Properties

Label 435.4.a.h.1.4
Level $435$
Weight $4$
Character 435.1
Self dual yes
Analytic conductor $25.666$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 49x^{4} + 27x^{3} + 692x^{2} - 82x - 2588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.35472\) of defining polynomial
Character \(\chi\) \(=\) 435.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.35472 q^{2} +3.00000 q^{3} -2.45528 q^{4} -5.00000 q^{5} +7.06417 q^{6} -3.94392 q^{7} -24.6193 q^{8} +9.00000 q^{9} -11.7736 q^{10} +42.8507 q^{11} -7.36583 q^{12} +36.4288 q^{13} -9.28685 q^{14} -15.0000 q^{15} -38.3294 q^{16} +17.8279 q^{17} +21.1925 q^{18} +84.6809 q^{19} +12.2764 q^{20} -11.8318 q^{21} +100.902 q^{22} +93.9097 q^{23} -73.8579 q^{24} +25.0000 q^{25} +85.7797 q^{26} +27.0000 q^{27} +9.68343 q^{28} +29.0000 q^{29} -35.3208 q^{30} +122.782 q^{31} +106.699 q^{32} +128.552 q^{33} +41.9798 q^{34} +19.7196 q^{35} -22.0975 q^{36} -61.2323 q^{37} +199.400 q^{38} +109.286 q^{39} +123.096 q^{40} +13.8437 q^{41} -27.8605 q^{42} +397.388 q^{43} -105.210 q^{44} -45.0000 q^{45} +221.131 q^{46} +235.310 q^{47} -114.988 q^{48} -327.445 q^{49} +58.8681 q^{50} +53.4837 q^{51} -89.4428 q^{52} -50.4554 q^{53} +63.5775 q^{54} -214.253 q^{55} +97.0966 q^{56} +254.043 q^{57} +68.2870 q^{58} -476.712 q^{59} +36.8292 q^{60} -75.4071 q^{61} +289.119 q^{62} -35.4953 q^{63} +557.882 q^{64} -182.144 q^{65} +302.705 q^{66} -698.609 q^{67} -43.7725 q^{68} +281.729 q^{69} +46.4342 q^{70} +44.6799 q^{71} -221.574 q^{72} +669.611 q^{73} -144.185 q^{74} +75.0000 q^{75} -207.915 q^{76} -169.000 q^{77} +257.339 q^{78} +269.236 q^{79} +191.647 q^{80} +81.0000 q^{81} +32.5981 q^{82} +869.721 q^{83} +29.0503 q^{84} -89.1395 q^{85} +935.739 q^{86} +87.0000 q^{87} -1054.95 q^{88} -9.85326 q^{89} -105.963 q^{90} -143.672 q^{91} -230.574 q^{92} +368.347 q^{93} +554.089 q^{94} -423.405 q^{95} +320.098 q^{96} -1524.47 q^{97} -771.043 q^{98} +385.656 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 18 q^{3} + 51 q^{4} - 30 q^{5} + 3 q^{6} + 47 q^{7} + 51 q^{8} + 54 q^{9} - 5 q^{10} + 81 q^{11} + 153 q^{12} + 169 q^{13} - 30 q^{14} - 90 q^{15} + 131 q^{16} - q^{17} + 9 q^{18} + 116 q^{19}+ \cdots + 729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.35472 0.832520 0.416260 0.909246i \(-0.363341\pi\)
0.416260 + 0.909246i \(0.363341\pi\)
\(3\) 3.00000 0.577350
\(4\) −2.45528 −0.306910
\(5\) −5.00000 −0.447214
\(6\) 7.06417 0.480656
\(7\) −3.94392 −0.212952 −0.106476 0.994315i \(-0.533957\pi\)
−0.106476 + 0.994315i \(0.533957\pi\)
\(8\) −24.6193 −1.08803
\(9\) 9.00000 0.333333
\(10\) −11.7736 −0.372314
\(11\) 42.8507 1.17454 0.587271 0.809390i \(-0.300202\pi\)
0.587271 + 0.809390i \(0.300202\pi\)
\(12\) −7.36583 −0.177194
\(13\) 36.4288 0.777194 0.388597 0.921408i \(-0.372960\pi\)
0.388597 + 0.921408i \(0.372960\pi\)
\(14\) −9.28685 −0.177287
\(15\) −15.0000 −0.258199
\(16\) −38.3294 −0.598897
\(17\) 17.8279 0.254347 0.127174 0.991880i \(-0.459409\pi\)
0.127174 + 0.991880i \(0.459409\pi\)
\(18\) 21.1925 0.277507
\(19\) 84.6809 1.02248 0.511241 0.859438i \(-0.329186\pi\)
0.511241 + 0.859438i \(0.329186\pi\)
\(20\) 12.2764 0.137254
\(21\) −11.8318 −0.122948
\(22\) 100.902 0.977831
\(23\) 93.9097 0.851371 0.425685 0.904871i \(-0.360033\pi\)
0.425685 + 0.904871i \(0.360033\pi\)
\(24\) −73.8579 −0.628174
\(25\) 25.0000 0.200000
\(26\) 85.7797 0.647030
\(27\) 27.0000 0.192450
\(28\) 9.68343 0.0653570
\(29\) 29.0000 0.185695
\(30\) −35.3208 −0.214956
\(31\) 122.782 0.711367 0.355683 0.934607i \(-0.384248\pi\)
0.355683 + 0.934607i \(0.384248\pi\)
\(32\) 106.699 0.589435
\(33\) 128.552 0.678123
\(34\) 41.9798 0.211749
\(35\) 19.7196 0.0952350
\(36\) −22.0975 −0.102303
\(37\) −61.2323 −0.272069 −0.136034 0.990704i \(-0.543436\pi\)
−0.136034 + 0.990704i \(0.543436\pi\)
\(38\) 199.400 0.851236
\(39\) 109.286 0.448713
\(40\) 123.096 0.486581
\(41\) 13.8437 0.0527323 0.0263662 0.999652i \(-0.491606\pi\)
0.0263662 + 0.999652i \(0.491606\pi\)
\(42\) −27.8605 −0.102357
\(43\) 397.388 1.40933 0.704664 0.709541i \(-0.251098\pi\)
0.704664 + 0.709541i \(0.251098\pi\)
\(44\) −105.210 −0.360479
\(45\) −45.0000 −0.149071
\(46\) 221.131 0.708783
\(47\) 235.310 0.730286 0.365143 0.930952i \(-0.381020\pi\)
0.365143 + 0.930952i \(0.381020\pi\)
\(48\) −114.988 −0.345773
\(49\) −327.445 −0.954652
\(50\) 58.8681 0.166504
\(51\) 53.4837 0.146847
\(52\) −89.4428 −0.238529
\(53\) −50.4554 −0.130766 −0.0653829 0.997860i \(-0.520827\pi\)
−0.0653829 + 0.997860i \(0.520827\pi\)
\(54\) 63.5775 0.160219
\(55\) −214.253 −0.525271
\(56\) 97.0966 0.231698
\(57\) 254.043 0.590330
\(58\) 68.2870 0.154595
\(59\) −476.712 −1.05191 −0.525955 0.850513i \(-0.676292\pi\)
−0.525955 + 0.850513i \(0.676292\pi\)
\(60\) 36.8292 0.0792438
\(61\) −75.4071 −0.158277 −0.0791384 0.996864i \(-0.525217\pi\)
−0.0791384 + 0.996864i \(0.525217\pi\)
\(62\) 289.119 0.592227
\(63\) −35.4953 −0.0709839
\(64\) 557.882 1.08961
\(65\) −182.144 −0.347572
\(66\) 302.705 0.564551
\(67\) −698.609 −1.27386 −0.636931 0.770921i \(-0.719796\pi\)
−0.636931 + 0.770921i \(0.719796\pi\)
\(68\) −43.7725 −0.0780616
\(69\) 281.729 0.491539
