pi\)
0.463276 + 0.886214i \(0.346674\pi\)
\(200\) 359.849 0.127226
\(201\) 1868.13 0.655563
\(202\) −7557.06 −2.63224
\(203\) 914.475 0.316175
\(204\) 2864.99 0.983281
\(205\) 1999.33 0.681168
\(206\) 3501.96 1.18443
\(207\) 279.808 0.0939518
\(208\) 161.817 0.0539423
\(209\) −303.287 −0.100377
\(210\) −2076.82 −0.682449
\(211\) 244.148 0.0796582 0.0398291 0.999207i \(-0.487319\pi\)
0.0398291 + 0.999207i \(0.487319\pi\)
\(212\) −733.004 −0.237467
\(213\) 983.150 0.316265
\(214\) −3417.95 −1.09181
\(215\) 89.9833 0.0285433
\(216\) 388.636 0.122423
\(217\) −463.144 −0.144886
\(218\) 3166.60 0.983803
\(219\) −2500.56 −0.771561
\(220\) 298.228 0.0913932
\(221\) −506.980 −0.154313
\(222\) −102.239 −0.0309090
\(223\) 4179.26 1.25500 0.627498 0.778618i \(-0.284079\pi\)
0.627498 + 0.778618i \(0.284079\pi\)
\(224\) −7373.12 −2.19927
\(225\) 225.000 0.0666667
\(226\) −2454.51 −0.722441
\(227\) 4034.64 1.17968 0.589842 0.807518i \(-0.299190\pi\)
0.589842 + 0.807518i \(0.299190\pi\)
\(228\) 1940.36 0.563612
\(229\) 4501.53 1.29899 0.649497 0.760364i \(-0.274980\pi\)
0.649497 + 0.760364i \(0.274980\pi\)
\(230\) −682.531 −0.195673
\(231\) −500.300 −0.142499
\(232\) 417.424 0.118126
\(233\) −4710.72 −1.32450 −0.662252 0.749282i \(-0.730399\pi\)
−0.662252 + 0.749282i \(0.730399\pi\)
\(234\) −236.597 −0.0660974
\(235\) 1313.99 0.364745
\(236\) 1384.83 0.381970
\(237\) −1999.37 −0.547988
\(238\) 11723.8 3.19302
\(239\) −496.634 −0.134412 −0.0672062 0.997739i \(-0.521409\pi\)
−0.0672062 + 0.997739i \(0.521409\pi\)
\(240\) 405.400 0.109035
\(241\) 6414.62 1.71453 0.857266 0.514874i \(-0.172161\pi\)
0.857266 + 0.514874i \(0.172161\pi\)
\(242\) −5721.22 −1.51973
\(243\) 243.000 0.0641500
\(244\) 2981.79 0.782335
\(245\) −3256.84 −0.849274
\(246\) −5267.09 −1.36511
\(247\) −343.360 −0.0884514
\(248\) −211.409 −0.0541309
\(249\) −3962.16 −1.00840
\(250\) −548.838 −0.138846
\(251\) 4741.55 1.19237 0.596183 0.802848i \(-0.296683\pi\)
0.596183 + 0.802848i \(0.296683\pi\)
\(252\) 3200.80 0.800126
\(253\) −164.420 −0.0408576
\(254\) −2750.00 −0.679333
\(255\) −1270.14 −0.311918
\(256\) −927.044 −0.226329
\(257\) −6110.47 −1.48312 −0.741558 0.670889i \(-0.765913\pi\)
−0.741558 + 0.670889i \(0.765913\pi\)
\(258\) −237.054 −0.0572028
\(259\) −244.756 −0.0587196
\(260\) 337.633 0.0805350
\(261\) 261.000 0.0618984
\(262\) 7745.72 1.82646
\(263\) −3905.40 −0.915654 −0.457827 0.889041i \(-0.651372\pi\)
−0.457827 + 0.889041i \(0.651372\pi\)
\(264\) −228.369 −0.0532391
\(265\) 324.963 0.0753294
\(266\) 7940.10 1.83022
\(267\) −567.178 −0.130003
\(268\) 7023.11 1.60076
\(269\) −6684.63 −1.51513 −0.757563 0.652762i \(-0.773610\pi\)
−0.757563 + 0.652762i \(0.773610\pi\)
\(270\) −592.745 −0.133605
\(271\) −6784.76 −1.52083 −0.760415 0.649438i \(-0.775004\pi\)
−0.760415 + 0.649438i \(0.775004\pi\)
\(272\) −2288.50 −0.510151
\(273\) −566.404 −0.125569
\(274\) −1904.35 −0.419875
\(275\) −132.213 −0.0289919
\(276\) 1051.92 0.229413
\(277\) 3811.10 0.826666 0.413333 0.910580i \(-0.364364\pi\)
0.413333 + 0.910580i \(0.364364\pi\)
\(278\) −2215.81 −0.478041
\(279\) −132.186 −0.0283647
\(280\) −2269.46 −0.484380
\(281\) 1848.27 0.392380 0.196190 0.980566i \(-0.437143\pi\)
0.196190 + 0.980566i \(0.437143\pi\)
\(282\) −3461.60 −0.730976
\(283\) 1381.94 0.290275 0.145138 0.989411i \(-0.453638\pi\)
0.145138 + 0.989411i \(0.453638\pi\)
\(284\) 3696.08 0.772261
\(285\) −860.220 −0.178790
\(286\) 139.028 0.0287443
\(287\) −12609.2 −2.59338
\(288\) −2104.36 −0.430557
\(289\) 2256.98 0.459390
\(290\) −636.652 −0.128915
\(291\) −412.890 −0.0831755
\(292\) −9400.65 −1.88401
\(293\) 6221.44 1.24048 0.620239 0.784413i \(-0.287036\pi\)
0.620239 + 0.784413i \(0.287036\pi\)
\(294\) 8579.90 1.70201
\(295\) −613.938 −0.121169
\(296\) −111.722 −0.0219382
\(297\) −142.790 −0.0278974
