Properties

Label 435.4.a.h.1.1
Level $435$
Weight $4$
Character 435.1
Self dual yes
Analytic conductor $25.666$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 49x^{4} + 27x^{3} + 692x^{2} - 82x - 2588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-5.05047\) of defining polynomial
Character \(\chi\) \(=\) 435.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.05047 q^{2} +3.00000 q^{3} +17.5072 q^{4} -5.00000 q^{5} -15.1514 q^{6} +19.3889 q^{7} -48.0160 q^{8} +9.00000 q^{9} +25.2523 q^{10} +6.81451 q^{11} +52.5217 q^{12} +36.9473 q^{13} -97.9229 q^{14} -15.0000 q^{15} +102.445 q^{16} -71.5529 q^{17} -45.4542 q^{18} +88.3064 q^{19} -87.5361 q^{20} +58.1666 q^{21} -34.4164 q^{22} +185.418 q^{23} -144.048 q^{24} +25.0000 q^{25} -186.601 q^{26} +27.0000 q^{27} +339.446 q^{28} +29.0000 q^{29} +75.7570 q^{30} -120.393 q^{31} -133.269 q^{32} +20.4435 q^{33} +361.376 q^{34} -96.9444 q^{35} +157.565 q^{36} -117.351 q^{37} -445.989 q^{38} +110.842 q^{39} +240.080 q^{40} -229.591 q^{41} -293.769 q^{42} +66.8319 q^{43} +119.303 q^{44} -45.0000 q^{45} -936.448 q^{46} -42.0170 q^{47} +307.336 q^{48} +32.9286 q^{49} -126.262 q^{50} -214.659 q^{51} +646.845 q^{52} +9.42394 q^{53} -136.363 q^{54} -34.0725 q^{55} -930.976 q^{56} +264.919 q^{57} -146.464 q^{58} -232.484 q^{59} -262.608 q^{60} -546.541 q^{61} +608.042 q^{62} +174.500 q^{63} -146.492 q^{64} -184.737 q^{65} -103.249 q^{66} +953.049 q^{67} -1252.69 q^{68} +556.254 q^{69} +489.615 q^{70} +429.898 q^{71} -432.144 q^{72} +554.903 q^{73} +592.675 q^{74} +75.0000 q^{75} +1546.00 q^{76} +132.126 q^{77} -559.804 q^{78} +965.168 q^{79} -512.226 q^{80} +81.0000 q^{81} +1159.54 q^{82} +625.186 q^{83} +1018.34 q^{84} +357.765 q^{85} -337.532 q^{86} +87.0000 q^{87} -327.205 q^{88} -271.169 q^{89} +227.271 q^{90} +716.367 q^{91} +3246.16 q^{92} -361.180 q^{93} +212.206 q^{94} -441.532 q^{95} -399.806 q^{96} +1167.66 q^{97} -166.305 q^{98} +61.3305 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 18 q^{3} + 51 q^{4} - 30 q^{5} + 3 q^{6} + 47 q^{7} + 51 q^{8} + 54 q^{9} - 5 q^{10} + 81 q^{11} + 153 q^{12} + 169 q^{13} - 30 q^{14} - 90 q^{15} + 131 q^{16} - q^{17} + 9 q^{18} + 116 q^{19}+ \cdots + 729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.05047 −1.78561 −0.892805 0.450443i \(-0.851266\pi\)
−0.892805 + 0.450443i \(0.851266\pi\)
\(3\) 3.00000 0.577350
\(4\) 17.5072 2.18840
\(5\) −5.00000 −0.447214
\(6\) −15.1514 −1.03092
\(7\) 19.3889 1.04690 0.523451 0.852056i \(-0.324644\pi\)
0.523451 + 0.852056i \(0.324644\pi\)
\(8\) −48.0160 −2.12203
\(9\) 9.00000 0.333333
\(10\) 25.2523 0.798549
\(11\) 6.81451 0.186786 0.0933932 0.995629i \(-0.470229\pi\)
0.0933932 + 0.995629i \(0.470229\pi\)
\(12\) 52.5217 1.26348
\(13\) 36.9473 0.788257 0.394128 0.919055i \(-0.371046\pi\)
0.394128 + 0.919055i \(0.371046\pi\)
\(14\) −97.9229 −1.86936
\(15\) −15.0000 −0.258199
\(16\) 102.445 1.60071
\(17\) −71.5529 −1.02083 −0.510416 0.859928i \(-0.670508\pi\)
−0.510416 + 0.859928i \(0.670508\pi\)
\(18\) −45.4542 −0.595203
\(19\) 88.3064 1.06626 0.533129 0.846034i \(-0.321016\pi\)
0.533129 + 0.846034i \(0.321016\pi\)
\(20\) −87.5361 −0.978684
\(21\) 58.1666 0.604429
\(22\) −34.4164 −0.333528
\(23\) 185.418 1.68097 0.840486 0.541834i \(-0.182270\pi\)
0.840486 + 0.541834i \(0.182270\pi\)
\(24\) −144.048 −1.22515
\(25\) 25.0000 0.200000
\(26\) −186.601 −1.40752
\(27\) 27.0000 0.192450
\(28\) 339.446 2.29104
\(29\) 29.0000 0.185695
\(30\) 75.7570 0.461043
\(31\) −120.393 −0.697524 −0.348762 0.937211i \(-0.613398\pi\)
−0.348762 + 0.937211i \(0.613398\pi\)
\(32\) −133.269 −0.736213
\(33\) 20.4435 0.107841
\(34\) 361.376 1.82281
\(35\) −96.9444 −0.468188
\(36\) 157.565 0.729468
\(37\) −117.351 −0.521414 −0.260707 0.965418i \(-0.583956\pi\)
−0.260707 + 0.965418i \(0.583956\pi\)
\(38\) −445.989 −1.90392
\(39\) 110.842 0.455100
\(40\) 240.080 0.948999
\(41\) −229.591 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(42\) −293.769 −1.07927
\(43\) 66.8319 0.237018 0.118509 0.992953i \(-0.462189\pi\)
0.118509 + 0.992953i \(0.462189\pi\)
\(44\) 119.303 0.408764
\(45\) −45.0000 −0.149071
\(46\) −936.448 −3.00156
\(47\) −42.0170 −0.130400 −0.0652001 0.997872i \(-0.520769\pi\)
−0.0652001 + 0.997872i \(0.520769\pi\)
\(48\) 307.336 0.924168
\(49\) 32.9286 0.0960018
\(50\) −126.262 −0.357122
\(51\) −214.659 −0.589377
\(52\) 646.845 1.72502
\(53\) 9.42394 0.0244241 0.0122121 0.999925i \(-0.496113\pi\)
0.0122121 + 0.999925i \(0.496113\pi\)
\(54\) −136.363 −0.343641
\(55\) −34.0725 −0.0835334
\(56\) −930.976 −2.22155
\(57\) 264.919 0.615604
\(58\) −146.464 −0.331579
\(59\) −232.484 −0.512996 −0.256498 0.966545i \(-0.582569\pi\)
−0.256498 + 0.966545i \(0.582569\pi\)
\(60\) −262.608 −0.565043
\(61\) −546.541 −1.14717 −0.573586 0.819146i \(-0.694448\pi\)
−0.573586 + 0.819146i \(0.694448\pi\)
\(62\) 608.042 1.24551
\(63\) 174.500 0.348967
\(64\) −146.492 −0.286118
\(65\) −184.737 −0.352519
\(66\) −103.249 −0.192562
\(67\) 953.049 1.73781 0.868907 0.494976i \(-0.164823\pi\)
0.868907 + 0.494976i \(0.164823\pi\)
\(68\) −1252.69 −2.23399