\(70\) 46.4342 0.0792850
\(71\) 44.6799 0.0746835 0.0373417 0.999303i \(-0.488111\pi\)
0.0373417 + 0.999303i \(0.488111\pi\)
\(72\) −221.574 −0.362676
\(73\) 669.611 1.07359 0.536795 0.843713i \(-0.319635\pi\)
0.536795 + 0.843713i \(0.319635\pi\)
\(74\) −144.185 −0.226503
\(75\) 75.0000 0.115470
\(76\) −207.915 −0.313809
\(77\) −169.000 −0.250121
\(78\) 257.339 0.373563
\(79\) 269.236 0.383435 0.191718 0.981450i \(-0.438594\pi\)
0.191718 + 0.981450i \(0.438594\pi\)
\(80\) 191.647 0.267835
\(81\) 81.0000 0.111111
\(82\) 32.5981 0.0439007
\(83\) 869.721 1.15017 0.575086 0.818093i \(-0.304969\pi\)
0.575086 + 0.818093i \(0.304969\pi\)
\(84\) 29.0503 0.0377339
\(85\) −89.1395 −0.113747
\(86\) 935.739 1.17329
\(87\) 87.0000 0.107211
\(88\) −1054.95 −1.27794
\(89\) −9.85326 −0.0117353 −0.00586766 0.999983i \(-0.501868\pi\)
−0.00586766 + 0.999983i \(0.501868\pi\)
\(90\) −105.963 −0.124105
\(91\) −143.672 −0.165505
\(92\) −230.574 −0.261294
\(93\) 368.347 0.410708
\(94\) 554.089 0.607978
\(95\) −423.405 −0.457267
\(96\) 320.098 0.340311
\(97\) −1524.47 −1.59574 −0.797868 0.602832i \(-0.794039\pi\)
−0.797868 + 0.602832i \(0.794039\pi\)
\(98\) −771.043 −0.794767
\(99\) 385.656 0.391514
\(100\) −61.3820 −0.0613820
\(101\) 517.330 0.509666 0.254833 0.966985i \(-0.417980\pi\)
0.254833 + 0.966985i \(0.417980\pi\)
\(102\) 125.939 0.122253
\(103\) −1447.99 −1.38519 −0.692595 0.721327i \(-0.743533\pi\)
−0.692595 + 0.721327i \(0.743533\pi\)
\(104\) −896.851 −0.845610
\(105\) 59.1588 0.0549839
\(106\) −118.809 −0.108865
\(107\) −332.747 −0.300634 −0.150317 0.988638i \(-0.548029\pi\)
−0.150317 + 0.988638i \(0.548029\pi\)
\(108\) −66.2925 −0.0590648
\(109\) 890.530 0.782544 0.391272 0.920275i \(-0.372035\pi\)
0.391272 + 0.920275i \(0.372035\pi\)
\(110\) −504.508 −0.437299
\(111\) −183.697 −0.157079
\(112\) 151.168 0.127536
\(113\) −936.802 −0.779884 −0.389942 0.920839i \(-0.627505\pi\)
−0.389942 + 0.920839i \(0.627505\pi\)
\(114\) 598.201 0.491462
\(115\) −469.548 −0.380745
\(116\) −71.2031 −0.0569917
\(117\) 327.859 0.259065
\(118\) −1122.53 −0.875736
\(119\) −70.3119 −0.0541637
\(120\) 369.289 0.280928
\(121\) 505.182 0.379551
\(122\) −177.563 −0.131769
\(123\) 41.5312 0.0304450
\(124\) −301.465 −0.218325
\(125\) −125.000 −0.0894427
\(126\) −83.5816 −0.0590956
\(127\) 2450.72 1.71234 0.856168 0.516698i \(-0.172839\pi\)
0.856168 + 0.516698i \(0.172839\pi\)
\(128\) 460.065 0.317690
\(129\) 1192.16 0.813676
\(130\) −428.898 −0.289361
\(131\) 546.681 0.364609 0.182304 0.983242i \(-0.441644\pi\)
0.182304 + 0.983242i \(0.441644\pi\)
\(132\) −315.631 −0.208122
\(133\) −333.975 −0.217739
\(134\) −1645.03 −1.06052
\(135\) −135.000 −0.0860663
\(136\) −438.910 −0.276737
\(137\) −618.064 −0.385436 −0.192718 0.981254i \(-0.561730\pi\)
−0.192718 + 0.981254i \(0.561730\pi\)
\(138\) 663.394 0.409216
\(139\) 1285.51 0.784428 0.392214 0.919874i \(-0.371709\pi\)
0.392214 + 0.919874i \(0.371709\pi\)
\(140\) −48.4171 −0.0292285
\(141\) 705.929 0.421631
\(142\) 105.209 0.0621755
\(143\) 1561.00 0.912848
\(144\) −344.964 −0.199632
\(145\) −145.000 −0.0830455
\(146\) 1576.75 0.893786
\(147\) −982.336 −0.551168
\(148\) 150.342 0.0835005
\(149\) −125.043 −0.0687512 −0.0343756 0.999409i \(-0.510944\pi\)
−0.0343756 + 0.999409i \(0.510944\pi\)
\(150\) 176.604 0.0961312
\(151\) 1968.65 1.06097 0.530485 0.847694i \(-0.322010\pi\)
0.530485 + 0.847694i \(0.322010\pi\)
\(152\) −2084.78 −1.11249
\(153\) 160.451 0.0847824
\(154\) −397.948 −0.208231
\(155\) −613.912 −0.318133
\(156\) −268.328 −0.137715
\(157\) 1125.84 0.572304 0.286152 0.958184i \(-0.407624\pi\)
0.286152 + 0.958184i \(0.407624\pi\)
\(158\) 633.976 0.319218
\(159\) −151.366 −0.0754977
\(160\) −533.496 −0.263604
\(161\) −370.373 −0.181301
\(162\) 190.733 0.0925023
\(163\) 1773.87 0.852394 0.426197 0.904630i \(-0.359853\pi\)
0.426197 + 0.904630i \(0.359853\pi\)
\(164\) −33.9902 −0.0161841
\(165\) −642.760 −0.303266
\(166\) 2047.95 0.957542
\(167\) −1420.91 −0.658403 −0.329201 0.944260i \(-0.606779\pi\)
−0.329201 + 0.944260i \(0.606779\pi\)
\(168\) 291.290 0.133771
\(169\) −869.944 −0.395969
\(170\) −209.899 −0.0946971
\(171\) 762.129 0.340827
\(172\) −975.698 −0.432536
\(173\) −339.659 −0.149270 −0.0746352 0.997211i \(-0.523779\pi\)
−0.0746352 + 0.997211i \(0.523779\pi\)
\(174\) 204.861 0.0892556
\(175\) −98.5981 −0.0425904
\(176\) −1642.44 −0.703430
\(177\) −1430.14 −0.607320
\(178\) −23.2017 −0.00976990
\(179\) −2593.10 −1.08278 −0.541389 0.840772i \(-0.682101\pi\)
−0.541389 + 0.840772i \(0.682101\pi\)
\(180\) 110.488 0.0457514
\(181\) −335.225 −0.137663 −0.0688317 0.997628i \(-0.521927\pi\)
−0.0688317 + 0.997628i \(0.521927\pi\)
\(182\) −338.309 −0.137786
\(183\) −226.221 −0.0913812
\(184\) −2311.99 −0.926316
\(185\) 306.162 0.121673
\(186\) 867.356 0.341923
\(187\) 763.938 0.298742
\(188\) −577.750 −0.224132
\(189\) −106.486 −0.0409826
\(190\) −997.001 −0.380685
\(191\) 927.961 0.351544 0.175772 0.984431i \(-0.443758\pi\)
0.175772 + 0.984431i \(0.443758\pi\)
\(192\) 1673.65 0.629089
\(193\) 2184.47 0.814725 0.407362 0.913267i \(-0.366449\pi\)
0.407362 + 0.913267i \(0.366449\pi\)