\(298\) −1557.19 −0.302702
\(299\) −186.144 −0.0360034
\(300\) 845.871 0.162788
\(301\) −567.499 −0.108671
\(302\) −1429.66 −0.272410
\(303\) −5163.45 −0.978985
\(304\) −1549.93 −0.292416
\(305\) −1321.92 −0.248173
\(306\) 3346.08 0.625106
\(307\) 8135.50 1.51244 0.756218 0.654320i \(-0.227045\pi\)
0.756218 + 0.654320i \(0.227045\pi\)
\(308\) −1880.84 −0.347957
\(309\) 2392.75 0.440515
\(310\) 322.438 0.0590751
\(311\) 3117.65 0.568444 0.284222 0.958759i \(-0.408265\pi\)
0.284222 + 0.958759i \(0.408265\pi\)
\(312\) −258.543 −0.0469138
\(313\) 7536.36 1.36096 0.680480 0.732767i \(-0.261771\pi\)
0.680480 + 0.732767i \(0.261771\pi\)
\(314\) −11811.4 −2.12278
\(315\) −1419.01 −0.253817
\(316\) −7516.49 −1.33809
\(317\) 3579.28 0.634172 0.317086 0.948397i \(-0.397296\pi\)
0.317086 + 0.948397i \(0.397296\pi\)
\(318\) −856.089 −0.150966
\(319\) −153.367 −0.0269183
\(320\) 4052.05 0.707865
\(321\) −2335.35 −0.406065
\(322\) 4304.53 0.744976
\(323\) 4855.98 0.836515
\(324\) 913.540 0.156643
\(325\) −149.683 −0.0255474
\(326\) 6197.52 1.05291
\(327\) 2163.62 0.365897
\(328\) −5755.66 −0.968911
\(329\) −8286.96 −1.38868
\(330\) 348.306 0.0581018
\(331\) −6257.20 −1.03905 −0.519527 0.854454i \(-0.673892\pi\)
−0.519527 + 0.854454i \(0.673892\pi\)
\(332\) −14895.5 −2.46233
\(333\) −69.8557 −0.0114957
\(334\) −11144.7 −1.82578
\(335\) −3113.56 −0.507797
\(336\) −2556.75 −0.415125
\(337\) −4034.64 −0.652168 −0.326084 0.945341i \(-0.605729\pi\)
−0.326084 + 0.945341i \(0.605729\pi\)
\(338\) −9488.98 −1.52702
\(339\) −1677.07 −0.268691
\(340\) −4774.98 −0.761647
\(341\) 77.6744 0.0123352
\(342\) 2266.18 0.358307
\(343\) 9723.97 1.53074
\(344\) −259.043 −0.0406007
\(345\) −466.347 −0.0727748
\(346\) −1339.30 −0.208095
\(347\) −10221.1 −1.58126 −0.790630 0.612294i \(-0.790247\pi\)
−0.790630 + 0.612294i \(0.790247\pi\)
\(348\) 981.210 0.151145
\(349\) −2543.26 −0.390079 −0.195040 0.980795i \(-0.562484\pi\)
−0.195040 + 0.980795i \(0.562484\pi\)
\(350\) 3461.37 0.528623
\(351\) −161.657 −0.0245830
\(352\) 1236.55 0.187240
\(353\) 11741.3 1.77034 0.885168 0.465272i \(-0.154044\pi\)
0.885168 + 0.465272i \(0.154044\pi\)
\(354\) 1617.37 0.242832
\(355\) −1638.58 −0.244978
\(356\) −2132.27 −0.317443
\(357\) 8010.40 1.18755
\(358\) 13582.3 2.00517
\(359\) 5475.18 0.804927 0.402463 0.915436i \(-0.368154\pi\)
0.402463 + 0.915436i \(0.368154\pi\)
\(360\) −647.727 −0.0948284
\(361\) −3570.21 −0.520514
\(362\) 12295.6 1.78520
\(363\) −3909.09 −0.565218
\(364\) −2129.36 −0.306617
\(365\) 4167.59 0.597649
\(366\) 3482.49 0.497357
\(367\) 11158.0 1.58704 0.793522 0.608542i \(-0.208245\pi\)
0.793522 + 0.608542i \(0.208245\pi\)
\(368\) −840.254 −0.119025
\(369\) −3598.80 −0.507713
\(370\) 170.398 0.0239420
\(371\) −2049.45 −0.286798
\(372\) −496.943 −0.0692616
\(373\) 5823.05 0.808327 0.404163 0.914687i \(-0.367563\pi\)
0.404163 + 0.914687i \(0.367563\pi\)
\(374\) −1966.20 −0.271845
\(375\) −375.000 −0.0516398
\(376\) −3782.70 −0.518823
\(377\) −173.632 −0.0237202
\(378\) 3738.28 0.508667
\(379\) 2272.79 0.308036 0.154018 0.988068i \(-0.450779\pi\)
0.154018 + 0.988068i \(0.450779\pi\)
\(380\) −3233.93 −0.436572
\(381\) −1878.97 −0.252658
\(382\) 18479.5 2.47512
\(383\) 8686.06 1.15884 0.579422 0.815028i \(-0.303278\pi\)
0.579422 + 0.815028i \(0.303278\pi\)
\(384\) −5063.19 −0.672865
\(385\) 833.833 0.110379
\(386\) −1086.98 −0.143331
\(387\) −161.970 −0.0212749
\(388\) −1552.23 −0.203099
\(389\) 5410.18 0.705159 0.352580 0.935782i \(-0.385305\pi\)
0.352580 + 0.935782i \(0.385305\pi\)
\(390\) 394.328 0.0511989
\(391\) 2632.55 0.340496
\(392\) 9375.76 1.20803
\(393\) 5292.35 0.679298
\(394\) −20083.4 −2.56798
\(395\) 3332.28 0.424470
\(396\) −536.810 −0.0681205
\(397\) 13470.8 1.70297 0.851486 0.524377i \(-0.175702\pi\)