\(69\) 556.254 0.970509
\(70\) 489.615 0.836002
\(71\) 429.898 0.718584 0.359292 0.933225i \(-0.383018\pi\)
0.359292 + 0.933225i \(0.383018\pi\)
\(72\) −432.144 −0.707342
\(73\) 554.903 0.889678 0.444839 0.895611i \(-0.353261\pi\)
0.444839 + 0.895611i \(0.353261\pi\)
\(74\) 592.675 0.931041
\(75\) 75.0000 0.115470
\(76\) 1546.00 2.33340
\(77\) 132.126 0.195547
\(78\) −559.804 −0.812632
\(79\) 965.168 1.37456 0.687278 0.726395i \(-0.258805\pi\)
0.687278 + 0.726395i \(0.258805\pi\)
\(80\) −512.226 −0.715858
\(81\) 81.0000 0.111111
\(82\) 1159.54 1.56158
\(83\) 625.186 0.826784 0.413392 0.910553i \(-0.364344\pi\)
0.413392 + 0.910553i \(0.364344\pi\)
\(84\) 1018.34 1.32273
\(85\) 357.765 0.456530
\(86\) −337.532 −0.423222
\(87\) 87.0000 0.107211
\(88\) −327.205 −0.396366
\(89\) −271.169 −0.322964 −0.161482 0.986876i \(-0.551627\pi\)
−0.161482 + 0.986876i \(0.551627\pi\)
\(90\) 227.271 0.266183
\(91\) 716.367 0.825227
\(92\) 3246.16 3.67864
\(93\) −361.180 −0.402716
\(94\) 212.206 0.232844
\(95\) −441.532 −0.476845
\(96\) −399.806 −0.425053
\(97\) 1167.66 1.22225 0.611125 0.791534i \(-0.290717\pi\)
0.611125 + 0.791534i \(0.290717\pi\)
\(98\) −166.305 −0.171422
\(99\) 61.3305 0.0622621
\(100\) 437.681 0.437681
\(101\) 1004.86 0.989977 0.494989 0.868899i \(-0.335172\pi\)
0.494989 + 0.868899i \(0.335172\pi\)
\(102\) 1084.13 1.05240
\(103\) 704.225 0.673683 0.336842 0.941561i \(-0.390641\pi\)
0.336842 + 0.941561i \(0.390641\pi\)
\(104\) −1774.06 −1.67270
\(105\) −290.833 −0.270309
\(106\) −47.5953 −0.0436119
\(107\) 1116.49 1.00874 0.504371 0.863487i \(-0.331724\pi\)
0.504371 + 0.863487i \(0.331724\pi\)
\(108\) 472.695 0.421158
\(109\) −1306.48 −1.14806 −0.574029 0.818835i \(-0.694621\pi\)
−0.574029 + 0.818835i \(0.694621\pi\)
\(110\) 172.082 0.149158
\(111\) −352.052 −0.301038
\(112\) 1986.30 1.67578
\(113\) 256.295 0.213364 0.106682 0.994293i \(-0.465977\pi\)
0.106682 + 0.994293i \(0.465977\pi\)
\(114\) −1337.97 −1.09923
\(115\) −927.090 −0.751753
\(116\) 507.710 0.406376
\(117\) 332.526 0.262752
\(118\) 1174.15 0.916011
\(119\) −1387.33 −1.06871
\(120\) 720.239 0.547905
\(121\) −1284.56 −0.965111
\(122\) 2760.29 2.04840
\(123\) −688.773 −0.504915
\(124\) −2107.75 −1.52646
\(125\) −125.000 −0.0894427
\(126\) −881.306 −0.623119
\(127\) −1201.30 −0.839355 −0.419677 0.907673i \(-0.637857\pi\)
−0.419677 + 0.907673i \(0.637857\pi\)
\(128\) 1806.01 1.24711
\(129\) 200.496 0.136842
\(130\) 933.006 0.629462
\(131\) 1049.57 0.700008 0.350004 0.936748i \(-0.386180\pi\)
0.350004 + 0.936748i \(0.386180\pi\)
\(132\) 357.909 0.236000
\(133\) 1712.16 1.11627
\(134\) −4813.34 −3.10306
\(135\) −135.000 −0.0860663
\(136\) 3435.68 2.16623
\(137\) 2881.21 1.79678 0.898388 0.439202i \(-0.144739\pi\)
0.898388 + 0.439202i \(0.144739\pi\)
\(138\) −2809.34 −1.73295
\(139\) 2584.43 1.57704 0.788521 0.615008i \(-0.210847\pi\)
0.788521 + 0.615008i \(0.210847\pi\)
\(140\) −1697.23 −1.02459
\(141\) −126.051 −0.0752866
\(142\) −2171.18 −1.28311
\(143\) 251.778 0.147236
\(144\) 922.007 0.533569
\(145\) −145.000 −0.0830455
\(146\) −2802.52 −1.58862
\(147\) 98.7858 0.0554267
\(148\) −2054.48 −1.14106
\(149\) −1449.23 −0.796813 −0.398407 0.917209i \(-0.630437\pi\)
−0.398407 + 0.917209i \(0.630437\pi\)
\(150\) −378.785 −0.206184
\(151\) 2760.46 1.48770 0.743851 0.668345i \(-0.232997\pi\)
0.743851 + 0.668345i \(0.232997\pi\)
\(152\) −4240.12 −2.26262
\(153\) −643.976 −0.340277
\(154\) −667.296 −0.349171
\(155\) 601.966 0.311942
\(156\) 1940.54 0.995943
\(157\) 766.465 0.389621 0.194811 0.980841i \(-0.437591\pi\)
0.194811 + 0.980841i \(0.437591\pi\)
\(158\) −4874.55 −2.45442
\(159\) 28.2718 0.0141013
\(160\) 666.344 0.329244
\(161\) 3595.05 1.75981
\(162\) −409.088 −0.198401
\(163\) −1871.11 −0.899119 −0.449560 0.893250i \(-0.648419\pi\)
−0.449560 + 0.893250i \(0.648419\pi\)
\(164\) −4019.50 −1.91384
\(165\) −102.218 −0.0482280
\(166\) −3157.48 −1.47631
\(167\) 2343.62 1.08596 0.542978 0.839747i \(-0.317297\pi\)
0.542978 + 0.839747i \(0.317297\pi\)
\(168\) −2792.93 −1.28261
\(169\) −831.896 −0.378651
\(170\) −1806.88 −0.815184
\(171\) 794.758 0.355419
\(172\) 1170.04 0.518691
\(173\) −1485.73 −0.652935 −0.326468 0.945208i \(-0.605858\pi\)
−0.326468 + 0.945208i \(0.605858\pi\)
\(174\) −439.391 −0.191438
\(175\) 484.722 0.209380
\(176\) 698.114 0.298990
\(177\) −697.451 −0.296179
\(178\) 1369.53 0.576689
\(179\) 71.4418 0.0298314 0.0149157 0.999889i \(-0.495252\pi\)
0.0149157 + 0.999889i \(0.495252\pi\)
\(180\) −787.825 −0.326228
\(181\) −1696.31 −0.696607 −0.348304 0.937382i \(-0.613242\pi\)
−0.348304 + 0.937382i \(0.613242\pi\)
\(182\) −3617.99 −1.47353
\(183\) −1639.62 −0.662320
\(184\) −8903.03 −3.56706
\(185\) 586.753 0.233183
\(186\) 1824.13 0.719093
\(187\) −487.598 −0.190677
\(188\) −735.601 −0.285368
\(189\) 523.500 0.201476
\(190\) 2229.94 0.851459
\(191\) −3657.80 −1.38570 −0.692852 0.721080i \(-0.743646\pi\)
−0.692852 + 0.721080i \(0.743646\pi\)
\(192\) −439.477 −0.165190
\(193\) −3156.73 −1.17734 −0.588669 0.808374i \(-0.700348\pi\)
−0.588669 + 0.808374i \(0.700348\pi\)