\(194\) −3589.70 −1.32848
\(195\) −546.432 −0.200671
\(196\) 803.970 0.292992
\(197\) −3765.55 −1.36185 −0.680924 0.732354i \(-0.738422\pi\)
−0.680924 + 0.732354i \(0.738422\pi\)
\(198\) 908.114 0.325944
\(199\) −60.0727 −0.0213992 −0.0106996 0.999943i \(-0.503406\pi\)
−0.0106996 + 0.999943i \(0.503406\pi\)
\(200\) −615.482 −0.217606
\(201\) −2095.83 −0.735464
\(202\) 1218.17 0.424307
\(203\) −114.374 −0.0395442
\(204\) −131.317 −0.0450689
\(205\) −69.2186 −0.0235826
\(206\) −3409.61 −1.15320
\(207\) 845.187 0.283790
\(208\) −1396.29 −0.465459
\(209\) 3628.64 1.20095
\(210\) 139.303 0.0457752
\(211\) −2276.29 −0.742682 −0.371341 0.928497i \(-0.621102\pi\)
−0.371341 + 0.928497i \(0.621102\pi\)
\(212\) 123.882 0.0401333
\(213\) 134.040 0.0431185
\(214\) −783.527 −0.250284
\(215\) −1986.94 −0.630271
\(216\) −664.721 −0.209391
\(217\) −484.244 −0.151487
\(218\) 2096.95 0.651484
\(219\) 2008.83 0.619838
\(220\) 526.052 0.161211
\(221\) 649.449 0.197677
\(222\) −432.556 −0.130771
\(223\) 3889.04 1.16784 0.583922 0.811809i \(-0.301517\pi\)
0.583922 + 0.811809i \(0.301517\pi\)
\(224\) −420.813 −0.125521
\(225\) 225.000 0.0666667
\(226\) −2205.91 −0.649269
\(227\) −5689.80 −1.66363 −0.831817 0.555050i \(-0.812699\pi\)
−0.831817 + 0.555050i \(0.812699\pi\)
\(228\) −623.746 −0.181178
\(229\) −3253.91 −0.938972 −0.469486 0.882940i \(-0.655561\pi\)
−0.469486 + 0.882940i \(0.655561\pi\)
\(230\) −1105.66 −0.316978
\(231\) −507.000 −0.144407
\(232\) −713.959 −0.202042
\(233\) 1363.72 0.383436 0.191718 0.981450i \(-0.438594\pi\)
0.191718 + 0.981450i \(0.438594\pi\)
\(234\) 772.017 0.215677
\(235\) −1176.55 −0.326594
\(236\) 1170.46 0.322841
\(237\) 807.707 0.221376
\(238\) −165.565 −0.0450924
\(239\) −4788.65 −1.29603 −0.648017 0.761626i \(-0.724402\pi\)
−0.648017 + 0.761626i \(0.724402\pi\)
\(240\) 574.941 0.154634
\(241\) −632.898 −0.169164 −0.0845820 0.996417i \(-0.526956\pi\)
−0.0845820 + 0.996417i \(0.526956\pi\)
\(242\) 1189.56 0.315984
\(243\) 243.000 0.0641500
\(244\) 185.145 0.0485767
\(245\) 1637.23 0.426933
\(246\) 97.7944 0.0253461
\(247\) 3084.82 0.794667
\(248\) −3022.81 −0.773988
\(249\) 2609.16 0.664052
\(250\) −294.340 −0.0744629
\(251\) −7413.17 −1.86420 −0.932101 0.362198i \(-0.882027\pi\)
−0.932101 + 0.362198i \(0.882027\pi\)
\(252\) 87.1509 0.0217857
\(253\) 4024.10 0.999971
\(254\) 5770.78 1.42555
\(255\) −267.418 −0.0656721
\(256\) −3379.73 −0.825130
\(257\) −3920.20 −0.951500 −0.475750 0.879581i \(-0.657823\pi\)
−0.475750 + 0.879581i \(0.657823\pi\)
\(258\) 2807.22 0.677402
\(259\) 241.496 0.0579375
\(260\) 447.214 0.106673
\(261\) 261.000 0.0618984
\(262\) 1287.28 0.303544
\(263\) 2505.55 0.587448 0.293724 0.955890i \(-0.405105\pi\)
0.293724 + 0.955890i \(0.405105\pi\)
\(264\) −3164.86 −0.737817
\(265\) 252.277 0.0584802
\(266\) −786.419 −0.181272
\(267\) −29.5598 −0.00677539
\(268\) 1715.28 0.390960
\(269\) −3707.17 −0.840261 −0.420131 0.907464i \(-0.638016\pi\)
−0.420131 + 0.907464i \(0.638016\pi\)
\(270\) −317.888 −0.0716519
\(271\) 4768.39 1.06885 0.534426 0.845215i \(-0.320528\pi\)
0.534426 + 0.845215i \(0.320528\pi\)
\(272\) −683.332 −0.152328
\(273\) −431.017 −0.0955543
\(274\) −1455.37 −0.320883
\(275\) 1071.27 0.234909
\(276\) −691.723 −0.150858
\(277\) 2908.10 0.630798 0.315399 0.948959i \(-0.397862\pi\)
0.315399 + 0.948959i \(0.397862\pi\)
\(278\) 3027.02 0.653053
\(279\) 1105.04 0.237122
\(280\) −485.483 −0.103618
\(281\) 495.963 0.105291 0.0526454 0.998613i \(-0.483235\pi\)
0.0526454 + 0.998613i \(0.483235\pi\)
\(282\) 1662.27 0.351016
\(283\) 7296.12 1.53254 0.766271 0.642517i \(-0.222110\pi\)
0.766271 + 0.642517i \(0.222110\pi\)
\(284\) −109.702 −0.0229211
\(285\) −1270.21 −0.264003
\(286\) 3675.72 0.759964
\(287\) −54.5986 −0.0112294
\(288\) 960.293 0.196478
\(289\) −4595.17 −0.935308
\(290\) −341.435 −0.0691371
\(291\) −4573.41 −0.921299
\(292\) −1644.08 −0.329495
\(293\) 853.949 0.170267 0.0851335 0.996370i \(-0.472868\pi\)
0.0851335 + 0.996370i \(0.472868\pi\)
\(294\) −2313.13 −0.458859
\(295\) 2383.56 0.470428
\(296\) 1507.50 0.296018
\(297\) 1156.97 0.226041
\(298\) −294.442 −0.0572368
\(299\) 3421.02 0.661680
\(300\) −184.146 −0.0354389
\(301\) −1567.27 −0.300119
\(302\) 4635.63 0.883280
\(303\) 1551.99 0.294256
\(304\) −3245.77 −0.612361
\(305\) 377.035 0.0707836
\(306\) 377.818 0.0705831
\(307\) −694.287 −0.129072 −0.0645359 0.997915i \(-0.520557\pi\)
−0.0645359 + 0.997915i \(0.520557\pi\)
\(308\) 414.942 0.0767646
\(309\) −4343.96 −0.799740
\(310\) −1445.59 −0.264852
\(311\) 2587.58 0.471794 0.235897 0.971778i \(-0.424197\pi\)
0.235897 + 0.971778i \(0.424197\pi\)
\(312\) −2690.55 −0.488213
\(313\) −3467.68 −0.626214 −0.313107 0.949718i \(-0.601370\pi\)
−0.313107 + 0.949718i \(0.601370\pi\)
\(314\) 2651.04 0.476455
\(315\) 177.477 0.0317450
\(316\) −661.048 −0.117680
\(317\) −5158.66 −0.914003 −0.457001 0.889466i \(-0.651077\pi\)
−0.457001 + 0.889466i \(0.651077\pi\)
\(318\) −356.426 −0.0628533
\(319\) 1242.67 0.218107
\(320\) −2789.41 −0.487290
\(321\) −998.241 −0.173571
\(322\) −872.125 −0.150937
\(323\) 1509.68 0.260065
\(324\) −198.878 −0.0341011
\(325\) 910.720 0.155439