0.851486 + 0.524377i \(0.175702\pi\)
\(398\) 11420.4 1.43833
\(399\) 5425.17 0.680697
\(400\) −675.667 −0.0844584
\(401\) 1749.26 0.217840 0.108920 0.994050i \(-0.465261\pi\)
0.108920 + 0.994050i \(0.465261\pi\)
\(402\) 8202.43 1.01766
\(403\) 87.9376 0.0108697
\(404\) −19411.6 −2.39050
\(405\) −405.000 −0.0496904
\(406\) 4015.19 0.490814
\(407\) 41.0482 0.00499923
\(408\) 3656.45 0.443680
\(409\) −4261.47 −0.515198 −0.257599 0.966252i \(-0.582931\pi\)
−0.257599 + 0.966252i \(0.582931\pi\)
\(410\) 8778.48 1.05741
\(411\) −1301.17 −0.156160
\(412\) 8995.38 1.07566
\(413\) 3871.94 0.461321
\(414\) 1228.56 0.145846
\(415\) 6603.60 0.781104
\(416\) 1399.94 0.164994
\(417\) −1513.98 −0.177793
\(418\) −1331.64 −0.155820
\(419\) −3355.37 −0.391218 −0.195609 0.980682i \(-0.562668\pi\)
−0.195609 + 0.980682i \(0.562668\pi\)
\(420\) −5334.67 −0.619775
\(421\) −7859.86 −0.909896 −0.454948 0.890518i \(-0.650342\pi\)
−0.454948 + 0.890518i \(0.650342\pi\)
\(422\) 1071.98 0.123657
\(423\) −2365.18 −0.271865
\(424\) −935.499 −0.107151
\(425\) 2116.89 0.241610
\(426\) 4316.72 0.490953
\(427\) 8336.98 0.944858
\(428\) −8779.59 −0.991537
\(429\) 94.9923 0.0106906
\(430\) 395.090 0.0443091
\(431\) −9083.57 −1.01517 −0.507587 0.861600i \(-0.669463\pi\)
−0.507587 + 0.861600i \(0.669463\pi\)
\(432\) −729.720 −0.0812701
\(433\) 10303.2 1.14351 0.571756 0.820424i \(-0.306262\pi\)
0.571756 + 0.820424i \(0.306262\pi\)
\(434\) −2033.53 −0.224914
\(435\) −435.000 −0.0479463
\(436\) 8133.95 0.893453
\(437\) 1782.94 0.195171
\(438\) −10979.2 −1.19773
\(439\) 10285.7 1.11824 0.559122 0.829086i \(-0.311139\pi\)
0.559122 + 0.829086i \(0.311139\pi\)
\(440\) 380.614 0.0412388
\(441\) 5862.32 0.633011
\(442\) −2226.00 −0.239547
\(443\) 11628.0 1.24710 0.623549 0.781784i \(-0.285690\pi\)
0.623549 + 0.781784i \(0.285690\pi\)
\(444\) −262.617 −0.0280704
\(445\) 945.297 0.100700
\(446\) 18349.9 1.94819
\(447\) −1063.97 −0.112581
\(448\) −25555.2 −2.69502
\(449\) −13543.0 −1.42346 −0.711730 0.702453i \(-0.752088\pi\)
−0.711730 + 0.702453i \(0.752088\pi\)
\(450\) 987.908 0.103490
\(451\) 2114.71 0.220793
\(452\) −6304.83 −0.656094
\(453\) −976.834 −0.101315
\(454\) 17714.9 1.83128
\(455\) 944.007 0.0972654
\(456\) 2476.39 0.254315
\(457\) 16383.2 1.67696 0.838481 0.544930i \(-0.183444\pi\)
0.838481 + 0.544930i \(0.183444\pi\)
\(458\) 19764.9 2.01649
\(459\) 2286.25 0.232490
\(460\) −1753.20 −0.177703
\(461\) 13577.7 1.37175 0.685877 0.727717i \(-0.259419\pi\)
0.685877 + 0.727717i \(0.259419\pi\)
\(462\) −2196.67 −0.221208
\(463\) −17986.2 −1.80538 −0.902688 0.430297i \(-0.858409\pi\)
−0.902688 + 0.430297i \(0.858409\pi\)
\(464\) −783.774 −0.0784176
\(465\) 220.310 0.0219712
\(466\) −20683.4 −2.05609
\(467\) 792.472 0.0785251 0.0392625 0.999229i \(-0.487499\pi\)
0.0392625 + 0.999229i \(0.487499\pi\)
\(468\) −607.739 −0.0600272
\(469\) 19636.3 1.93331
\(470\) 5769.33 0.566212
\(471\) −8070.26 −0.789507
\(472\) 1767.40 0.172354
\(473\) 95.1759 0.00925199
\(474\) −8778.65 −0.850668
\(475\) 1433.70 0.138490
\(476\) 30114.5 2.89978
\(477\) −584.933 −0.0561472
\(478\) −2180.57 −0.208655
\(479\) −6655.02 −0.634813 −0.317407 0.948290i \(-0.602812\pi\)
−0.317407 + 0.948290i \(0.602812\pi\)
\(480\) 3507.27 0.333508
\(481\) 46.4719 0.00440528
\(482\) 28164.7 2.66155
\(483\) 2941.12 0.277072
\(484\) −14695.9 −1.38016
\(485\) 688.151 0.0644274
\(486\) 1066.94 0.0995832
\(487\) −13972.7 −1.30013 −0.650064 0.759880i \(-0.725258\pi\)
−0.650064 + 0.759880i \(0.725258\pi\)
\(488\) 3805.53 0.353008
\(489\) 4234.53 0.391600
\(490\) −14299.8 −1.31837
\(491\) 3638.63 0.334438 0.167219 0.985920i \(-0.446521\pi\)
0.167219 + 0.985920i \(0.446521\pi\)
\(492\) −13529.4 −1.23974
\(493\) 2455.60 0.224330
\(494\) −1507.59 −0.137307
\(495\) 237.984 0.0216093
\(496\) 396.950 0.0359346