\(194\) −5897.25 −2.18246
\(195\) −554.210 −0.203527
\(196\) 576.489 0.210091
\(197\) −969.523 −0.350638 −0.175319 0.984512i \(-0.556096\pi\)
−0.175319 + 0.984512i \(0.556096\pi\)
\(198\) −309.748 −0.111176
\(199\) 5423.02 1.93180 0.965898 0.258921i \(-0.0833670\pi\)
0.965898 + 0.258921i \(0.0833670\pi\)
\(200\) −1200.40 −0.424405
\(201\) 2859.15 1.00333
\(202\) −5075.03 −1.76771
\(203\) 562.277 0.194405
\(204\) −3758.08 −1.28980
\(205\) 1147.95 0.391106
\(206\) −3556.67 −1.20294
\(207\) 1668.76 0.560324
\(208\) 3785.08 1.26177
\(209\) 601.765 0.199162
\(210\) 1468.84 0.482666
\(211\) −2848.51 −0.929382 −0.464691 0.885473i \(-0.653835\pi\)
−0.464691 + 0.885473i \(0.653835\pi\)
\(212\) 164.987 0.0534498
\(213\) 1289.69 0.414875
\(214\) −5638.81 −1.80122
\(215\) −334.160 −0.105998
\(216\) −1296.43 −0.408384
\(217\) −2334.29 −0.730239
\(218\) 6598.35 2.04999
\(219\) 1664.71 0.513656
\(220\) −596.516 −0.182805
\(221\) −2643.69 −0.804678
\(222\) 1778.02 0.537537
\(223\) 502.488 0.150893 0.0754465 0.997150i \(-0.475962\pi\)
0.0754465 + 0.997150i \(0.475962\pi\)
\(224\) −2583.93 −0.770742
\(225\) 225.000 0.0666667
\(226\) −1294.41 −0.380985
\(227\) 1336.83 0.390876 0.195438 0.980716i \(-0.437387\pi\)
0.195438 + 0.980716i \(0.437387\pi\)
\(228\) 4638.00 1.34719
\(229\) −1131.26 −0.326445 −0.163223 0.986589i \(-0.552189\pi\)
−0.163223 + 0.986589i \(0.552189\pi\)
\(230\) 4682.24 1.34234
\(231\) 396.377 0.112899
\(232\) −1392.46 −0.394050
\(233\) 1271.63 0.357541 0.178770 0.983891i \(-0.442788\pi\)
0.178770 + 0.983891i \(0.442788\pi\)
\(234\) −1679.41 −0.469173
\(235\) 210.085 0.0583168
\(236\) −4070.14 −1.12264
\(237\) 2895.50 0.793600
\(238\) 7006.67 1.90830
\(239\) 1507.40 0.407973 0.203987 0.978974i \(-0.434610\pi\)
0.203987 + 0.978974i \(0.434610\pi\)
\(240\) −1536.68 −0.413301
\(241\) 4251.32 1.13631 0.568156 0.822921i \(-0.307657\pi\)
0.568156 + 0.822921i \(0.307657\pi\)
\(242\) 6487.64 1.72331
\(243\) 243.000 0.0641500
\(244\) −9568.42 −2.51047
\(245\) −164.643 −0.0429333
\(246\) 3478.63 0.901582
\(247\) 3262.69 0.840485
\(248\) 5780.79 1.48016
\(249\) 1875.56 0.477344
\(250\) 631.309 0.159710
\(251\) 7219.41 1.81548 0.907739 0.419535i \(-0.137807\pi\)
0.907739 + 0.419535i \(0.137807\pi\)
\(252\) 3055.01 0.763681
\(253\) 1263.53 0.313983
\(254\) 6067.12 1.49876
\(255\) 1073.29 0.263578
\(256\) −7949.23 −1.94073
\(257\) 3436.04 0.833986 0.416993 0.908910i \(-0.363084\pi\)
0.416993 + 0.908910i \(0.363084\pi\)
\(258\) −1012.60 −0.244347
\(259\) −2275.29 −0.545868
\(260\) −3234.23 −0.771454
\(261\) 261.000 0.0618984
\(262\) −5300.80 −1.24994
\(263\) 1494.14 0.350314 0.175157 0.984540i \(-0.443957\pi\)
0.175157 + 0.984540i \(0.443957\pi\)
\(264\) −981.615 −0.228842
\(265\) −47.1197 −0.0109228
\(266\) −8647.22 −1.99322
\(267\) −813.506 −0.186464
\(268\) 16685.2 3.80304
\(269\) −1692.06 −0.383520 −0.191760 0.981442i \(-0.561419\pi\)
−0.191760 + 0.981442i \(0.561419\pi\)
\(270\) 681.813 0.153681
\(271\) 3147.75 0.705581 0.352790 0.935702i \(-0.385233\pi\)
0.352790 + 0.935702i \(0.385233\pi\)
\(272\) −7330.26 −1.63405
\(273\) 2149.10 0.476445
\(274\) −14551.5 −3.20834
\(275\) 170.363 0.0373573
\(276\) 9738.47 2.12387
\(277\) −3873.16 −0.840129 −0.420065 0.907494i \(-0.637993\pi\)
−0.420065 + 0.907494i \(0.637993\pi\)
\(278\) −13052.6 −2.81598
\(279\) −1083.54 −0.232508
\(280\) 4654.88 0.993508
\(281\) −4951.42 −1.05116 −0.525582 0.850743i \(-0.676152\pi\)
−0.525582 + 0.850743i \(0.676152\pi\)
\(282\) 636.617 0.134433
\(283\) −4895.30 −1.02825 −0.514126 0.857715i \(-0.671884\pi\)
−0.514126 + 0.857715i \(0.671884\pi\)
\(284\) 7526.32 1.57255
\(285\) −1324.60 −0.275306
\(286\) −1271.60 −0.262906
\(287\) −4451.51 −0.915555
\(288\) −1199.42 −0.245404
\(289\) 206.822 0.0420969
\(290\) 732.318 0.148287
\(291\) 3502.99 0.705667
\(292\) 9714.82 1.94697
\(293\) −8978.98 −1.79030 −0.895150 0.445766i \(-0.852932\pi\)
−0.895150 + 0.445766i \(0.852932\pi\)
\(294\) −498.915 −0.0989704
\(295\) 1162.42 0.229419
\(296\) 5634.70 1.10645
\(297\) 183.992 0.0359471
\(298\) 7319.27 1.42280
\(299\) 6850.70 1.32504
\(300\) 1313.04 0.252695
\(301\) 1295.80 0.248134
\(302\) −13941.6 −2.65646
\(303\) 3014.59 0.571564
\(304\) 9046.57 1.70676
\(305\) 2732.71 0.513031
\(306\) 3252.38 0.607602
\(307\) 7282.96 1.35394 0.676972 0.736009i \(-0.263292\pi\)
0.676972 + 0.736009i \(0.263292\pi\)
\(308\) 2313.15 0.427936
\(309\) 2112.68 0.388951
\(310\) −3040.21 −0.557007
\(311\) −2424.98 −0.442149 −0.221074 0.975257i \(-0.570956\pi\)
−0.221074 + 0.975257i \(0.570956\pi\)
\(312\) −5322.18 −0.965735
\(313\) −6511.66 −1.17591 −0.587957 0.808892i \(-0.700068\pi\)
−0.587957 + 0.808892i \(0.700068\pi\)
\(314\) −3871.01 −0.695712
\(315\) −872.500 −0.156063
\(316\) 16897.4 3.00808
\(317\) 6634.14 1.17543 0.587713 0.809069i \(-0.300028\pi\)
0.587713 + 0.809069i \(0.300028\pi\)
\(318\) −142.786 −0.0251794
\(319\) 197.621 0.0346854
\(320\) 732.462 0.127956
\(321\) 3349.48 0.582398
\(322\) −18156.7 −3.14234
\(323\) −6318.58 −1.08847
\(324\) 1418.09 0.243156
\(325\) 923.683 0.157651
\(326\) 9449.97 1.60548
