Properties

Label 435.4.a.g.1.1
Level $435$
Weight $4$
Character 435.1
Self dual yes
Analytic conductor $25.666$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 31x^{4} + 9x^{3} + 230x^{2} + 32x - 128 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.98965\) of defining polynomial
Character \(\chi\) \(=\) 435.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.98965 q^{2} -3.00000 q^{3} +16.8966 q^{4} +5.00000 q^{5} +14.9690 q^{6} +22.5076 q^{7} -44.3911 q^{8} +9.00000 q^{9} -24.9483 q^{10} -32.8384 q^{11} -50.6899 q^{12} +31.3437 q^{13} -112.305 q^{14} -15.0000 q^{15} +86.3230 q^{16} -66.5556 q^{17} -44.9069 q^{18} -103.349 q^{19} +84.4831 q^{20} -67.5228 q^{21} +163.852 q^{22} +5.86439 q^{23} +133.173 q^{24} +25.0000 q^{25} -156.394 q^{26} -27.0000 q^{27} +380.302 q^{28} -29.0000 q^{29} +74.8448 q^{30} -26.9324 q^{31} -75.5933 q^{32} +98.5153 q^{33} +332.089 q^{34} +112.538 q^{35} +152.070 q^{36} -18.2548 q^{37} +515.675 q^{38} -94.0312 q^{39} -221.955 q^{40} -115.564 q^{41} +336.915 q^{42} +415.780 q^{43} -554.859 q^{44} +45.0000 q^{45} -29.2613 q^{46} +11.7223 q^{47} -258.969 q^{48} +163.592 q^{49} -124.741 q^{50} +199.667 q^{51} +529.604 q^{52} -275.059 q^{53} +134.721 q^{54} -164.192 q^{55} -999.136 q^{56} +310.046 q^{57} +144.700 q^{58} +212.467 q^{59} -253.449 q^{60} -766.954 q^{61} +134.383 q^{62} +202.568 q^{63} -313.400 q^{64} +156.719 q^{65} -491.557 q^{66} +256.113 q^{67} -1124.57 q^{68} -17.5932 q^{69} -561.525 q^{70} -711.750 q^{71} -399.520 q^{72} +45.4465 q^{73} +91.0850 q^{74} -75.0000 q^{75} -1746.25 q^{76} -739.114 q^{77} +469.183 q^{78} +329.147 q^{79} +431.615 q^{80} +81.0000 q^{81} +576.623 q^{82} -283.281 q^{83} -1140.91 q^{84} -332.778 q^{85} -2074.60 q^{86} +87.0000 q^{87} +1457.73 q^{88} -802.821 q^{89} -224.534 q^{90} +705.472 q^{91} +99.0885 q^{92} +80.7973 q^{93} -58.4903 q^{94} -516.744 q^{95} +226.780 q^{96} +389.532 q^{97} -816.265 q^{98} -295.546 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 18 q^{3} + 15 q^{4} + 30 q^{5} + 3 q^{6} + 23 q^{7} - 51 q^{8} + 54 q^{9} - 5 q^{10} - 111 q^{11} - 45 q^{12} - 83 q^{13} - 102 q^{14} - 90 q^{15} - 37 q^{16} - 35 q^{17} - 9 q^{18} - 76 q^{19}+ \cdots - 999 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.98965 −1.76411 −0.882054 0.471148i \(-0.843840\pi\)
−0.882054 + 0.471148i \(0.843840\pi\)
\(3\) −3.00000 −0.577350
\(4\) 16.8966 2.11208
\(5\) 5.00000 0.447214
\(6\) 14.9690 1.01851
\(7\) 22.5076 1.21530 0.607648 0.794207i \(-0.292113\pi\)
0.607648 + 0.794207i \(0.292113\pi\)
\(8\) −44.3911 −1.96183
\(9\) 9.00000 0.333333
\(10\) −24.9483 −0.788933
\(11\) −32.8384 −0.900106 −0.450053 0.893002i \(-0.648595\pi\)
−0.450053 + 0.893002i \(0.648595\pi\)
\(12\) −50.6899 −1.21941
\(13\) 31.3437 0.668707 0.334353 0.942448i \(-0.391482\pi\)
0.334353 + 0.942448i \(0.391482\pi\)
\(14\) −112.305 −2.14391
\(15\) −15.0000 −0.258199
\(16\) 86.3230 1.34880
\(17\) −66.5556 −0.949536 −0.474768 0.880111i \(-0.657468\pi\)
−0.474768 + 0.880111i \(0.657468\pi\)
\(18\) −44.9069 −0.588036
\(19\) −103.349 −1.24789 −0.623943 0.781470i \(-0.714470\pi\)
−0.623943 + 0.781470i \(0.714470\pi\)
\(20\) 84.4831 0.944550
\(21\) −67.5228 −0.701651
\(22\) 163.852 1.58788