\(497\) 10334.1 0.932691
\(498\) −17396.7 −1.56539
\(499\) 11313.5 1.01496 0.507478 0.861665i \(-0.330578\pi\)
0.507478 + 0.861665i \(0.330578\pi\)
\(500\) −1409.78 −0.126095
\(501\) −7614.76 −0.679047
\(502\) 20818.7 1.85097
\(503\) −4598.92 −0.407665 −0.203833 0.979006i \(-0.565340\pi\)
−0.203833 + 0.979006i \(0.565340\pi\)
\(504\) 4085.04 0.361036
\(505\) 8605.75 0.758318
\(506\) −721.917 −0.0634252
\(507\) −6483.46 −0.567930
\(508\) −7063.86 −0.616945
\(509\) 6967.41 0.606729 0.303364 0.952875i \(-0.401890\pi\)
0.303364 + 0.952875i \(0.401890\pi\)
\(510\) −5576.79 −0.484205
\(511\) −26283.8 −2.27540
\(512\) 9431.48 0.814095
\(513\) 1548.40 0.133262
\(514\) −26829.3 −2.30231
\(515\) −3987.92 −0.341221
\(516\) −608.914 −0.0519495
\(517\) 1389.81 0.118228
\(518\) −1074.65 −0.0911533
\(519\) −915.090 −0.0773949
\(520\) 430.905 0.0363393
\(521\) −11038.5 −0.928228 −0.464114 0.885776i \(-0.653627\pi\)
−0.464114 + 0.885776i \(0.653627\pi\)
\(522\) 1145.97 0.0960879
\(523\) −15368.6 −1.28493 −0.642467 0.766314i \(-0.722089\pi\)
−0.642467 + 0.766314i \(0.722089\pi\)
\(524\) 19896.2 1.65872
\(525\) 2365.02 0.196606
\(526\) −17147.4 −1.42141
\(527\) −1243.66 −0.102798
\(528\) 428.795 0.0353426
\(529\) −11200.4 −0.920558
\(530\) 1426.81 0.116937
\(531\) 1105.09 0.0903141
\(532\) 20395.5 1.66214
\(533\) 2394.12 0.194561
\(534\) −2490.31 −0.201810
\(535\) 3892.26 0.314536
\(536\) 8963.28 0.722303
\(537\) 9280.30 0.745762
\(538\) −29350.2 −2.35200
\(539\) −3444.78 −0.275283
\(540\) −1522.57 −0.121335
\(541\) −10945.5 −0.869839 −0.434920 0.900469i \(-0.643223\pi\)
−0.434920 + 0.900469i \(0.643223\pi\)
\(542\) −29789.9 −2.36086
\(543\) 8401.13 0.663954
\(544\) −19798.7 −1.56041
\(545\) −3606.03 −0.283422
\(546\) −2486.91 −0.194927
\(547\) 10140.1 0.792616 0.396308 0.918118i \(-0.370291\pi\)
0.396308 + 0.918118i \(0.370291\pi\)
\(548\) −4891.64 −0.381315
\(549\) 2379.45 0.184977
\(550\) −580.510 −0.0450055
\(551\) 1663.09 0.128585
\(552\) 1342.52 0.103517
\(553\) −21015.8 −1.61606
\(554\) 16733.4 1.28327
\(555\) 116.426 0.00890453
\(556\) −5691.69 −0.434139
\(557\) 18329.0 1.39430 0.697151 0.716925i \(-0.254451\pi\)
0.697151 + 0.716925i \(0.254451\pi\)
\(558\) −580.389 −0.0440320
\(559\) 107.752 0.00815278
\(560\) 4261.24 0.321554
\(561\) −1343.43 −0.101105
\(562\) 8115.21 0.609110
\(563\) 2868.99 0.214766 0.107383 0.994218i \(-0.465753\pi\)
0.107383 + 0.994218i \(0.465753\pi\)
\(564\) −8891.72 −0.663845
\(565\) 2795.12 0.208127
\(566\) 6067.69 0.450608
\(567\) 2554.22 0.189184
\(568\) 4717.14 0.348462
\(569\) 18562.0 1.36759 0.683795 0.729674i \(-0.260328\pi\)
0.683795 + 0.729674i \(0.260328\pi\)
\(570\) −3776.97 −0.277544
\(571\) −10162.6 −0.744815 −0.372408 0.928069i \(-0.621468\pi\)
−0.372408 + 0.928069i \(0.621468\pi\)
\(572\) 357.116 0.0261045
\(573\) 12626.4 0.920547
\(574\) −55363.4 −4.02583
\(575\) 777.245 0.0563711
\(576\) −7293.70 −0.527611
\(577\) 2525.24 0.182196 0.0910981 0.995842i \(-0.470962\pi\)
0.0910981 + 0.995842i \(0.470962\pi\)
\(578\) 9909.74 0.713133
\(579\) −742.689 −0.0533076
\(580\) −1635.35 −0.117076
\(581\) −41647.1 −2.97386
\(582\) −1812.88 −0.129117
\(583\) 343.715 0.0244172
\(584\) −11997.6 −0.850111
\(585\) 269.429 0.0190419
\(586\) 27316.5 1.92565
\(587\) 3327.35 0.233960 0.116980 0.993134i \(-0.462679\pi\)
0.116980 + 0.993134i \(0.462679\pi\)
\(588\) 22038.9 1.54570
\(589\) −842.289 −0.0589234
\(590\) −2695.62 −0.188097
\(591\) −13722.2 −0.955086
\(592\) 209.774 0.0145636
\(593\) −16731.4 −1.15864 −0.579321 0.815099i \(-0.696682\pi\)
−0.579321 + 0.815099i \(0.696682\pi\)
\(594\) −626.950 −0.0433065
\(595\) −13350.7 −0.919872
\(596\) −3999.90 −0.274903
\(597\) 7803.16 0.534945
\(598\) −817.305 −0.0558898
\(599\) −12851.1 −0.876600 −0.438300 0.898829i \(-0.644419\pi\)