\(327\) −3919.45 −0.662832
\(328\) 11024.0 1.85579
\(329\) −814.663 −0.136516
\(330\) 516.247 0.0861165
\(331\) −6727.98 −1.11723 −0.558615 0.829427i \(-0.688667\pi\)
−0.558615 + 0.829427i \(0.688667\pi\)
\(332\) 10945.3 1.80934
\(333\) −1056.15 −0.173805
\(334\) −11836.4 −1.93909
\(335\) −4765.25 −0.777174
\(336\) 5958.89 0.967513
\(337\) −7683.33 −1.24195 −0.620976 0.783830i \(-0.713264\pi\)
−0.620976 + 0.783830i \(0.713264\pi\)
\(338\) 4201.46 0.676123
\(339\) 768.884 0.123186
\(340\) 6263.47 0.999071
\(341\) −820.420 −0.130288
\(342\) −4013.90 −0.634640
\(343\) −6011.94 −0.946397
\(344\) −3209.00 −0.502958
\(345\) −2781.27 −0.434025
\(346\) 7503.62 1.16589
\(347\) 1401.55 0.216827 0.108413 0.994106i \(-0.465423\pi\)
0.108413 + 0.994106i \(0.465423\pi\)
\(348\) 1523.13 0.234621
\(349\) −10253.9 −1.57272 −0.786362 0.617766i \(-0.788038\pi\)
−0.786362 + 0.617766i \(0.788038\pi\)
\(350\) −2448.07 −0.373871
\(351\) 997.577 0.151700
\(352\) −908.160 −0.137515
\(353\) −3309.99 −0.499074 −0.249537 0.968365i \(-0.580278\pi\)
−0.249537 + 0.968365i \(0.580278\pi\)
\(354\) 3522.45 0.528859
\(355\) −2149.49 −0.321361
\(356\) −4747.41 −0.706777
\(357\) −4161.99 −0.617020
\(358\) −360.815 −0.0532672
\(359\) 10427.4 1.53297 0.766483 0.642264i \(-0.222005\pi\)
0.766483 + 0.642264i \(0.222005\pi\)
\(360\) 2160.72 0.316333
\(361\) 939.026 0.136904
\(362\) 8567.17 1.24387
\(363\) −3853.69 −0.557207
\(364\) 12541.6 1.80593
\(365\) −2774.52 −0.397876
\(366\) 8280.87 1.18264
\(367\) −6667.61 −0.948356 −0.474178 0.880429i \(-0.657255\pi\)
−0.474178 + 0.880429i \(0.657255\pi\)
\(368\) 18995.2 2.69074
\(369\) −2066.32 −0.291513
\(370\) −2963.37 −0.416374
\(371\) 182.720 0.0255696
\(372\) −6323.25 −0.881305
\(373\) 6100.55 0.846849 0.423424 0.905931i \(-0.360828\pi\)
0.423424 + 0.905931i \(0.360828\pi\)
\(374\) 2462.60 0.340476
\(375\) −375.000 −0.0516398
\(376\) 2017.49 0.276713
\(377\) 1071.47 0.146376
\(378\) −2643.92 −0.359758
\(379\) 6291.88 0.852750 0.426375 0.904546i \(-0.359790\pi\)
0.426375 + 0.904546i \(0.359790\pi\)
\(380\) −7730.00 −1.04353
\(381\) −3603.90 −0.484602
\(382\) 18473.6 2.47433
\(383\) 10349.3 1.38074 0.690369 0.723457i \(-0.257448\pi\)
0.690369 + 0.723457i \(0.257448\pi\)
\(384\) 5418.02 0.720018
\(385\) −660.628 −0.0874512
\(386\) 15943.0 2.10227
\(387\) 601.487 0.0790060
\(388\) 20442.6 2.67478
\(389\) −2361.08 −0.307742 −0.153871 0.988091i \(-0.549174\pi\)
−0.153871 + 0.988091i \(0.549174\pi\)
\(390\) 2799.02 0.363420
\(391\) −13267.2 −1.71599
\(392\) −1581.10 −0.203718
\(393\) 3148.70 0.404150
\(394\) 4896.55 0.626103
\(395\) −4825.84 −0.614720
\(396\) 1073.73 0.136255
\(397\) 6963.12 0.880274 0.440137 0.897931i \(-0.354930\pi\)
0.440137 + 0.897931i \(0.354930\pi\)
\(398\) −27388.8 −3.44944
\(399\) 5136.49 0.644476
\(400\) 2561.13 0.320141
\(401\) −1419.32 −0.176752 −0.0883759 0.996087i \(-0.528168\pi\)
−0.0883759 + 0.996087i \(0.528168\pi\)
\(402\) −14440.0 −1.79155
\(403\) −4448.20 −0.549828
\(404\) 17592.4 2.16647
\(405\) −405.000 −0.0496904
\(406\) −2839.76 −0.347131
\(407\) −799.686 −0.0973930
\(408\) 10307.0 1.25067
\(409\) −5199.93 −0.628655 −0.314327 0.949315i \(-0.601779\pi\)
−0.314327 + 0.949315i \(0.601779\pi\)
\(410\) −5797.71 −0.698362
\(411\) 8643.63 1.03737
\(412\) 12329.0 1.47429
\(413\) −4507.60 −0.537056
\(414\) −8428.03 −1.00052
\(415\) −3125.93 −0.369749
\(416\) −4923.92 −0.580325
\(417\) 7753.30 0.910506
\(418\) −3039.19 −0.355626
\(419\) 4476.06 0.521885 0.260943 0.965354i \(-0.415967\pi\)
0.260943 + 0.965354i \(0.415967\pi\)
\(420\) −5091.68 −0.591544
\(421\) 2924.54 0.338558 0.169279 0.985568i \(-0.445856\pi\)
0.169279 + 0.985568i \(0.445856\pi\)
\(422\) 14386.3 1.65951
\(423\) −378.153 −0.0434667
\(424\) −452.499 −0.0518286
\(425\) −1788.82 −0.204166
\(426\) −6513.55 −0.740804
\(427\) −10596.8 −1.20097
\(428\) 19546.7 2.20754
\(429\) 755.333 0.0850066
\(430\) 1687.66 0.189270
\(431\) 1488.98 0.166408 0.0832039 0.996533i \(-0.473485\pi\)
0.0832039 + 0.996533i \(0.473485\pi\)
\(432\) 2766.02 0.308056
\(433\) −8411.84 −0.933597 −0.466798 0.884364i \(-0.654593\pi\)
−0.466798 + 0.884364i \(0.654593\pi\)
\(434\) 11789.3 1.30392
\(435\) −435.000 −0.0479463
\(436\) −22872.9 −2.51242
\(437\) 16373.6 1.79235
\(438\) −8407.56 −0.917189
\(439\) −10584.7 −1.15076 −0.575378 0.817887i \(-0.695145\pi\)
−0.575378 + 0.817887i \(0.695145\pi\)
\(440\) 1636.02 0.177260
\(441\) 296.358 0.0320006
\(442\) 13351.9 1.43684
\(443\) −10335.6 −1.10848 −0.554242 0.832356i \(-0.686992\pi\)
−0.554242 + 0.832356i \(0.686992\pi\)
\(444\) −6163.45 −0.658793
\(445\) 1355.84 0.144434
\(446\) −2537.80 −0.269436
\(447\) −4347.68 −0.460040
\(448\) −2840.32 −0.299537
\(449\) 16626.7 1.74758 0.873788 0.486306i \(-0.161656\pi\)
0.873788 + 0.486306i \(0.161656\pi\)
\(450\) −1136.36 −0.119041
\(451\) −1564.55 −0.163352
\(452\) 4487.01 0.466927
\(453\) 8281.38 0.858925
\(454\) −6751.63 −0.697951
\(455\) −3581.83 −0.369053
\(456\) −12720.4 −1.30633
\(457\) −9008.26 −0.922076 −0.461038 0.887380i \(-0.652523\pi\)
−0.461038 + 0.887380i \(0.652523\pi\)
\(458\) 5713.41 0.582904