\(23\) 5.86439 0.0531657 0.0265828 0.999647i \(-0.491537\pi\)
0.0265828 + 0.999647i \(0.491537\pi\)
\(24\) 133.173 1.13266
\(25\) 25.0000 0.200000
\(26\) −156.394 −1.17967
\(27\) −27.0000 −0.192450
\(28\) 380.302 2.56680
\(29\) −29.0000 −0.185695
\(30\) 74.8448 0.455491
\(31\) −26.9324 −0.156039 −0.0780195 0.996952i \(-0.524860\pi\)
−0.0780195 + 0.996952i \(0.524860\pi\)
\(32\) −75.5933 −0.417598
\(33\) 98.5153 0.519676
\(34\) 332.089 1.67508
\(35\) 112.538 0.543497
\(36\) 152.070 0.704026
\(37\) −18.2548 −0.0811099 −0.0405550 0.999177i \(-0.512913\pi\)
−0.0405550 + 0.999177i \(0.512913\pi\)
\(38\) 515.675 2.20141
\(39\) −94.0312 −0.386078
\(40\) −221.955 −0.877356
\(41\) −115.564 −0.440196 −0.220098 0.975478i \(-0.570638\pi\)
−0.220098 + 0.975478i \(0.570638\pi\)
\(42\) 336.915 1.23779
\(43\) 415.780 1.47455 0.737277 0.675591i \(-0.236111\pi\)
0.737277 + 0.675591i \(0.236111\pi\)
\(44\) −554.859 −1.90109
\(45\) 45.0000 0.149071
\(46\) −29.2613 −0.0937900
\(47\) 11.7223 0.0363804 0.0181902 0.999835i \(-0.494210\pi\)
0.0181902 + 0.999835i \(0.494210\pi\)
\(48\) −258.969 −0.778729
\(49\) 163.592 0.476943
\(50\) −124.741 −0.352822
\(51\) 199.667 0.548215
\(52\) 529.604 1.41236
\(53\) −275.059 −0.712872 −0.356436 0.934320i \(-0.616008\pi\)
−0.356436 + 0.934320i \(0.616008\pi\)
\(54\) 134.721 0.339503
\(55\) −164.192 −0.402540
\(56\) −999.136 −2.38420
\(57\) 310.046 0.720467
\(58\) 144.700 0.327587
\(59\) 212.467 0.468829 0.234414 0.972137i \(-0.424683\pi\)
0.234414 + 0.972137i \(0.424683\pi\)
\(60\) −253.449 −0.545336
\(61\) −766.954 −1.60981 −0.804905 0.593403i \(-0.797784\pi\)
−0.804905 + 0.593403i \(0.797784\pi\)
\(62\) 134.383 0.275270
\(63\) 202.568 0.405099
\(64\) −313.400 −0.612110
\(65\) 156.719 0.299055
\(66\) −491.557 −0.916765
\(67\) 256.113 0.467003 0.233501 0.972356i \(-0.424982\pi\)
0.233501 + 0.972356i \(0.424982\pi\)
\(68\) −1124.57 −2.00549
\(69\) −17.5932 −0.0306952
\(70\) −561.525 −0.958787
\(71\) −711.750 −1.18971 −0.594854 0.803834i \(-0.702790\pi\)
−0.594854 + 0.803834i \(0.702790\pi\)
\(72\) −399.520 −0.653942
\(73\) 45.4465 0.0728646 0.0364323 0.999336i \(-0.488401\pi\)
0.0364323 + 0.999336i \(0.488401\pi\)
\(74\) 91.0850 0.143087
\(75\) −75.0000 −0.115470
\(76\) −1746.25 −2.63563
\(77\) −739.114 −1.09389
\(78\) 469.183 0.681084
\(79\) 329.147 0.468759 0.234380 0.972145i \(-0.424694\pi\)
0.234380 + 0.972145i \(0.424694\pi\)
\(80\) 431.615 0.603201
\(81\) 81.0000 0.111111
\(82\) 576.623 0.776553
\(83\) −283.281 −0.374628 −0.187314 0.982300i \(-0.559978\pi\)
−0.187314 + 0.982300i \(0.559978\pi\)
\(84\) −1140.91 −1.48194
\(85\) −332.778 −0.424645
\(86\) −2074.60 −2.60127
\(87\) 87.0000 0.107211
\(88\) 1457.73 1.76585
\(89\) −802.821 −0.956167 −0.478083 0.878314i \(-0.658668\pi\)
−0.478083 + 0.878314i \(0.658668\pi\)
\(90\) −224.534 −0.262978
\(91\) 705.472 0.812677
\(92\) 99.0885 0.112290
\(93\) 80.7973 0.0900891
\(94\) −58.4903 −0.0641789
\(95\) −516.744 −0.558072
\(96\) 226.780 0.241100
\(97\) 389.532 0.407742 0.203871 0.978998i \(-0.434648\pi\)
0.203871 + 0.978998i \(0.434648\pi\)
\(98\) −816.265 −0.841379
\(99\) −295.546 −0.300035
\(100\) 422.416 0.422416
\(101\) 274.559 0.270492 0.135246 0.990812i \(-0.456818\pi\)