\(326\) 4176.97 0.709635
\(327\) 2671.59 0.451802
\(328\) −340.822 −0.0573743
\(329\) −928.043 −0.155516
\(330\) −1513.52 −0.252475
\(331\) 11056.9 1.83609 0.918043 0.396480i \(-0.129768\pi\)
0.918043 + 0.396480i \(0.129768\pi\)
\(332\) −2135.41 −0.352999
\(333\) −551.091 −0.0906895
\(334\) −3345.85 −0.548134
\(335\) 3493.05 0.569688
\(336\) 453.504 0.0736330
\(337\) 6128.18 0.990574 0.495287 0.868729i \(-0.335063\pi\)
0.495287 + 0.868729i \(0.335063\pi\)
\(338\) −2048.48 −0.329652
\(339\) −2810.41 −0.450266
\(340\) 218.862 0.0349102
\(341\) 5261.31 0.835531
\(342\) 1794.60 0.283745
\(343\) 2644.19 0.416247
\(344\) −9783.41 −1.53339
\(345\) −1408.65 −0.219823
\(346\) −799.803 −0.124271
\(347\) −9277.85 −1.43533 −0.717667 0.696386i \(-0.754790\pi\)
−0.717667 + 0.696386i \(0.754790\pi\)
\(348\) −213.609 −0.0329042
\(349\) 4375.41 0.671090 0.335545 0.942024i \(-0.391079\pi\)
0.335545 + 0.942024i \(0.391079\pi\)
\(350\) −232.171 −0.0354573
\(351\) 983.577 0.149571
\(352\) 4572.13 0.692317
\(353\) −3256.89 −0.491067 −0.245534 0.969388i \(-0.578963\pi\)
−0.245534 + 0.969388i \(0.578963\pi\)
\(354\) −3367.58 −0.505606
\(355\) −223.399 −0.0333995
\(356\) 24.1925 0.00360169
\(357\) −210.936 −0.0312714
\(358\) −6106.03 −0.901435
\(359\) −6219.24 −0.914315 −0.457158 0.889386i \(-0.651132\pi\)
−0.457158 + 0.889386i \(0.651132\pi\)
\(360\) 1107.87 0.162194
\(361\) 311.863 0.0454677
\(362\) −789.362 −0.114608
\(363\) 1515.55 0.219134
\(364\) 352.755 0.0507951
\(365\) −3348.06 −0.480124
\(366\) −532.688 −0.0760767
\(367\) 10388.3 1.47756 0.738780 0.673947i \(-0.235402\pi\)
0.738780 + 0.673947i \(0.235402\pi\)
\(368\) −3599.50 −0.509883
\(369\) 124.593 0.0175774
\(370\) 720.926 0.101295
\(371\) 198.992 0.0278468
\(372\) −904.395 −0.126050
\(373\) 13200.4 1.83241 0.916204 0.400712i \(-0.131237\pi\)
0.916204 + 0.400712i \(0.131237\pi\)
\(374\) 1798.86 0.248708
\(375\) −375.000 −0.0516398
\(376\) −5793.15 −0.794572
\(377\) 1056.43 0.144321
\(378\) −250.745 −0.0341189
\(379\) −5927.59 −0.803376 −0.401688 0.915777i \(-0.631576\pi\)
−0.401688 + 0.915777i \(0.631576\pi\)
\(380\) 1039.58 0.140340
\(381\) 7352.17 0.988617
\(382\) 2185.09 0.292667
\(383\) 7463.33 0.995713 0.497857 0.867259i \(-0.334121\pi\)
0.497857 + 0.867259i \(0.334121\pi\)
\(384\) 1380.19 0.183419
\(385\) 844.999 0.111858
\(386\) 5143.83 0.678275
\(387\) 3576.49 0.469776
\(388\) 3743.00 0.489747
\(389\) −409.685 −0.0533981 −0.0266991 0.999644i \(-0.508500\pi\)
−0.0266991 + 0.999644i \(0.508500\pi\)
\(390\) −1286.70 −0.167062
\(391\) 1674.21 0.216544
\(392\) 8061.47 1.03869
\(393\) 1640.04 0.210507
\(394\) −8866.82 −1.13377
\(395\) −1346.18 −0.171477
\(396\) −946.893 −0.120160
\(397\) 1112.31 0.140618 0.0703091 0.997525i \(-0.477601\pi\)
0.0703091 + 0.997525i \(0.477601\pi\)
\(398\) −141.455 −0.0178153
\(399\) −1001.93 −0.125712
\(400\) −958.235 −0.119779
\(401\) 14999.2 1.86789 0.933947 0.357411i \(-0.116340\pi\)
0.933947 + 0.357411i \(0.116340\pi\)
\(402\) −4935.09 −0.612289
\(403\) 4472.81 0.552870
\(404\) −1270.19 −0.156421
\(405\) −405.000 −0.0496904
\(406\) −269.319 −0.0329213
\(407\) −2623.85 −0.319556
\(408\) −1316.73 −0.159774
\(409\) 7595.21 0.918238 0.459119 0.888375i \(-0.348165\pi\)
0.459119 + 0.888375i \(0.348165\pi\)
\(410\) −162.991 −0.0196330
\(411\) −1854.19 −0.222532
\(412\) 3555.21 0.425128
\(413\) 1880.12 0.224006
\(414\) 1990.18 0.236261
\(415\) −4348.61 −0.514373
\(416\) 3886.92 0.458106
\(417\) 3856.53 0.452890
\(418\) 8544.44 0.999814
\(419\) −6501.56 −0.758047 −0.379024 0.925387i \(-0.623740\pi\)
−0.379024 + 0.925387i \(0.623740\pi\)
\(420\) −145.251 −0.0168751
\(421\) −4381.60 −0.507235 −0.253617 0.967305i \(-0.581620\pi\)
−0.253617 + 0.967305i \(0.581620\pi\)
\(422\) −5360.02 −0.618298
\(423\) 2117.79 0.243429
\(424\) 1242.18 0.142277
\(425\) 445.697 0.0508694
\(426\) 315.626 0.0358971
\(427\) 297.400 0.0337053
\(428\) 816.986 0.0922676
\(429\) 4683.00 0.527033
\(430\) −4678.69 −0.524713
\(431\) −698.269 −0.0780382 −0.0390191 0.999238i \(-0.512423\pi\)
−0.0390191 + 0.999238i \(0.512423\pi\)
\(432\) −1034.89 −0.115258
\(433\) −6899.14 −0.765707 −0.382854 0.923809i \(-0.625059\pi\)
−0.382854 + 0.923809i \(0.625059\pi\)
\(434\) −1140.26 −0.126116
\(435\) −435.000 −0.0479463
\(436\) −2186.50 −0.240170
\(437\) 7952.36 0.870510
\(438\) 4730.25 0.516027
\(439\) −12502.8 −1.35929 −0.679644 0.733542i \(-0.737866\pi\)
−0.679644 + 0.733542i \(0.737866\pi\)
\(440\) 5274.77 0.571511
\(441\) −2947.01 −0.318217
\(442\) 1529.27 0.164570
\(443\) 7684.41 0.824148 0.412074 0.911150i \(-0.364805\pi\)
0.412074 + 0.911150i \(0.364805\pi\)
\(444\) 451.027 0.0482090
\(445\) 49.2663 0.00524820
\(446\) 9157.61 0.972255
\(447\) −375.129 −0.0396935
\(448\) −2200.24 −0.232035
\(449\) 6931.63 0.728561 0.364280 0.931289i \(-0.381315\pi\)
0.364280 + 0.931289i \(0.381315\pi\)
\(450\) 529.813 0.0555014
\(451\) 593.213 0.0619364
\(452\) 2300.11 0.239354
\(453\) 5905.95 0.612552
\(454\) −13397.9 −1.38501
\(455\) 718.362 0.0740161
\(456\) −6254.35 −0.642296
\(457\) −669.132 −0.0684916 −0.0342458 0.999413i \(-0.510903\pi\)
−0.0342458 + 0.999413i \(0.510903\pi\)