\(459\) −1931.93 −0.196459
\(460\) −16230.8 −1.64514
\(461\) −8097.37 −0.818074 −0.409037 0.912518i \(-0.634135\pi\)
−0.409037 + 0.912518i \(0.634135\pi\)
\(462\) −2001.89 −0.201594
\(463\) 4897.89 0.491629 0.245815 0.969317i \(-0.420945\pi\)
0.245815 + 0.969317i \(0.420945\pi\)
\(464\) 2970.91 0.297244
\(465\) 1805.90 0.180100
\(466\) −6422.31 −0.638429
\(467\) −3331.22 −0.330087 −0.165043 0.986286i \(-0.552776\pi\)
−0.165043 + 0.986286i \(0.552776\pi\)
\(468\) 5821.61 0.575008
\(469\) 18478.6 1.81932
\(470\) −1061.03 −0.104131
\(471\) 2299.39 0.224948
\(472\) 11162.9 1.08859
\(473\) 455.426 0.0442717
\(474\) −14623.7 −1.41706
\(475\) 2207.66 0.213251
\(476\) −24288.3 −2.33877
\(477\) 84.8154 0.00814137
\(478\) −7613.08 −0.728482
\(479\) −13606.3 −1.29788 −0.648942 0.760838i \(-0.724788\pi\)
−0.648942 + 0.760838i \(0.724788\pi\)
\(480\) 1999.03 0.190089
\(481\) −4335.79 −0.411008
\(482\) −21471.1 −2.02901
\(483\) 10785.1 1.01603
\(484\) −22489.1 −2.11205
\(485\) −5838.32 −0.546607
\(486\) −1227.26 −0.114547
\(487\) −15460.9 −1.43861 −0.719304 0.694696i \(-0.755539\pi\)
−0.719304 + 0.694696i \(0.755539\pi\)
\(488\) 26242.7 2.43433
\(489\) −5613.32 −0.519107
\(490\) 831.525 0.0766621
\(491\) −19016.4 −1.74785 −0.873927 0.486057i \(-0.838435\pi\)
−0.873927 + 0.486057i \(0.838435\pi\)
\(492\) −12058.5 −1.10496
\(493\) −2075.03 −0.189564
\(494\) −16478.1 −1.50078
\(495\) −306.653 −0.0278445
\(496\) −12333.7 −1.11653
\(497\) 8335.23 0.752286
\(498\) −9472.44 −0.852350
\(499\) −13675.0 −1.22681 −0.613406 0.789768i \(-0.710201\pi\)
−0.613406 + 0.789768i \(0.710201\pi\)
\(500\) −2188.40 −0.195737
\(501\) 7030.85 0.626977
\(502\) −36461.4 −3.24174
\(503\) −1456.45 −0.129105 −0.0645525 0.997914i \(-0.520562\pi\)
−0.0645525 + 0.997914i \(0.520562\pi\)
\(504\) −8378.78 −0.740517
\(505\) −5024.32 −0.442731
\(506\) −6381.43 −0.560651
\(507\) −2495.69 −0.218614
\(508\) −21031.4 −1.83685
\(509\) 15219.7 1.32535 0.662674 0.748908i \(-0.269422\pi\)
0.662674 + 0.748908i \(0.269422\pi\)
\(510\) −5420.64 −0.470647
\(511\) 10758.9 0.931405
\(512\) 25699.3 2.21828
\(513\) 2384.27 0.205201
\(514\) −17353.6 −1.48917
\(515\) −3521.13 −0.301280
\(516\) 3510.12 0.299466
\(517\) −286.325 −0.0243570
\(518\) 11491.3 0.974708
\(519\) −4457.18 −0.376972
\(520\) 8870.30 0.748055
\(521\) 19988.9 1.68086 0.840432 0.541917i \(-0.182301\pi\)
0.840432 + 0.541917i \(0.182301\pi\)
\(522\) −1318.17 −0.110526
\(523\) 9728.36 0.813368 0.406684 0.913569i \(-0.366685\pi\)
0.406684 + 0.913569i \(0.366685\pi\)
\(524\) 18375.0 1.53190
\(525\) 1454.17 0.120886
\(526\) −7546.11 −0.625525
\(527\) 8614.48 0.712055
\(528\) 2094.34 0.172622
\(529\) 22212.9 1.82566
\(530\) 237.976 0.0195038
\(531\) −2092.35 −0.170999
\(532\) 29975.2 2.44284
\(533\) −8482.77 −0.689361
\(534\) 4108.59 0.332951
\(535\) −5582.47 −0.451123
\(536\) −45761.6 −3.68768
\(537\) 214.325 0.0172231
\(538\) 8545.70 0.684817
\(539\) 224.392 0.0179318
\(540\) −2363.48 −0.188348
\(541\) 15290.2 1.21511 0.607556 0.794277i \(-0.292150\pi\)
0.607556 + 0.794277i \(0.292150\pi\)
\(542\) −15897.6 −1.25989
\(543\) −5088.94 −0.402186
\(544\) 9535.77 0.751549
\(545\) 6532.42 0.513428
\(546\) −10854.0 −0.850745
\(547\) −9101.20 −0.711406 −0.355703 0.934599i \(-0.615759\pi\)
−0.355703 + 0.934599i \(0.615759\pi\)
\(548\) 50442.0 3.93207
\(549\) −4918.87 −0.382390
\(550\) −860.411 −0.0667055
\(551\) 2560.89 0.197999
\(552\) −26709.1 −2.05945
\(553\) 18713.5 1.43902
\(554\) 19561.3 1.50014
\(555\) 1760.26 0.134628
\(556\) 45246.3 3.45120
\(557\) −3752.41 −0.285448 −0.142724 0.989763i \(-0.545586\pi\)
−0.142724 + 0.989763i \(0.545586\pi\)
\(558\) 5472.38 0.415169
\(559\) 2469.26 0.186831
\(560\) −9931.49 −0.749432
\(561\) −1462.79 −0.110088
\(562\) 25007.0 1.87697
\(563\) 18097.1 1.35471 0.677356 0.735656i \(-0.263126\pi\)
0.677356 + 0.735656i \(0.263126\pi\)
\(564\) −2206.80 −0.164757
\(565\) −1281.47 −0.0954194
\(566\) 24723.6 1.83606
\(567\) 1570.50 0.116322
\(568\) −20641.9 −1.52485
\(569\) −14101.9 −1.03898 −0.519492 0.854475i \(-0.673879\pi\)
−0.519492 + 0.854475i \(0.673879\pi\)
\(570\) 6689.83 0.491590
\(571\) 2874.72 0.210689 0.105344 0.994436i \(-0.466406\pi\)
0.105344 + 0.994436i \(0.466406\pi\)
\(572\) 4407.93 0.322211
\(573\) −10973.4 −0.800036
\(574\) 22482.2 1.63482
\(575\) 4635.45 0.336194
\(576\) −1318.43 −0.0953727
\(577\) 11659.8 0.841256 0.420628 0.907233i \(-0.361810\pi\)
0.420628 + 0.907233i \(0.361810\pi\)
\(578\) −1044.55 −0.0751686
\(579\) −9470.18 −0.679736
\(580\) −2538.55 −0.181737
\(581\) 12121.6 0.865561
\(582\) −17691.7 −1.26005
\(583\) 64.2195 0.00456209
\(584\) −26644.2 −1.88792
\(585\) −1662.63 −0.117506
\(586\) 45348.1 3.19678
\(587\) −14565.9 −1.02419 −0.512095 0.858929i \(-0.671130\pi\)
−0.512095 + 0.858929i \(0.671130\pi\)
\(588\) 1729.47 0.121296
\(589\) −10631.5 −0.743740
\(590\) −5870.75 −0.409653
\(591\) −2908.57 −0.202441
\(592\) −12022.0 −0.834630
\(593\) −18632.6 −1.29030 −0.645152 0.764054i \(-0.723206\pi\)
−0.645152 + 0.764054i \(0.723206\pi\)
\(594\) −929.244 −0.0641874
\(595\) 6936.66 0.477941