−0.438300 + 0.898829i \(0.644419\pi\)
\(600\) 1079.55 0.0734538
\(601\) −8773.05 −0.595441 −0.297720 0.954653i \(-0.596226\pi\)
−0.297720 + 0.954653i \(0.596226\pi\)
\(602\) −2491.72 −0.168696
\(603\) 5604.40 0.378489
\(604\) −3672.33 −0.247393
\(605\) 6515.16 0.437816
\(606\) −22671.2 −1.51973
\(607\) −19083.1 −1.27605 −0.638023 0.770017i \(-0.720247\pi\)
−0.638023 + 0.770017i \(0.720247\pi\)
\(608\) −13409.0 −0.894417
\(609\) 2743.42 0.182544
\(610\) −5804.15 −0.385251
\(611\) 1573.45 0.104182
\(612\) 8594.97 0.567698
\(613\) 20976.8 1.38213 0.691063 0.722794i \(-0.257142\pi\)
0.691063 + 0.722794i \(0.257142\pi\)
\(614\) 35720.6 2.34783
\(615\) 5998.00 0.393273
\(616\) −2400.43 −0.157007
\(617\) −15290.1 −0.997658 −0.498829 0.866700i \(-0.666236\pi\)
−0.498829 + 0.866700i \(0.666236\pi\)
\(618\) 10505.9 0.683832
\(619\) 18786.8 1.21988 0.609938 0.792449i \(-0.291194\pi\)
0.609938 + 0.792449i \(0.291194\pi\)
\(620\) 828.239 0.0536498
\(621\) 839.425 0.0542431
\(622\) 13688.7 0.882422
\(623\) −5961.73 −0.383389
\(624\) 485.451 0.0311436
\(625\) 625.000 0.0400000
\(626\) 33089.9 2.11268
\(627\) −909.860 −0.0579527
\(628\) −30339.5 −1.92783
\(629\) −657.231 −0.0416622
\(630\) −6230.46 −0.394012
\(631\) 14273.7 0.900516 0.450258 0.892898i \(-0.351332\pi\)
0.450258 + 0.892898i \(0.351332\pi\)
\(632\) −9592.94 −0.603777
\(633\) 732.445 0.0459907
\(634\) 15715.6 0.984456
\(635\) 3131.62 0.195708
\(636\) −2199.01 −0.137101
\(637\) −3899.95 −0.242577
\(638\) −673.391 −0.0417865
\(639\) 2949.45 0.182595
\(640\) 8438.66 0.521199
\(641\) 10936.9 0.673919 0.336959 0.941519i \(-0.390602\pi\)
0.336959 + 0.941519i \(0.390602\pi\)
\(642\) −10253.9 −0.630354
\(643\) 5329.32 0.326855 0.163427 0.986555i \(-0.447745\pi\)
0.163427 + 0.986555i \(0.447745\pi\)
\(644\) 11056.9 0.676559
\(645\) 269.950 0.0164795
\(646\) 21321.2 1.29856
\(647\) −15807.3 −0.960509 −0.480255 0.877129i \(-0.659456\pi\)
−0.480255 + 0.877129i \(0.659456\pi\)
\(648\) 1165.91 0.0706809
\(649\) −649.367 −0.0392756
\(650\) −657.213 −0.0396585
\(651\) −1389.43 −0.0836500
\(652\) 15919.4 0.956215
\(653\) −11047.2 −0.662037 −0.331019 0.943624i \(-0.607392\pi\)
−0.331019 + 0.943624i \(0.607392\pi\)
\(654\) 9499.79 0.567999
\(655\) −8820.59 −0.526182
\(656\) 10807.1 0.643209
\(657\) −7501.67 −0.445461
\(658\) −36385.6 −2.15571
\(659\) −20355.2 −1.20322 −0.601612 0.798789i \(-0.705475\pi\)
−0.601612 + 0.798789i \(0.705475\pi\)
\(660\) 894.683 0.0527659
\(661\) −27873.5 −1.64017 −0.820086 0.572241i \(-0.806074\pi\)
−0.820086 + 0.572241i \(0.806074\pi\)
\(662\) −27473.5 −1.61297
\(663\) −1520.94 −0.0890926
\(664\) −19010.4 −1.11106
\(665\) −9041.95 −0.527266
\(666\) −306.716 −0.0178453
\(667\) 901.605 0.0523392
\(668\) −28627.1 −1.65811
\(669\) 12537.8 0.724572
\(670\) −13670.7 −0.788277
\(671\) −1398.20 −0.0804427
\(672\) −22119.3 −1.26975
\(673\) −9555.18 −0.547288 −0.273644 0.961831i \(-0.588229\pi\)
−0.273644 + 0.961831i \(0.588229\pi\)
\(674\) −17714.9 −1.01239
\(675\) 675.000 0.0384900
\(676\) −24374.1 −1.38678
\(677\) 17556.1 0.996658 0.498329 0.866988i \(-0.333947\pi\)
0.498329 + 0.866988i \(0.333947\pi\)
\(678\) −7363.53 −0.417101
\(679\) −4339.97 −0.245292
\(680\) −6094.09 −0.343673
\(681\) 12103.9 0.681091
\(682\) 341.045 0.0191485
\(683\) 11046.7 0.618875 0.309437 0.950920i \(-0.399859\pi\)
0.309437 + 0.950920i \(0.399859\pi\)
\(684\) 5821.08 0.325401
\(685\) 2168.61 0.120961
\(686\) 42695.1 2.37625
\(687\) 13504.6 0.749974
\(688\) 486.390 0.0269527
\(689\) 389.130 0.0215162
\(690\) −2047.59 −0.112972
\(691\) −7999.45 −0.440396 −0.220198 0.975455i \(-0.570670\pi\)
−0.220198 + 0.975455i \(0.570670\pi\)
\(692\) −3440.21 −0.188984
\(693\) −1500.90 −0.0822719
\(694\) −44877.8 −2.45467
\(695\) 2523.30 0.137718
\(696\) 1252.27 0.0682001
\(697\) −33859.0 −1.84003