\(458\) −7662.06 −0.781713
\(459\) 481.353 0.0489491
\(460\) 1152.87 0.116854
\(461\) 1369.33 0.138343 0.0691715 0.997605i \(-0.477964\pi\)
0.0691715 + 0.997605i \(0.477964\pi\)
\(462\) −1193.84 −0.120222
\(463\) −8213.65 −0.824451 −0.412225 0.911082i \(-0.635248\pi\)
−0.412225 + 0.911082i \(0.635248\pi\)
\(464\) −1111.55 −0.111212
\(465\) −1841.74 −0.183674
\(466\) 3211.19 0.319218
\(467\) 19762.1 1.95821 0.979103 0.203366i \(-0.0651880\pi\)
0.979103 + 0.203366i \(0.0651880\pi\)
\(468\) −804.985 −0.0795095
\(469\) 2755.26 0.271271
\(470\) −2770.44 −0.271896
\(471\) 3377.52 0.330420
\(472\) 11736.3 1.14451
\(473\) 17028.3 1.65532
\(474\) 1901.93 0.184300
\(475\) 2117.02 0.204496
\(476\) 172.635 0.0166234
\(477\) −454.099 −0.0435886
\(478\) −11276.0 −1.07898
\(479\) 1437.29 0.137101 0.0685506 0.997648i \(-0.478163\pi\)
0.0685506 + 0.997648i \(0.478163\pi\)
\(480\) −1600.49 −0.152192
\(481\) −2230.62 −0.211450
\(482\) −1490.30 −0.140833
\(483\) −1111.12 −0.104674
\(484\) −1240.36 −0.116488
\(485\) 7622.35 0.713635
\(486\) 572.198 0.0534062
\(487\) 12731.4 1.18463 0.592313 0.805708i \(-0.298215\pi\)
0.592313 + 0.805708i \(0.298215\pi\)
\(488\) 1856.47 0.172210
\(489\) 5321.61 0.492130
\(490\) 3855.22 0.355431
\(491\) −15590.5 −1.43298 −0.716488 0.697600i \(-0.754251\pi\)
−0.716488 + 0.697600i \(0.754251\pi\)
\(492\) −101.971 −0.00934387
\(493\) 517.009 0.0472311
\(494\) 7263.91 0.661576
\(495\) −1928.28 −0.175090
\(496\) −4706.17 −0.426035
\(497\) −176.214 −0.0159040
\(498\) 6143.86 0.552837
\(499\) −7309.53 −0.655750 −0.327875 0.944721i \(-0.606333\pi\)
−0.327875 + 0.944721i \(0.606333\pi\)
\(500\) 306.910 0.0274508
\(501\) −4262.73 −0.380129
\(502\) −17456.0 −1.55199
\(503\) 11671.8 1.03463 0.517315 0.855795i \(-0.326932\pi\)
0.517315 + 0.855795i \(0.326932\pi\)
\(504\) 873.869 0.0772326
\(505\) −2586.65 −0.227930
\(506\) 9475.63 0.832496
\(507\) −2609.83 −0.228613
\(508\) −6017.21 −0.525532
\(509\) −9056.40 −0.788640 −0.394320 0.918973i \(-0.629020\pi\)
−0.394320 + 0.918973i \(0.629020\pi\)
\(510\) −629.697 −0.0546734
\(511\) −2640.90 −0.228623
\(512\) −11638.9 −1.00463
\(513\) 2286.39 0.196777
\(514\) −9230.99 −0.792143
\(515\) 7239.94 0.619476
\(516\) −2927.09 −0.249725
\(517\) 10083.2 0.857752
\(518\) 568.655 0.0482341
\(519\) −1018.98 −0.0861813
\(520\) 4484.25 0.378168
\(521\) −13061.2 −1.09831 −0.549156 0.835720i \(-0.685051\pi\)
−0.549156 + 0.835720i \(0.685051\pi\)
\(522\) 614.583 0.0515317
\(523\) −12711.3 −1.06277 −0.531383 0.847132i \(-0.678328\pi\)
−0.531383 + 0.847132i \(0.678328\pi\)
\(524\) −1342.25 −0.111902
\(525\) −295.794 −0.0245896
\(526\) 5899.88 0.489063
\(527\) 2188.95 0.180934
\(528\) −4927.32 −0.406125
\(529\) −3347.97 −0.275168
\(530\) 594.043 0.0486860
\(531\) −4290.41 −0.350636
\(532\) 820.002 0.0668263
\(533\) 504.310 0.0409833
\(534\) −69.6051 −0.00564065
\(535\) 1663.73 0.134448
\(536\) 17199.3 1.38600
\(537\) −7779.30 −0.625143
\(538\) −8729.36 −0.699535
\(539\) −14031.3 −1.12128
\(540\) 331.463 0.0264146
\(541\) −16338.9 −1.29845 −0.649227 0.760595i \(-0.724908\pi\)
−0.649227 + 0.760595i \(0.724908\pi\)
\(542\) 11228.2 0.889841
\(543\) −1005.67 −0.0794800
\(544\) 1902.22 0.149921
\(545\) −4452.65 −0.349964
\(546\) −1014.93 −0.0795509
\(547\) −9583.07 −0.749072 −0.374536 0.927212i \(-0.622198\pi\)
−0.374536 + 0.927212i \(0.622198\pi\)
\(548\) 1517.52 0.118294
\(549\) −678.664 −0.0527589
\(550\) 2522.54 0.195566
\(551\) 2455.75 0.189870
\(552\) −6935.97 −0.534809
\(553\) −1061.84 −0.0816532
\(554\) 6847.78 0.525152
\(555\) 918.485 0.0702478
\(556\) −3156.28 −0.240749
\(557\) −1288.54 −0.0980198 −0.0490099 0.998798i \(-0.515607\pi\)
−0.0490099 + 0.998798i \(0.515607\pi\)
\(558\) 2602.07 0.197409
\(559\) 14476.4 1.09532
\(560\) −755.841 −0.0570359
\(561\) 2291.81 0.172479
\(562\) 1167.86 0.0876567
\(563\) −13901.3 −1.04062 −0.520312 0.853976i \(-0.674184\pi\)
−0.520312 + 0.853976i \(0.674184\pi\)
\(564\) −1733.25 −0.129403
\(565\) 4684.01 0.348775
\(566\) 17180.4 1.27587
\(567\) −319.458 −0.0236613
\(568\) −1099.99 −0.0812578
\(569\) 12631.6 0.930654 0.465327 0.885139i \(-0.345937\pi\)
0.465327 + 0.885139i \(0.345937\pi\)
\(570\) −2991.00 −0.219788
\(571\) 836.256 0.0612894 0.0306447 0.999530i \(-0.490244\pi\)
0.0306447 + 0.999530i \(0.490244\pi\)
\(572\) −3832.69 −0.280162
\(573\) 2783.88 0.202964
\(574\) −128.564 −0.00934874
\(575\) 2347.74 0.170274
\(576\) 5020.94 0.363205
\(577\) 55.7407 0.00402169 0.00201085 0.999998i \(-0.499360\pi\)
0.00201085 + 0.999998i \(0.499360\pi\)
\(578\) −10820.3 −0.778663
\(579\) 6553.42 0.470382
\(580\) 356.015 0.0254875
\(581\) −3430.11 −0.244931
\(582\) −10769.1 −0.767000
\(583\) −2162.05 −0.153590
\(584\) −16485.4 −1.16810
\(585\) −1639.30 −0.115857
\(586\) 2010.81 0.141751
\(587\) −24044.3 −1.69065 −0.845327 0.534250i \(-0.820594\pi\)
−0.845327 + 0.534250i \(0.820594\pi\)
\(588\) 2411.91 0.169159
\(589\) 10397.3 0.727359
\(590\) 5612.63 0.391641
\(591\) −11296.6 −0.786264
\(592\) 2347.00 0.162941
\(593\) −15066.0 −1.04332 −0.521659 0.853154i \(-0.674687\pi\)
−0.521659 + 0.853154i \(0.674687\pi\)
\(594\) 2724.34 0.188184