\(596\) −25371.9 −1.74375
\(597\) 16269.1 1.11532
\(598\) −34599.2 −2.36600
\(599\) −11080.2 −0.755802 −0.377901 0.925846i \(-0.623354\pi\)
−0.377901 + 0.925846i \(0.623354\pi\)
\(600\) −3601.20 −0.245030
\(601\) −26806.7 −1.81941 −0.909706 0.415254i \(-0.863693\pi\)
−0.909706 + 0.415254i \(0.863693\pi\)
\(602\) −6544.38 −0.443071
\(603\) 8577.44 0.579271
\(604\) 48328.0 3.25569
\(605\) 6422.81 0.431611
\(606\) −15225.1 −1.02059
\(607\) 2408.52 0.161052 0.0805262 0.996752i \(-0.474340\pi\)
0.0805262 + 0.996752i \(0.474340\pi\)
\(608\) −11768.5 −0.784992
\(609\) 1686.83 0.112240
\(610\) −13801.4 −0.916073
\(611\) −1552.42 −0.102789
\(612\) −11274.2 −0.744664
\(613\) 24558.8 1.61814 0.809071 0.587710i \(-0.199971\pi\)
0.809071 + 0.587710i \(0.199971\pi\)
\(614\) −36782.4 −2.41762
\(615\) 3443.86 0.225805
\(616\) −6344.14 −0.414956
\(617\) −6367.34 −0.415461 −0.207731 0.978186i \(-0.566608\pi\)
−0.207731 + 0.978186i \(0.566608\pi\)
\(618\) −10670.0 −0.694515
\(619\) 25893.6 1.68134 0.840671 0.541546i \(-0.182161\pi\)
0.840671 + 0.541546i \(0.182161\pi\)
\(620\) 10538.8 0.682656
\(621\) 5006.29 0.323503
\(622\) 12247.3 0.789505
\(623\) −5257.66 −0.338112
\(624\) 11355.2 0.728482
\(625\) 625.000 0.0400000
\(626\) 32887.0 2.09972
\(627\) 1805.29 0.114986
\(628\) 13418.7 0.852649
\(629\) 8396.77 0.532275
\(630\) 4406.53 0.278667
\(631\) −1864.31 −0.117618 −0.0588089 0.998269i \(-0.518730\pi\)
−0.0588089 + 0.998269i \(0.518730\pi\)
\(632\) −46343.5 −2.91684
\(633\) −8545.53 −0.536579
\(634\) −33505.5 −2.09885
\(635\) 6006.50 0.375371
\(636\) 494.961 0.0308593
\(637\) 1216.62 0.0756741
\(638\) −998.077 −0.0619345
\(639\) 3869.08 0.239528
\(640\) −9030.03 −0.557724
\(641\) −25891.1 −1.59538 −0.797689 0.603069i \(-0.793944\pi\)
−0.797689 + 0.603069i \(0.793944\pi\)
\(642\) −16916.4 −1.03994
\(643\) −19494.1 −1.19560 −0.597801 0.801645i \(-0.703959\pi\)
−0.597801 + 0.801645i \(0.703959\pi\)
\(644\) 62939.3 3.85118
\(645\) −1002.48 −0.0611978
\(646\) 31911.8 1.94358
\(647\) −17987.6 −1.09299 −0.546495 0.837463i \(-0.684038\pi\)
−0.546495 + 0.837463i \(0.684038\pi\)
\(648\) −3889.29 −0.235781
\(649\) −1584.26 −0.0958207
\(650\) −4665.03 −0.281504
\(651\) −7002.87 −0.421604
\(652\) −32757.9 −1.96764
\(653\) 2069.77 0.124037 0.0620186 0.998075i \(-0.480246\pi\)
0.0620186 + 0.998075i \(0.480246\pi\)
\(654\) 19795.1 1.18356
\(655\) −5247.83 −0.313053
\(656\) −23520.5 −1.39988
\(657\) 4994.13 0.296559
\(658\) 4114.43 0.243765
\(659\) −15787.8 −0.933239 −0.466619 0.884458i \(-0.654528\pi\)
−0.466619 + 0.884458i \(0.654528\pi\)
\(660\) −1789.55 −0.105542
\(661\) 32239.9 1.89711 0.948554 0.316615i \(-0.102546\pi\)
0.948554 + 0.316615i \(0.102546\pi\)
\(662\) 33979.4 1.99494
\(663\) −7931.07 −0.464581
\(664\) −30018.9 −1.75446
\(665\) −8560.81 −0.499209
\(666\) 5334.07 0.310347
\(667\) 5377.12 0.312149
\(668\) 41030.2 2.37651
\(669\) 1507.47 0.0871181
\(670\) 24066.7 1.38773
\(671\) −3724.41 −0.214276
\(672\) −7751.79 −0.444988
\(673\) 1039.67 0.0595488 0.0297744 0.999557i \(-0.490521\pi\)
0.0297744 + 0.999557i \(0.490521\pi\)
\(674\) 38804.4 2.21764
\(675\) 675.000 0.0384900
\(676\) −14564.2 −0.828641
\(677\) −12781.5 −0.725604 −0.362802 0.931866i \(-0.618180\pi\)
−0.362802 + 0.931866i \(0.618180\pi\)
\(678\) −3883.22 −0.219962
\(679\) 22639.7 1.27958
\(680\) −17178.4 −0.968768
\(681\) 4010.50 0.225672
\(682\) 4143.50 0.232644
\(683\) 176.490 0.00988755 0.00494378 0.999988i \(-0.498426\pi\)
0.00494378 + 0.999988i \(0.498426\pi\)
\(684\) 13914.0 0.777800
\(685\) −14406.1 −0.803543
\(686\) 30363.1 1.68990
\(687\) −3393.79 −0.188473
\(688\) 6846.61 0.379396
\(689\) 348.189 0.0192525
\(690\) 14046.7 0.774999
\(691\) 28767.9 1.58377 0.791884 0.610672i \(-0.209101\pi\)
0.791884 + 0.610672i \(0.209101\pi\)
\(692\) −26011.0 −1.42889
\(693\) 1189.13 0.0651823
\(694\) −7078.46 −0.387168
\(695\) −12922.2 −0.705275
\(696\) −4177.39 −0.227505
\(697\) 16427.9 0.892757
\(698\) 51787.2 2.80827
\(699\) 3814.88 0.206426
\(700\) 8486.14 0.458208
\(701\) −27326.9 −1.47236 −0.736179 0.676787i \(-0.763372\pi\)
−0.736179 + 0.676787i \(0.763372\pi\)
\(702\) −5038.23 −0.270877
\(703\) −10362.8 −0.555961
\(704\) −998.274 −0.0534430
\(705\) 630.255 0.0336692
\(706\) 16717.0 0.891152
\(707\) 19483.2 1.03641
\(708\) −12210.4 −0.648158
\(709\) 3138.76 0.166261 0.0831303 0.996539i \(-0.473508\pi\)
0.0831303 + 0.996539i \(0.473508\pi\)
\(710\) 10855.9 0.573825
\(711\) 8686.51 0.458185
\(712\) 13020.4 0.685339
\(713\) −22323.1 −1.17252
\(714\) 21020.0 1.10176
\(715\) −1258.89 −0.0658458
\(716\) 1250.75 0.0652830
\(717\) 4522.20 0.235544
\(718\) −52663.1 −2.73728
\(719\) 21026.6 1.09062 0.545312 0.838233i \(-0.316411\pi\)
0.545312 + 0.838233i \(0.316411\pi\)
\(720\) −4610.04 −0.238619
\(721\) 13654.1 0.705280
\(722\) −4742.52 −0.244458
\(723\) 12753.9 0.656050
\(724\) −29697.7 −1.52446
\(725\) 725.000 0.0371391
\(726\) 19462.9 0.994954
\(727\) 4458.08 0.227429 0.113715 0.993513i \(-0.463725\pi\)
0.113715 + 0.993513i \(0.463725\pi\)
\(728\) −34397.0 −1.75115
\(729\) 729.000 0.0370370
\(730\) 14012.6 0.710452