\(698\) −11166.7 −0.605538
\(699\) −14132.1 −0.764702
\(700\) 8891.12 0.480075
\(701\) −25401.3 −1.36861 −0.684303 0.729198i \(-0.739893\pi\)
−0.684303 + 0.729198i \(0.739893\pi\)
\(702\) −709.790 −0.0381614
\(703\) −445.120 −0.0238806
\(704\) 4285.88 0.229447
\(705\) 3941.97 0.210586
\(706\) 51552.7 2.74818
\(707\) −54274.1 −2.88711
\(708\) 4154.50 0.220531
\(709\) −9479.34 −0.502122 −0.251061 0.967971i \(-0.580779\pi\)
−0.251061 + 0.967971i \(0.580779\pi\)
\(710\) −7194.54 −0.380290
\(711\) −5998.11 −0.316381
\(712\) −2721.31 −0.143238
\(713\) −456.626 −0.0239843
\(714\) 35171.3 1.84349
\(715\) −158.320 −0.00828091
\(716\) 34888.6 1.82102
\(717\) −1489.90 −0.0776030
\(718\) 24039.9 1.24953
\(719\) −32420.3 −1.68161 −0.840803 0.541341i \(-0.817917\pi\)
−0.840803 + 0.541341i \(0.817917\pi\)
\(720\) 1216.20 0.0629516
\(721\) 25150.7 1.29912
\(722\) −15675.7 −0.808019
\(723\) 19243.9 0.989885
\(724\) 31583.4 1.62126
\(725\) 725.000 0.0371391
\(726\) −17163.7 −0.877416
\(727\) −6808.51 −0.347337 −0.173668 0.984804i \(-0.555562\pi\)
−0.173668 + 0.984804i \(0.555562\pi\)
\(728\) −2717.60 −0.138353
\(729\) 729.000 0.0370370
\(730\) 18298.7 0.927759
\(731\) −1523.88 −0.0771036
\(732\) 8945.38 0.451681
\(733\) 20190.4 1.01740 0.508698 0.860945i \(-0.330127\pi\)
0.508698 + 0.860945i \(0.330127\pi\)
\(734\) 48991.6 2.46364
\(735\) −9770.53 −0.490328
\(736\) −7269.35 −0.364065
\(737\) −3293.23 −0.164597
\(738\) −15801.3 −0.788147
\(739\) 15130.0 0.753134 0.376567 0.926389i \(-0.377105\pi\)
0.376567 + 0.926389i \(0.377105\pi\)
\(740\) 437.695 0.0217432
\(741\) −1030.08 −0.0510674
\(742\) −8998.52 −0.445210
\(743\) −13315.6 −0.657470 −0.328735 0.944422i \(-0.606622\pi\)
−0.328735 + 0.944422i \(0.606622\pi\)
\(744\) −634.226 −0.0312525
\(745\) 1773.28 0.0872051
\(746\) 25567.3 1.25480
\(747\) −11886.5 −0.582200
\(748\) −5050.53 −0.246879
\(749\) −24547.4 −1.19752
\(750\) −1646.51 −0.0801629
\(751\) −18846.4 −0.915734 −0.457867 0.889021i \(-0.651386\pi\)
−0.457867 + 0.889021i \(0.651386\pi\)
\(752\) 7102.55 0.344419
\(753\) 14224.7 0.688413
\(754\) −762.367 −0.0368220
\(755\) 1628.06 0.0784782
\(756\) 9602.41 0.461953
\(757\) 699.522 0.0335859 0.0167930 0.999859i \(-0.494654\pi\)
0.0167930 + 0.999859i \(0.494654\pi\)
\(758\) 9979.16 0.478178
\(759\) −493.259 −0.0235891
\(760\) −4127.32 −0.196992
\(761\) −37430.3 −1.78298 −0.891489 0.453041i \(-0.850339\pi\)
−0.891489 + 0.453041i \(0.850339\pi\)
\(762\) −8250.01 −0.392213
\(763\) 22742.2 1.07906
\(764\) 47467.8 2.24781
\(765\) −3810.41 −0.180086
\(766\) 38137.9 1.79893
\(767\) −735.168 −0.0346093
\(768\) −2781.13 −0.130671
\(769\) 30299.7 1.42085 0.710426 0.703772i \(-0.248502\pi\)
0.710426 + 0.703772i \(0.248502\pi\)
\(770\) 3661.11 0.171347
\(771\) −18331.4 −0.856277
\(772\) −2792.09 −0.130168
\(773\) 16926.9 0.787603 0.393802 0.919195i \(-0.371160\pi\)
0.393802 + 0.919195i \(0.371160\pi\)
\(774\) −711.162 −0.0330261
\(775\) −367.183 −0.0170188
\(776\) −1981.04 −0.0916433
\(777\) −734.267 −0.0339018
\(778\) 23754.5 1.09465
\(779\) −22931.5 −1.05470
\(780\) 1012.90 0.0464969
\(781\) −1733.14 −0.0794068
\(782\) 11558.8 0.528568
\(783\) 783.000 0.0357371
\(784\) −17604.3 −0.801946
\(785\) 13450.4 0.611550
\(786\) 23237.2 1.05451
\(787\) −20726.9 −0.938799 −0.469400 0.882986i \(-0.655530\pi\)
−0.469400 + 0.882986i \(0.655530\pi\)
\(788\) −51587.6 −2.33215
\(789\) −11716.2 −0.528653
\(790\) 14631.1 0.658924
\(791\) −17628.1 −0.792391
\(792\) −685.106 −0.0307376
\(793\) −1582.95 −0.0708854
\(794\) 59146.3 2.64361
\(795\) 974.888 0.0434915
\(796\) 29335.4 1.30624
\(797\) −25560.6 −1.13601 −0.568006 0.823025i \(-0.692285\pi\)
−0.568006 + 0.823025i \(0.692285\pi\)
\(798\) 23820.3 1.05668
\(799\) −22252.6 −0.985282
\(800\) −5845.44 −0.258334
\(801\) −1701.54 −0.0750572