\(595\) 351.559 0.0242227
\(596\) 307.016 0.0211004
\(597\) −180.218 −0.0123548
\(598\) 8055.55 0.550862
\(599\) 8354.77 0.569894 0.284947 0.958543i \(-0.408024\pi\)
0.284947 + 0.958543i \(0.408024\pi\)
\(600\) −1846.45 −0.125635
\(601\) 5059.15 0.343372 0.171686 0.985152i \(-0.445078\pi\)
0.171686 + 0.985152i \(0.445078\pi\)
\(602\) −3690.48 −0.249855
\(603\) −6287.48 −0.424620
\(604\) −4833.59 −0.325622
\(605\) −2525.91 −0.169740
\(606\) 3654.51 0.244974
\(607\) 15350.8 1.02647 0.513236 0.858248i \(-0.328447\pi\)
0.513236 + 0.858248i \(0.328447\pi\)
\(608\) 9035.39 0.602687
\(609\) −343.121 −0.0228308
\(610\) 887.814 0.0589288
\(611\) 8572.04 0.567574
\(612\) −393.952 −0.0260205
\(613\) −17964.0 −1.18362 −0.591811 0.806077i \(-0.701587\pi\)
−0.591811 + 0.806077i \(0.701587\pi\)
\(614\) −1634.85 −0.107455
\(615\) −207.656 −0.0136154
\(616\) 4160.66 0.272139
\(617\) 14791.0 0.965093 0.482546 0.875870i \(-0.339712\pi\)
0.482546 + 0.875870i \(0.339712\pi\)
\(618\) −10228.8 −0.665799
\(619\) −12870.4 −0.835708 −0.417854 0.908514i \(-0.637218\pi\)
−0.417854 + 0.908514i \(0.637218\pi\)
\(620\) 1507.32 0.0976381
\(621\) 2535.56 0.163846
\(622\) 6093.03 0.392779
\(623\) 38.8605 0.00249906
\(624\) −4188.88 −0.268733
\(625\) 625.000 0.0400000
\(626\) −8165.43 −0.521336
\(627\) 10885.9 0.693368
\(628\) −2764.25 −0.175646
\(629\) −1091.64 −0.0691998
\(630\) 417.908 0.0264283
\(631\) −16299.2 −1.02831 −0.514154 0.857698i \(-0.671894\pi\)
−0.514154 + 0.857698i \(0.671894\pi\)
\(632\) −6628.39 −0.417189
\(633\) −6828.86 −0.428788
\(634\) −12147.2 −0.760926
\(635\) −12253.6 −0.765780
\(636\) 371.646 0.0231710
\(637\) −11928.4 −0.741950
\(638\) 2926.14 0.181579
\(639\) 402.119 0.0248945
\(640\) −2300.32 −0.142075
\(641\) −9154.93 −0.564115 −0.282058 0.959397i \(-0.591017\pi\)
−0.282058 + 0.959397i \(0.591017\pi\)
\(642\) −2350.58 −0.144502
\(643\) 7509.43 0.460564 0.230282 0.973124i \(-0.426035\pi\)
0.230282 + 0.973124i \(0.426035\pi\)
\(644\) 909.368 0.0556430
\(645\) −5960.82 −0.363887
\(646\) 3554.89 0.216510
\(647\) −19945.4 −1.21195 −0.605977 0.795482i \(-0.707218\pi\)
−0.605977 + 0.795482i \(0.707218\pi\)
\(648\) −1994.16 −0.120892
\(649\) −20427.5 −1.23551
\(650\) 2144.49 0.129406
\(651\) −1452.73 −0.0874610
\(652\) −4355.34 −0.261608
\(653\) −8028.91 −0.481157 −0.240579 0.970630i \(-0.577337\pi\)
−0.240579 + 0.970630i \(0.577337\pi\)
\(654\) 6290.86 0.376134
\(655\) −2733.40 −0.163058
\(656\) −530.621 −0.0315812
\(657\) 6026.50 0.357863
\(658\) −2185.28 −0.129470
\(659\) −2943.00 −0.173965 −0.0869827 0.996210i \(-0.527722\pi\)
−0.0869827 + 0.996210i \(0.527722\pi\)
\(660\) 1578.16 0.0930752
\(661\) −30286.3 −1.78215 −0.891073 0.453859i \(-0.850047\pi\)
−0.891073 + 0.453859i \(0.850047\pi\)
\(662\) 26036.0 1.52858
\(663\) 1948.35 0.114129
\(664\) −21411.9 −1.25142
\(665\) 1669.88 0.0973759
\(666\) −1297.67 −0.0755009
\(667\) 2723.38 0.158096
\(668\) 3488.73 0.202070
\(669\) 11667.1 0.674256
\(670\) 8225.16 0.474277
\(671\) −3231.25 −0.185903
\(672\) −1262.44 −0.0724698
\(673\) 2201.07 0.126070 0.0630348 0.998011i \(-0.479922\pi\)
0.0630348 + 0.998011i \(0.479922\pi\)
\(674\) 14430.2 0.824673
\(675\) 675.000 0.0384900
\(676\) 2135.95 0.121527
\(677\) 22392.9 1.27124 0.635619 0.772003i \(-0.280745\pi\)
0.635619 + 0.772003i \(0.280745\pi\)
\(678\) −6617.73 −0.374856
\(679\) 6012.39 0.339815
\(680\) 2194.55 0.123761
\(681\) −17069.4 −0.960500
\(682\) 12388.9 0.695596
\(683\) −31770.8 −1.77991 −0.889953 0.456053i \(-0.849263\pi\)
−0.889953 + 0.456053i \(0.849263\pi\)
\(684\) −1871.24 −0.104603
\(685\) 3090.32 0.172372
\(686\) 6226.33 0.346534
\(687\) −9761.73 −0.542115
\(688\) −15231.6 −0.844042
\(689\) −1838.03 −0.101630
\(690\) −3316.97 −0.183007
\(691\) −19995.8 −1.10084 −0.550418 0.834889i \(-0.685532\pi\)
−0.550418 + 0.834889i \(0.685532\pi\)
\(692\) 833.957 0.0458126
\(693\) −1521.00 −0.0833737
\(694\) −21846.8 −1.19495
\(695\) −6427.55 −0.350807
\(696\) −2141.88 −0.116649
\(697\) 246.804 0.0134123
\(698\) 10302.9 0.558696
\(699\) 4091.17 0.221377
\(700\) 242.086 0.0130714
\(701\) 5940.97 0.320096 0.160048 0.987109i \(-0.448835\pi\)
0.160048 + 0.987109i \(0.448835\pi\)
\(702\) 2316.05 0.124521
\(703\) −5185.21 −0.278185
\(704\) 23905.6 1.27980
\(705\) −3529.64 −0.188559
\(706\) −7669.08 −0.408824
\(707\) −2040.31 −0.108534
\(708\) 3511.38 0.186393
\(709\) −17955.3 −0.951094 −0.475547 0.879690i \(-0.657750\pi\)
−0.475547 + 0.879690i \(0.657750\pi\)
\(710\) −526.044 −0.0278057
\(711\) 2423.12 0.127812
\(712\) 242.580 0.0127684
\(713\) 11530.5 0.605637
\(714\) −496.695 −0.0260341
\(715\) −7804.99 −0.408238
\(716\) 6366.78 0.332315
\(717\) −14366.0 −0.748266
\(718\) −14644.6 −0.761186
\(719\) −22809.5 −1.18310 −0.591551 0.806268i \(-0.701484\pi\)
−0.591551 + 0.806268i \(0.701484\pi\)
\(720\) 1724.82 0.0892782
\(721\) 5710.75 0.294979
\(722\) 734.351 0.0378528
\(723\) −1898.69 −0.0976669
\(724\) 823.070 0.0422502
\(725\) 725.000 0.0371391
\(726\) 3568.69 0.182433
\(727\) −28267.1 −1.44205 −0.721023 0.692911i \(-0.756328\pi\)
−0.721023 + 0.692911i \(0.756328\pi\)
\(728\) 3537.11 0.180074
\(729\) 729.000 0.0370370