\(731\) −4782.02 −0.241955
\(732\) −28705.3 −1.44942
\(733\) −28933.7 −1.45797 −0.728984 0.684531i \(-0.760007\pi\)
−0.728984 + 0.684531i \(0.760007\pi\)
\(734\) 33674.6 1.69339
\(735\) −493.929 −0.0247876
\(736\) −24710.4 −1.23755
\(737\) 6494.56 0.324600
\(738\) 10435.9 0.520528
\(739\) −9135.10 −0.454723 −0.227361 0.973810i \(-0.573010\pi\)
−0.227361 + 0.973810i \(0.573010\pi\)
\(740\) 10272.4 0.510299
\(741\) 9788.06 0.485254
\(742\) −922.819 −0.0456574
\(743\) −26380.8 −1.30258 −0.651290 0.758829i \(-0.725772\pi\)
−0.651290 + 0.758829i \(0.725772\pi\)
\(744\) 17342.4 0.854573
\(745\) 7246.13 0.356346
\(746\) −30810.6 −1.51214
\(747\) 5626.67 0.275595
\(748\) −8536.49 −0.417279
\(749\) 21647.6 1.05605
\(750\) 1893.93 0.0922085
\(751\) 18205.6 0.884597 0.442298 0.896868i \(-0.354163\pi\)
0.442298 + 0.896868i \(0.354163\pi\)
\(752\) −4304.44 −0.208733
\(753\) 21658.2 1.04817
\(754\) −5411.44 −0.261370
\(755\) −13802.3 −0.665321
\(756\) 9165.03 0.440911
\(757\) 14889.8 0.714902 0.357451 0.933932i \(-0.383646\pi\)
0.357451 + 0.933932i \(0.383646\pi\)
\(758\) −31777.0 −1.52268
\(759\) 3790.60 0.181278
\(760\) 21200.6 1.01188
\(761\) 4359.81 0.207678 0.103839 0.994594i \(-0.466887\pi\)
0.103839 + 0.994594i \(0.466887\pi\)
\(762\) 18201.4 0.865310
\(763\) −25331.2 −1.20190
\(764\) −64038.0 −3.03248
\(765\) 3219.88 0.152177
\(766\) −52268.7 −2.46546
\(767\) −8589.64 −0.404373
\(768\) −23847.7 −1.12048
\(769\) −23823.7 −1.11717 −0.558585 0.829448i \(-0.688655\pi\)
−0.558585 + 0.829448i \(0.688655\pi\)
\(770\) 3336.48 0.156154
\(771\) 10308.1 0.481502
\(772\) −55265.6 −2.57649
\(773\) 18653.0 0.867922 0.433961 0.900932i \(-0.357116\pi\)
0.433961 + 0.900932i \(0.357116\pi\)
\(774\) −3037.79 −0.141074
\(775\) −3009.83 −0.139505
\(776\) −56066.5 −2.59365
\(777\) −6825.88 −0.315157
\(778\) 11924.6 0.549508
\(779\) −20274.4 −0.932483
\(780\) −9702.68 −0.445399
\(781\) 2929.54 0.134222
\(782\) 67005.6 3.06409
\(783\) 783.000 0.0357371
\(784\) 3373.38 0.153671
\(785\) −3832.32 −0.174244
\(786\) −15902.4 −0.721654
\(787\) 16426.1 0.743998 0.371999 0.928233i \(-0.378672\pi\)
0.371999 + 0.928233i \(0.378672\pi\)
\(788\) −16973.7 −0.767337
\(789\) 4482.42 0.202254
\(790\) 24372.8 1.09765
\(791\) 4969.26 0.223371
\(792\) −2944.84 −0.132122
\(793\) −20193.2 −0.904266
\(794\) −35167.0 −1.57183
\(795\) −141.359 −0.00630628
\(796\) 94942.0 4.22755
\(797\) −8480.05 −0.376887 −0.188443 0.982084i \(-0.560344\pi\)
−0.188443 + 0.982084i \(0.560344\pi\)
\(798\) −25941.7 −1.15078
\(799\) 3006.44 0.133117
\(800\) −3331.72 −0.147243
\(801\) −2440.52 −0.107655
\(802\) 7168.23 0.315610
\(803\) 3781.39 0.166180
\(804\) 50055.7 2.19568
\(805\) −17975.2 −0.787011
\(806\) 22465.5 0.981779
\(807\) −5076.18 −0.221425
\(808\) −48249.5 −2.10076
\(809\) −28294.8 −1.22965 −0.614827 0.788662i \(-0.710774\pi\)
−0.614827 + 0.788662i \(0.710774\pi\)
\(810\) 2045.44 0.0887277
\(811\) −28383.8 −1.22896 −0.614482 0.788931i \(-0.710635\pi\)
−0.614482 + 0.788931i \(0.710635\pi\)
\(812\) 9843.92 0.425436
\(813\) 9443.26 0.407367
\(814\) 4038.79 0.173906
\(815\) 9355.54 0.402098
\(816\) −21990.8 −0.943420
\(817\) 5901.69 0.252722
\(818\) 26262.1 1.12253
\(819\) 6447.30 0.275076
\(820\) 20097.5 0.855897
\(821\) 27288.2 1.16001 0.580003 0.814615i \(-0.303052\pi\)
0.580003 + 0.814615i \(0.303052\pi\)
\(822\) −43654.4 −1.85234
\(823\) −37261.0 −1.57818 −0.789088 0.614281i \(-0.789446\pi\)
−0.789088 + 0.614281i \(0.789446\pi\)
\(824\) −33814.1 −1.42957
\(825\) 511.088 0.0215682
\(826\) 22765.5 0.958973
\(827\) 2964.91 0.124668 0.0623338 0.998055i \(-0.480146\pi\)
0.0623338 + 0.998055i \(0.480146\pi\)
\(828\) 29215.4 1.22621
\(829\) 35023.4 1.46733 0.733664 0.679513i \(-0.237809\pi\)
0.733664 + 0.679513i \(0.237809\pi\)
\(830\) 15787.4 0.660227
\(831\) −11619.5 −0.485049
\(832\) −5412.50 −0.225535
\(833\) −2356.14 −0.0980016
\(834\) −39157.8 −1.62581
\(835\) −11718.1 −0.485654
\(836\) 10535.2 0.435848
\(837\) −3250.62 −0.134239
\(838\) −22606.2 −0.931884
\(839\) −5316.37 −0.218762 −0.109381 0.994000i \(-0.534887\pi\)
−0.109381 + 0.994000i \(0.534887\pi\)
\(840\) 13964.6 0.573602
\(841\) 841.000 0.0344828
\(842\) −14770.3 −0.604533
\(843\) −14854.3 −0.606889
\(844\) −49869.5 −2.03386
\(845\) 4159.48 0.169338
\(846\) 1909.85 0.0776147
\(847\) −24906.2 −1.01038
\(848\) 965.437 0.0390958
\(849\) −14685.9 −0.593662
\(850\) 9034.39 0.364561
\(851\) −21758.9 −0.876481
\(852\) 22579.0 0.907913
\(853\) −40627.7 −1.63079 −0.815396 0.578904i \(-0.803481\pi\)
−0.815396 + 0.578904i \(0.803481\pi\)
\(854\) 53518.9 2.14447
\(855\) −3973.79 −0.158948
\(856\) −53609.5 −2.14058
\(857\) 22175.9 0.883914 0.441957 0.897036i \(-0.354284\pi\)
0.441957 + 0.897036i \(0.354284\pi\)
\(858\) −3814.79 −0.151789
\(859\) −39450.8 −1.56699 −0.783495 0.621399i \(-0.786565\pi\)
−0.783495 + 0.621399i \(0.786565\pi\)
\(860\) −5850.21 −0.231966
\(861\) −13354.5 −0.528596
\(862\) −7520.06 −0.297139
\(863\) 5285.21 0.208471 0.104236 0.994553i \(-0.466760\pi\)
0.104236 + 0.994553i \(0.466760\pi\)
\(864\) −3598.26 −0.141684