\(802\) 7680.49 0.338164
\(803\) 4408.09 0.193721
\(804\) 21069.3 0.924202
\(805\) −4901.87 −0.214619
\(806\) 386.108 0.0168735
\(807\) −20053.9 −0.874758
\(808\) −24774.1 −1.07865
\(809\) −45525.7 −1.97849 −0.989244 0.146273i \(-0.953272\pi\)
−0.989244 + 0.146273i \(0.953272\pi\)
\(810\) −1778.23 −0.0771368
\(811\) 8515.77 0.368717 0.184358 0.982859i \(-0.440979\pi\)
0.184358 + 0.982859i \(0.440979\pi\)
\(812\) 10313.7 0.445739
\(813\) −20354.3 −0.878051
\(814\) 180.231 0.00776054
\(815\) −7057.55 −0.303332
\(816\) −6865.51 −0.294536
\(817\) −1032.07 −0.0441954
\(818\) −18710.8 −0.799767
\(819\) −1699.21 −0.0724973
\(820\) 22549.0 0.960300
\(821\) 18922.1 0.804369 0.402185 0.915559i \(-0.368251\pi\)
0.402185 + 0.915559i \(0.368251\pi\)
\(822\) −5713.04 −0.242415
\(823\) −13297.5 −0.563210 −0.281605 0.959530i \(-0.590867\pi\)
−0.281605 + 0.959530i \(0.590867\pi\)
\(824\) 11480.4 0.485362
\(825\) −396.640 −0.0167385
\(826\) 17000.5 0.716131
\(827\) −26020.8 −1.09411 −0.547056 0.837096i \(-0.684252\pi\)
−0.547056 + 0.837096i \(0.684252\pi\)
\(828\) 3155.76 0.132452
\(829\) 8756.88 0.366874 0.183437 0.983031i \(-0.441278\pi\)
0.183437 + 0.983031i \(0.441278\pi\)
\(830\) 28994.5 1.21255
\(831\) 11433.3 0.477276
\(832\) 4852.18 0.202186
\(833\) 55155.1 2.29413
\(834\) −6647.43 −0.275997
\(835\) 12691.3 0.525987
\(836\) −3420.55 −0.141510
\(837\) −396.558 −0.0163764
\(838\) −14732.4 −0.607307
\(839\) −1131.02 −0.0465400 −0.0232700 0.999729i \(-0.507408\pi\)
−0.0232700 + 0.999729i \(0.507408\pi\)
\(840\) −6808.39 −0.279657
\(841\) 841.000 0.0344828
\(842\) −34510.3 −1.41248
\(843\) 5544.82 0.226540
\(844\) 2753.57 0.112301
\(845\) 10805.8 0.439917
\(846\) −10384.8 −0.422029
\(847\) −41089.3 −1.66688
\(848\) 1756.53 0.0711316
\(849\) 4145.82 0.167590
\(850\) 9294.65 0.375063
\(851\) −241.311 −0.00972037
\(852\) 11088.2 0.445865
\(853\) −12199.3 −0.489679 −0.244839 0.969564i \(-0.578735\pi\)
−0.244839 + 0.969564i \(0.578735\pi\)
\(854\) 36605.2 1.46675
\(855\) −2580.66 −0.103224
\(856\) −11205.0 −0.447405
\(857\) 37800.4 1.50670 0.753348 0.657622i \(-0.228438\pi\)
0.753348 + 0.657622i \(0.228438\pi\)
\(858\) 417.083 0.0165955
\(859\) 30888.1 1.22688 0.613438 0.789743i \(-0.289786\pi\)
0.613438 + 0.789743i \(0.289786\pi\)
\(860\) 1014.86 0.0402399
\(861\) −37827.7 −1.49729
\(862\) −39883.3 −1.57590
\(863\) 38008.4 1.49921 0.749607 0.661883i \(-0.230242\pi\)
0.749607 + 0.661883i \(0.230242\pi\)
\(864\) −6313.08 −0.248582
\(865\) 1525.15 0.0599499
\(866\) 45238.3 1.77513
\(867\) 6770.95 0.265229
\(868\) −5223.47 −0.204258
\(869\) 3524.58 0.137587
\(870\) −1909.96 −0.0744294
\(871\) −3728.37 −0.145041
\(872\) 10381.0 0.403147
\(873\) −1238.67 −0.0480214
\(874\) 7828.35 0.302973
\(875\) −3941.70 −0.152290
\(876\) −28202.0 −1.08773
\(877\) 45609.0 1.75611 0.878055 0.478561i \(-0.158841\pi\)
0.878055 + 0.478561i \(0.158841\pi\)
\(878\) 45161.4 1.73590
\(879\) 18664.3 0.716191
\(880\) −714.658 −0.0273762
\(881\) 15306.9 0.585360 0.292680 0.956210i \(-0.405453\pi\)
0.292680 + 0.956210i \(0.405453\pi\)
\(882\) 25739.7 0.982654
\(883\) −4293.37 −0.163628 −0.0818140 0.996648i \(-0.526071\pi\)
−0.0818140 + 0.996648i \(0.526071\pi\)
\(884\) −5717.86 −0.217548
\(885\) −1841.81 −0.0699570
\(886\) 51055.3 1.93593
\(887\) 15161.7 0.573935 0.286968 0.957940i \(-0.407353\pi\)
0.286968 + 0.957940i \(0.407353\pi\)
\(888\) −335.166 −0.0126660
\(889\) −19750.3 −0.745110
\(890\) 4150.52 0.156321
\(891\) −428.371 −0.0161066
\(892\) 47134.9 1.76927
\(893\) −15070.9 −0.564758
\(894\) −4671.56 −0.174765
\(895\) −15467.2 −0.577665
\(896\) −53220.3 −1.98434
\(897\) −558.433 −0.0207866
\(898\) −59463.3 −2.20971
\(899\) −425.932 −0.0158016
\(900\) 2537.61 0.0939856
\(901\) −5503.29 −0.203486
\(902\) 9285.05 0.342748
\(903\) −1702.50 −0.0627415