\(730\) −7883.75 −0.399713
\(731\) 7084.59 0.358458
\(732\) 555.436 0.0280458
\(733\) 18679.6 0.941264 0.470632 0.882330i \(-0.344026\pi\)
0.470632 + 0.882330i \(0.344026\pi\)
\(734\) 24461.6 1.23010
\(735\) 4911.68 0.246490
\(736\) 10020.1 0.501828
\(737\) −29935.9 −1.49620
\(738\) 293.383 0.0146336
\(739\) −8577.65 −0.426974 −0.213487 0.976946i \(-0.568482\pi\)
−0.213487 + 0.976946i \(0.568482\pi\)
\(740\) −751.712 −0.0373426
\(741\) 9254.47 0.458801
\(742\) 468.572 0.0231830
\(743\) 12442.0 0.614337 0.307169 0.951655i \(-0.400618\pi\)
0.307169 + 0.951655i \(0.400618\pi\)
\(744\) −9068.44 −0.446862
\(745\) 625.216 0.0307465
\(746\) 31083.2 1.52552
\(747\) 7827.49 0.383391
\(748\) −1875.68 −0.0916867
\(749\) 1312.33 0.0640206
\(750\) −883.021 −0.0429912
\(751\) −28327.2 −1.37640 −0.688198 0.725523i \(-0.741598\pi\)
−0.688198 + 0.725523i \(0.741598\pi\)
\(752\) −9019.27 −0.437366
\(753\) −22239.5 −1.07630
\(754\) 2487.61 0.120150
\(755\) −9843.26 −0.474480
\(756\) 261.453 0.0125780
\(757\) 28073.3 1.34787 0.673937 0.738789i \(-0.264602\pi\)
0.673937 + 0.738789i \(0.264602\pi\)
\(758\) −13957.8 −0.668827
\(759\) 12072.3 0.577334
\(760\) 10423.9 0.497520
\(761\) −12715.7 −0.605708 −0.302854 0.953037i \(-0.597939\pi\)
−0.302854 + 0.953037i \(0.597939\pi\)
\(762\) 17312.3 0.823044
\(763\) −3512.18 −0.166644
\(764\) −2278.40 −0.107892
\(765\) −802.255 −0.0379158
\(766\) 17574.1 0.828952
\(767\) −17366.0 −0.817538
\(768\) −10139.2 −0.476389
\(769\) −2730.97 −0.128064 −0.0640320 0.997948i \(-0.520396\pi\)
−0.0640320 + 0.997948i \(0.520396\pi\)
\(770\) 1989.74 0.0931237
\(771\) −11760.6 −0.549349
\(772\) −5363.49 −0.250047
\(773\) 21816.6 1.01512 0.507561 0.861616i \(-0.330547\pi\)
0.507561 + 0.861616i \(0.330547\pi\)
\(774\) 8421.65 0.391098
\(775\) 3069.56 0.142273
\(776\) 37531.3 1.73621
\(777\) 724.487 0.0334502
\(778\) −964.696 −0.0444550
\(779\) 1172.30 0.0539178
\(780\) 1341.64 0.0615878
\(781\) 1914.56 0.0877189
\(782\) 3942.31 0.180277
\(783\) 783.000 0.0357371
\(784\) 12550.8 0.571738
\(785\) −5629.20 −0.255942
\(786\) 3861.85 0.175251
\(787\) 16740.5 0.758239 0.379119 0.925348i \(-0.376227\pi\)
0.379119 + 0.925348i \(0.376227\pi\)
\(788\) 9245.47 0.417965
\(789\) 7516.65 0.339163
\(790\) −3169.88 −0.142758
\(791\) 3694.67 0.166078
\(792\) −9494.58 −0.425979
\(793\) −2746.99 −0.123012
\(794\) 2619.19 0.117068
\(795\) 756.831 0.0337636
\(796\) 147.495 0.00656762
\(797\) 3731.13 0.165826 0.0829131 0.996557i \(-0.473578\pi\)
0.0829131 + 0.996557i \(0.473578\pi\)
\(798\) −2359.26 −0.104658
\(799\) 4195.07 0.185746
\(800\) 2667.48 0.117887
\(801\) −88.6794 −0.00391177
\(802\) 35319.0 1.55506
\(803\) 28693.3 1.26098
\(804\) 5145.84 0.225721
\(805\) 1851.86 0.0810802
\(806\) 10532.2 0.460276
\(807\) −11121.5 −0.485125
\(808\) −12736.3 −0.554531
\(809\) −1318.79 −0.0573129 −0.0286564 0.999589i \(-0.509123\pi\)
−0.0286564 + 0.999589i \(0.509123\pi\)
\(810\) −953.663 −0.0413683
\(811\) −6890.79 −0.298358 −0.149179 0.988810i \(-0.547663\pi\)
−0.149179 + 0.988810i \(0.547663\pi\)
\(812\) 280.819 0.0121365
\(813\) 14305.2 0.617102
\(814\) −6178.44 −0.266037
\(815\) −8869.35 −0.381202
\(816\) −2050.00 −0.0879464
\(817\) 33651.2 1.44101
\(818\) 17884.6 0.764452
\(819\) −1293.05 −0.0551683
\(820\) 169.951 0.00723773
\(821\) 25055.7 1.06510 0.532552 0.846397i \(-0.321233\pi\)
0.532552 + 0.846397i \(0.321233\pi\)
\(822\) −4366.11 −0.185262
\(823\) −28476.2 −1.20610 −0.603049 0.797704i \(-0.706048\pi\)
−0.603049 + 0.797704i \(0.706048\pi\)
\(824\) 35648.4 1.50713
\(825\) 3213.80 0.135625
\(826\) 4427.15 0.186490
\(827\) −6404.82 −0.269308 −0.134654 0.990893i \(-0.542992\pi\)
−0.134654 + 0.990893i \(0.542992\pi\)
\(828\) −2075.17 −0.0870980
\(829\) 42500.5 1.78058 0.890292 0.455390i \(-0.150500\pi\)
0.890292 + 0.455390i \(0.150500\pi\)
\(830\) −10239.8 −0.428226
\(831\) 8724.31 0.364191
\(832\) 20323.0 0.846841
\(833\) −5837.66 −0.242813
\(834\) 9081.06 0.377040
\(835\) 7104.55 0.294447
\(836\) −8909.31 −0.368583
\(837\) 3315.12 0.136903
\(838\) −15309.4 −0.631090
\(839\) 7738.21 0.318418 0.159209 0.987245i \(-0.449106\pi\)
0.159209 + 0.987245i \(0.449106\pi\)
\(840\) −1456.45 −0.0598241
\(841\) 841.000 0.0344828
\(842\) −10317.4 −0.422283
\(843\) 1487.89 0.0607896
\(844\) 5588.91 0.227936
\(845\) 4349.72 0.177083
\(846\) 4986.80 0.202659
\(847\) −1992.40 −0.0808260
\(848\) 1933.93 0.0783152
\(849\) 21888.4 0.884814
\(850\) 1049.49 0.0423498
\(851\) −5750.31 −0.231631
\(852\) −329.105 −0.0132335
\(853\) 31504.1 1.26457 0.632286 0.774735i \(-0.282117\pi\)
0.632286 + 0.774735i \(0.282117\pi\)
\(854\) 700.294 0.0280604
\(855\) −3810.64 −0.152422
\(856\) 8191.99 0.327099
\(857\) −33621.2 −1.34011 −0.670057 0.742310i \(-0.733730\pi\)
−0.670057 + 0.742310i \(0.733730\pi\)
\(858\) 11027.2 0.438766
\(859\) 35655.1 1.41622 0.708111 0.706101i \(-0.249547\pi\)
0.708111 + 0.706101i \(0.249547\pi\)
\(860\) 4878.49 0.193436
\(861\) −163.796 −0.00648332
\(862\) −1644.23 −0.0649684
\(863\) −20500.2 −0.808615 −0.404307 0.914623i \(-0.632487\pi\)
−0.404307 + 0.914623i \(0.632487\pi\)
\(864\) 2880.88 0.113437
\(865\) 1698.29 0.0667558