\(865\) 7428.64 0.292002
\(866\) 42483.7 1.66704
\(867\) 620.466 0.0243046
\(868\) −40866.9 −1.59806
\(869\) 6577.14 0.256748
\(870\) 2196.95 0.0856135
\(871\) 35212.6 1.36984
\(872\) 62732.0 2.43621
\(873\) 10509.0 0.407417
\(874\) −82694.4 −3.20043
\(875\) −2423.61 −0.0936377
\(876\) 29144.4 1.12409
\(877\) 17785.8 0.684815 0.342407 0.939552i \(-0.388758\pi\)
0.342407 + 0.939552i \(0.388758\pi\)
\(878\) 53457.9 2.05480
\(879\) −26936.9 −1.03363
\(880\) −3490.57 −0.133713
\(881\) 19542.5 0.747338 0.373669 0.927562i \(-0.378100\pi\)
0.373669 + 0.927562i \(0.378100\pi\)
\(882\) −1496.74 −0.0571406
\(883\) −1625.38 −0.0619460 −0.0309730 0.999520i \(-0.509861\pi\)
−0.0309730 + 0.999520i \(0.509861\pi\)
\(884\) −46283.7 −1.76096
\(885\) 3487.25 0.132455
\(886\) 52199.5 1.97932
\(887\) −48250.9 −1.82650 −0.913251 0.407396i \(-0.866437\pi\)
−0.913251 + 0.407396i \(0.866437\pi\)
\(888\) 16904.1 0.638811
\(889\) −23291.8 −0.878722
\(890\) −6847.65 −0.257903
\(891\) 551.975 0.0207540
\(892\) 8797.18 0.330215
\(893\) −3710.37 −0.139040
\(894\) 21957.8 0.821453
\(895\) −357.209 −0.0133410
\(896\) 35016.4 1.30560
\(897\) 20552.1 0.765011
\(898\) −83972.6 −3.12049
\(899\) −3491.40 −0.129527
\(900\) 3939.13 0.145894
\(901\) −674.310 −0.0249329
\(902\) 7901.70 0.291683
\(903\) 3887.39 0.143260
\(904\) −12306.2 −0.452764
\(905\) 8481.56 0.311532
\(906\) −41824.8 −1.53371
\(907\) 20513.2 0.750971 0.375486 0.926828i \(-0.377476\pi\)
0.375486 + 0.926828i \(0.377476\pi\)
\(908\) 23404.2 0.855393
\(909\) 9043.78 0.329992
\(910\) 18089.9 0.658984
\(911\) −33692.7 −1.22534 −0.612672 0.790338i \(-0.709905\pi\)
−0.612672 + 0.790338i \(0.709905\pi\)
\(912\) 27139.7 0.985401
\(913\) 4260.33 0.154432
\(914\) 45495.9 1.64647
\(915\) 8198.12 0.296198
\(916\) −19805.3 −0.714394
\(917\) 20349.9 0.732839
\(918\) 9757.15 0.350799
\(919\) 36764.9 1.31966 0.659828 0.751417i \(-0.270629\pi\)
0.659828 + 0.751417i \(0.270629\pi\)
\(920\) 44515.1 1.59524
\(921\) 21848.9 0.781700
\(922\) 40895.5 1.46076
\(923\) 15883.6 0.566429
\(924\) 6939.46 0.247069
\(925\) −2933.76 −0.104283
\(926\) −24736.6 −0.877858
\(927\) 6338.03 0.224561
\(928\) −3864.79 −0.136711
\(929\) 13533.8 0.477965 0.238982 0.971024i \(-0.423186\pi\)
0.238982 + 0.971024i \(0.423186\pi\)
\(930\) −9120.63 −0.321588
\(931\) 2907.81 0.102363
\(932\) 22262.7 0.782444
\(933\) −7274.95 −0.255275
\(934\) 16824.2 0.589406
\(935\) 2437.99 0.0852736
\(936\) −15966.5 −0.557567
\(937\) −54144.0 −1.88773 −0.943867 0.330325i \(-0.892842\pi\)
−0.943867 + 0.330325i \(0.892842\pi\)
\(938\) −93325.3 −3.24859
\(939\) −19535.0 −0.678914
\(940\) 3678.01 0.127621
\(941\) −8397.60 −0.290918 −0.145459 0.989364i \(-0.546466\pi\)
−0.145459 + 0.989364i \(0.546466\pi\)
\(942\) −11613.0 −0.401669
\(943\) −42570.3 −1.47007
\(944\) −23816.8 −0.821157
\(945\) −2617.50 −0.0901029
\(946\) −2300.12 −0.0790521
\(947\) −4931.24 −0.169212 −0.0846059 0.996414i \(-0.526963\pi\)
−0.0846059 + 0.996414i \(0.526963\pi\)
\(948\) 50692.3 1.73672
\(949\) 20502.2 0.701295
\(950\) −11149.7 −0.380784
\(951\) 19902.4 0.678633
\(952\) 66614.0 2.26783
\(953\) −21509.1 −0.731111 −0.365555 0.930790i \(-0.619121\pi\)
−0.365555 + 0.930790i \(0.619121\pi\)
\(954\) −428.358 −0.0145373
\(955\) 18289.0 0.619705
\(956\) 26390.4 0.892811
\(957\) 592.862 0.0200256
\(958\) 68718.0 2.31751
\(959\) 55863.4 1.88105
\(960\) 2197.39 0.0738754
\(961\) −15296.5 −0.513460
\(962\) 21897.7 0.733900
\(963\) 10048.4 0.336248
\(964\) 74428.8 2.48671
\(965\) 15783.6 0.526522
\(966\) −54470.0 −1.81423
\(967\) 56174.6 1.86810 0.934051 0.357140i \(-0.116248\pi\)
0.934051 + 0.357140i \(0.116248\pi\)
\(968\) 61679.5 2.04799
\(969\) −18955.8 −0.628428
\(970\) 29486.2 0.976027
\(971\) 59470.2 1.96549 0.982745 0.184966i \(-0.0592173\pi\)
0.982745 + 0.184966i \(0.0592173\pi\)
\(972\) 4254.26 0.140386
\(973\) 50109.3 1.65101
\(974\) 78084.9 2.56879
\(975\) 2771.05 0.0910201
\(976\) −55990.5 −1.83628
\(977\) −54861.4 −1.79649 −0.898245 0.439494i \(-0.855158\pi\)
−0.898245 + 0.439494i \(0.855158\pi\)
\(978\) 28349.9 0.926922
\(979\) −1847.88 −0.0603254
\(980\) −2882.44 −0.0939554
\(981\) −11758.4 −0.382686
\(982\) 96041.5 3.12099
\(983\) −20759.3 −0.673568 −0.336784 0.941582i \(-0.609339\pi\)
−0.336784 + 0.941582i \(0.609339\pi\)
\(984\) 33072.1 1.07144
\(985\) 4847.62 0.156810
\(986\) 10479.9 0.338487
\(987\) −2443.99 −0.0788176
\(988\) 57120.6 1.83932
\(989\) 12391.8 0.398420
\(990\) 1548.74 0.0497194
\(991\) −25662.6 −0.822603 −0.411301 0.911499i \(-0.634926\pi\)
−0.411301 + 0.911499i \(0.634926\pi\)
\(992\) 16044.6 0.513526
\(993\) −20183.9 −0.645033
\(994\) −42096.8 −1.34329
\(995\) −27115.1 −0.863926
\(996\) 32835.8 1.04462
\(997\) 43697.7 1.38808 0.694042 0.719935i \(-0.255828\pi\)
0.694042 + 0.719935i \(0.255828\pi\)
\(998\) 69065.4 2.19061
\(999\) −3168.46 −0.100346
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.4.a.h.1.1 6
3.2 odd 2 1305.4.a.h.1.6 6
5.4 even 2 2175.4.a.k.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.h.1.1 6 1.1 even 1 trivial
1305.4.a.h.1.6 6 3.2 odd 2
2175.4.a.k.1.6 6 5.4 even 2