\(904\) −8046.57 −0.296045
\(905\) −14001.9 −0.514297
\(906\) −4288.99 −0.157276
\(907\) 45095.6 1.65091 0.825454 0.564469i \(-0.190919\pi\)
0.825454 + 0.564469i \(0.190919\pi\)
\(908\) 45503.8 1.66310
\(909\) −15490.3 −0.565217
\(910\) 4144.86 0.150990
\(911\) 10578.3 0.384714 0.192357 0.981325i \(-0.438387\pi\)
0.192357 + 0.981325i \(0.438387\pi\)
\(912\) −4649.78 −0.168826
\(913\) 6984.67 0.253186
\(914\) 71933.6 2.60323
\(915\) −3965.76 −0.143283
\(916\) 50769.5 1.83130
\(917\) 55629.0 2.00331
\(918\) 10038.2 0.360905
\(919\) 50326.0 1.80642 0.903210 0.429198i \(-0.141204\pi\)
0.903210 + 0.429198i \(0.141204\pi\)
\(920\) −2237.53 −0.0801837
\(921\) 24406.5 0.873205
\(922\) 59615.9 2.12944
\(923\) −1962.14 −0.0699726
\(924\) −5642.52 −0.200893
\(925\) −194.044 −0.00689742
\(926\) −78972.0 −2.80257
\(927\) 7178.26 0.254331
\(928\) −6780.71 −0.239858
\(929\) 8373.10 0.295708 0.147854 0.989009i \(-0.452763\pi\)
0.147854 + 0.989009i \(0.452763\pi\)
\(930\) 967.315 0.0341070
\(931\) 37354.7 1.31498
\(932\) −53128.8 −1.86726
\(933\) 9352.96 0.328191
\(934\) 3479.51 0.121898
\(935\) 2239.05 0.0783154
\(936\) −775.629 −0.0270857
\(937\) 53048.3 1.84953 0.924766 0.380537i \(-0.124261\pi\)
0.924766 + 0.380537i \(0.124261\pi\)
\(938\) 86217.4 3.00117
\(939\) 22609.1 0.785750
\(940\) 14819.5 0.514212
\(941\) −1015.79 −0.0351899 −0.0175949 0.999845i \(-0.505601\pi\)
−0.0175949 + 0.999845i \(0.505601\pi\)
\(942\) −35434.1 −1.22559
\(943\) −12431.8 −0.429305
\(944\) −3318.54 −0.114417
\(945\) −4257.04 −0.146541
\(946\) 417.889 0.0143623
\(947\) −26038.4 −0.893490 −0.446745 0.894661i \(-0.647417\pi\)
−0.446745 + 0.894661i \(0.647417\pi\)
\(948\) −22549.5 −0.772545
\(949\) 4990.53 0.170706
\(950\) 6294.95 0.214984
\(951\) 10737.9 0.366140
\(952\) 38433.7 1.30845
\(953\) −22396.1 −0.761260 −0.380630 0.924727i \(-0.624293\pi\)
−0.380630 + 0.924727i \(0.624293\pi\)
\(954\) −2568.27 −0.0871601
\(955\) −21043.9 −0.713053
\(956\) −5601.17 −0.189492
\(957\) −460.102 −0.0155413
\(958\) −29220.2 −0.985451
\(959\) −13676.8 −0.460530
\(960\) 12156.2 0.408686
\(961\) −29575.3 −0.992759
\(962\) 204.045 0.00683852
\(963\) −7006.06 −0.234442
\(964\) 72345.9 2.41712
\(965\) 1237.82 0.0412919
\(966\) 12913.6 0.430112
\(967\) −33614.9 −1.11787 −0.558936 0.829211i \(-0.688790\pi\)
−0.558936 + 0.829211i \(0.688790\pi\)
\(968\) −18755.8 −0.622761
\(969\) 14568.0 0.482962
\(970\) 3021.47 0.100014
\(971\) −30440.6 −1.00606 −0.503030 0.864269i \(-0.667781\pi\)
−0.503030 + 0.864269i \(0.667781\pi\)
\(972\) 2740.62 0.0904377
\(973\) −15913.7 −0.524328
\(974\) −61349.8 −2.01825
\(975\) −449.048 −0.0147498
\(976\) −7145.42 −0.234343
\(977\) 18698.6 0.612305 0.306153 0.951982i \(-0.400958\pi\)
0.306153 + 0.951982i \(0.400958\pi\)
\(978\) 18592.6 0.607899
\(979\) 999.847 0.0326407
\(980\) −36731.6 −1.19729
\(981\) 6490.85 0.211251
\(982\) 15976.1 0.519164
\(983\) −10438.4 −0.338692 −0.169346 0.985557i \(-0.554166\pi\)
−0.169346 + 0.985557i \(0.554166\pi\)
\(984\) −17267.0 −0.559401
\(985\) 22870.3 0.739806
\(986\) 10781.8 0.348238
\(987\) −24860.9 −0.801753
\(988\) −3872.51 −0.124697
\(989\) −559.513 −0.0179893
\(990\) 1044.92 0.0335451
\(991\) 20547.5 0.658641 0.329320 0.944218i \(-0.393180\pi\)
0.329320 + 0.944218i \(0.393180\pi\)
\(992\) 3434.16 0.109914
\(993\) −18771.6 −0.599898
\(994\) 45373.9 1.44786
\(995\) −13005.3 −0.414366
\(996\) −44686.4 −1.42163
\(997\) 6486.05 0.206033 0.103017 0.994680i \(-0.467150\pi\)
0.103017 + 0.994680i \(0.467150\pi\)
\(998\) 49674.3 1.57556
\(999\) −209.567 −0.00663704
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.4.a.h.1.5 6
3.2 odd 2 1305.4.a.h.1.2 6
5.4 even 2 2175.4.a.k.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.h.1.5 6 1.1 even 1 trivial
1305.4.a.h.1.2 6 3.2 odd 2
2175.4.a.k.1.2 6 5.4 even 2