\(866\) −16245.6 −0.637467
\(867\) −13785.5 −0.540000
\(868\) 1188.95 0.0464928
\(869\) 11536.9 0.450361
\(870\) −1024.30 −0.0399163
\(871\) −25449.5 −0.990038
\(872\) −21924.2 −0.851431
\(873\) −13720.2 −0.531912
\(874\) 18725.6 0.724718
\(875\) 492.990 0.0190470
\(876\) −4932.25 −0.190234
\(877\) −15240.7 −0.586822 −0.293411 0.955986i \(-0.594790\pi\)
−0.293411 + 0.955986i \(0.594790\pi\)
\(878\) −29440.7 −1.13164
\(879\) 2561.85 0.0983036
\(880\) 8212.20 0.314583
\(881\) −17749.3 −0.678761 −0.339381 0.940649i \(-0.610217\pi\)
−0.339381 + 0.940649i \(0.610217\pi\)
\(882\) −6939.39 −0.264922
\(883\) −2290.27 −0.0872861 −0.0436431 0.999047i \(-0.513896\pi\)
−0.0436431 + 0.999047i \(0.513896\pi\)
\(884\) −1594.58 −0.0606690
\(885\) 7150.69 0.271602
\(886\) 18094.7 0.686120
\(887\) −45630.9 −1.72732 −0.863662 0.504072i \(-0.831835\pi\)
−0.863662 + 0.504072i \(0.831835\pi\)
\(888\) 4522.49 0.170906
\(889\) −9665.47 −0.364645
\(890\) 116.009 0.00436923
\(891\) 3470.91 0.130505
\(892\) −9548.68 −0.358423
\(893\) 19926.2 0.746703
\(894\) −883.326 −0.0330457
\(895\) 12965.5 0.484233
\(896\) −1814.46 −0.0676527
\(897\) 10263.0 0.382021
\(898\) 16322.1 0.606542
\(899\) 3560.69 0.132097
\(900\) −552.438 −0.0204607
\(901\) −899.514 −0.0332599
\(902\) 1396.85 0.0515633
\(903\) −4701.80 −0.173274
\(904\) 23063.4 0.848537
\(905\) 1676.12 0.0615649
\(906\) 13906.9 0.509962
\(907\) 38959.7 1.42628 0.713140 0.701022i \(-0.247272\pi\)
0.713140 + 0.701022i \(0.247272\pi\)
\(908\) 13970.0 0.510586
\(909\) 4655.97 0.169889
\(910\) 1691.54 0.0616199
\(911\) 34221.7 1.24458 0.622291 0.782786i \(-0.286202\pi\)
0.622291 + 0.782786i \(0.286202\pi\)
\(912\) −9737.31 −0.353547
\(913\) 37268.1 1.35093
\(914\) −1575.62 −0.0570207
\(915\) 1131.11 0.0408669
\(916\) 7989.26 0.288180
\(917\) −2156.07 −0.0776441
\(918\) 1133.45 0.0407511
\(919\) 519.522 0.0186479 0.00932396 0.999957i \(-0.497032\pi\)
0.00932396 + 0.999957i \(0.497032\pi\)
\(920\) 11559.9 0.414261
\(921\) −2082.86 −0.0745197
\(922\) 3224.40 0.115173
\(923\) 1627.63 0.0580436
\(924\) 1244.82 0.0443201
\(925\) −1530.81 −0.0544137
\(926\) −19340.9 −0.686372
\(927\) −13031.9 −0.461730
\(928\) 3094.28 0.109455
\(929\) 36926.5 1.30411 0.652056 0.758171i \(-0.273907\pi\)
0.652056 + 0.758171i \(0.273907\pi\)
\(930\) −4336.78 −0.152912
\(931\) −27728.4 −0.976113
\(932\) −3348.32 −0.117680
\(933\) 7762.73 0.272391
\(934\) 46534.3 1.63025
\(935\) −3819.69 −0.133601
\(936\) −8071.66 −0.281870
\(937\) 24916.0 0.868697 0.434348 0.900745i \(-0.356979\pi\)
0.434348 + 0.900745i \(0.356979\pi\)
\(938\) 6487.88 0.225839
\(939\) −10403.0 −0.361545
\(940\) 2888.75 0.100235
\(941\) −41585.1 −1.44063 −0.720317 0.693645i \(-0.756004\pi\)
−0.720317 + 0.693645i \(0.756004\pi\)
\(942\) 7953.12 0.275081
\(943\) 1300.06 0.0448948
\(944\) 18272.1 0.629985
\(945\) 532.430 0.0183280
\(946\) 40097.1 1.37808
\(947\) 173.666 0.00595923 0.00297962 0.999996i \(-0.499052\pi\)
0.00297962 + 0.999996i \(0.499052\pi\)
\(948\) −1983.15 −0.0679426
\(949\) 24393.1 0.834388
\(950\) 4985.01 0.170247
\(951\) −15476.0 −0.527700
\(952\) 1731.03 0.0589317
\(953\) −22394.5 −0.761207 −0.380603 0.924738i \(-0.624284\pi\)
−0.380603 + 0.924738i \(0.624284\pi\)
\(954\) −1069.28 −0.0362884
\(955\) −4639.80 −0.157215
\(956\) 11757.5 0.397766
\(957\) 3728.01 0.125924
\(958\) 3384.42 0.114140
\(959\) 2437.60 0.0820793
\(960\) −8368.23 −0.281337
\(961\) −14715.5 −0.493957
\(962\) −5252.49 −0.176037
\(963\) −2994.72 −0.100211
\(964\) 1553.94 0.0519181
\(965\) −10922.4 −0.364356
\(966\) −2616.38 −0.0871434
\(967\) 35240.6 1.17194 0.585968 0.810334i \(-0.300715\pi\)
0.585968 + 0.810334i \(0.300715\pi\)
\(968\) −12437.2 −0.412962
\(969\) 4529.05 0.150149
\(970\) 17948.5 0.594116
\(971\) −23385.4 −0.772888 −0.386444 0.922313i \(-0.626297\pi\)
−0.386444 + 0.922313i \(0.626297\pi\)
\(972\) −596.633 −0.0196883
\(973\) −5069.95 −0.167045
\(974\) 29978.8 0.986226
\(975\) 2732.16 0.0897427
\(976\) 2890.31 0.0947915
\(977\) 37442.2 1.22608 0.613041 0.790051i \(-0.289946\pi\)
0.613041 + 0.790051i \(0.289946\pi\)
\(978\) 12530.9 0.409708
\(979\) −422.219 −0.0137836
\(980\) −4019.85 −0.131030
\(981\) 8014.77 0.260848
\(982\) −36711.4 −1.19298
\(983\) −35213.6 −1.14256 −0.571282 0.820754i \(-0.693554\pi\)
−0.571282 + 0.820754i \(0.693554\pi\)
\(984\) −1022.47 −0.0331251
\(985\) 18827.7 0.609037
\(986\) 1217.41 0.0393208
\(987\) −2784.13 −0.0897870
\(988\) −7574.10 −0.243891
\(989\) 37318.6 1.19986
\(990\) −4540.57 −0.145766
\(991\) −43883.0 −1.40665 −0.703324 0.710869i \(-0.748302\pi\)
−0.703324 + 0.710869i \(0.748302\pi\)
\(992\) 13100.8 0.419305
\(993\) 33170.8 1.06007
\(994\) −414.935 −0.0132404
\(995\) 300.363 0.00957001
\(996\) −6406.22 −0.203804
\(997\) −8968.04 −0.284875 −0.142438 0.989804i \(-0.545494\pi\)
−0.142438 + 0.989804i \(0.545494\pi\)
\(998\) −17211.9 −0.545925
\(999\) −1653.27 −0.0523596
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.4.a.h.1.4 6
3.2 odd 2 1305.4.a.h.1.3 6
5.4 even 2 2175.4.a.k.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.h.1.4 6 1.1 even 1 trivial
1305.4.a.h.1.3 6 3.2 odd 2
2175.4.a.k.1.3 6 5.4 even 2