0.135246 + 0.990812i \(0.456818\pi\)
\(102\) −996.268 −0.967110
\(103\) −841.113 −0.804635 −0.402317 0.915500i \(-0.631795\pi\)
−0.402317 + 0.915500i \(0.631795\pi\)
\(104\) −1391.38 −1.31189
\(105\) −337.614 −0.313788
\(106\) 1372.45 1.25758
\(107\) −1489.04 −1.34534 −0.672670 0.739943i \(-0.734853\pi\)
−0.672670 + 0.739943i \(0.734853\pi\)
\(108\) −456.209 −0.406470
\(109\) −987.120 −0.867422 −0.433711 0.901052i \(-0.642796\pi\)
−0.433711 + 0.901052i \(0.642796\pi\)
\(110\) 819.262 0.710123
\(111\) 54.7643 0.0468288
\(112\) 1942.92 1.63919
\(113\) 135.446 0.112758 0.0563791 0.998409i \(-0.482044\pi\)
0.0563791 + 0.998409i \(0.482044\pi\)
\(114\) −1547.02 −1.27098
\(115\) 29.3220 0.0237764
\(116\) −490.002 −0.392203
\(117\) 282.094 0.222902
\(118\) −1060.14 −0.827065
\(119\) −1498.01 −1.15397
\(120\) 665.866 0.506542
\(121\) −252.636 −0.189809
\(122\) 3826.84 2.83988
\(123\) 346.691 0.254147
\(124\) −455.067 −0.329567
\(125\) 125.000 0.0894427
\(126\) −1010.75 −0.714638
\(127\) 1539.42 1.07560 0.537802 0.843071i \(-0.319255\pi\)
0.537802 + 0.843071i \(0.319255\pi\)
\(128\) 2168.50 1.49743
\(129\) −1247.34 −0.851334
\(130\) −781.972 −0.527565
\(131\) 1625.05 1.08383 0.541914 0.840434i \(-0.317700\pi\)
0.541914 + 0.840434i \(0.317700\pi\)
\(132\) 1664.58 1.09760
\(133\) −2326.13 −1.51655
\(134\) −1277.91 −0.823843
\(135\) −135.000 −0.0860663
\(136\) 2954.48 1.86282
\(137\) −925.116 −0.576920 −0.288460 0.957492i \(-0.593143\pi\)
−0.288460 + 0.957492i \(0.593143\pi\)
\(138\) 87.7839 0.0541497
\(139\) −3232.14 −1.97228 −0.986138 0.165928i \(-0.946938\pi\)
−0.986138 + 0.165928i \(0.946938\pi\)
\(140\) 1901.51 1.14791
\(141\) −35.1670 −0.0210042
\(142\) 3551.39 2.09877
\(143\) −1029.28 −0.601907
\(144\) 776.907 0.449599
\(145\) −145.000 −0.0830455
\(146\) −226.762 −0.128541
\(147\) −490.775 −0.275363
\(148\) −308.444 −0.171311
\(149\) 764.349 0.420255 0.210127 0.977674i \(-0.432612\pi\)
0.210127 + 0.977674i \(0.432612\pi\)
\(150\) 374.224 0.203702
\(151\) 2721.64 1.46678 0.733390 0.679808i \(-0.237937\pi\)
0.733390 + 0.679808i \(0.237937\pi\)
\(152\) 4587.76 2.44814
\(153\) −599.000 −0.316512
\(154\) 3687.92 1.92975
\(155\) −134.662 −0.0697827
\(156\) −1588.81 −0.815427
\(157\) 1760.38 0.894862 0.447431 0.894319i \(-0.352339\pi\)
0.447431 + 0.894319i \(0.352339\pi\)
\(158\) −1642.33 −0.826942
\(159\) 825.176 0.411577
\(160\) −377.966 −0.186755
\(161\) 131.993 0.0646120
\(162\) −404.162 −0.196012
\(163\) −3566.14 −1.71363 −0.856816 0.515622i \(-0.827561\pi\)
−0.856816 + 0.515622i \(0.827561\pi\)
\(164\) −1952.64 −0.929728
\(165\) 492.577 0.232406
\(166\) 1413.47 0.660885
\(167\) −1976.07 −0.915647 −0.457824 0.889043i \(-0.651371\pi\)
−0.457824 + 0.889043i \(0.651371\pi\)
\(168\) 2997.41 1.37652
\(169\) −1214.57 −0.552831
\(170\) 1660.45 0.749120
\(171\) −930.139 −0.415962
\(172\) 7025.28 3.11437
\(173\) −1836.14 −0.806934 −0.403467 0.914994i \(-0.632195\pi\)
−0.403467 + 0.914994i \(0.632195\pi\)
\(174\) −434.100 −0.189132
\(175\) 562.690 0.243059
\(176\) −2834.71 −1.21406
\(177\) −637.402 −0.270678
\(178\) 4005.80 1.68678
\(179\) 2241.87 0.936117 0.468058 0.883698i \(-0.344954\pi\)
0.468058 + 0.883698i \(0.344954\pi\)
\(180\) 760.348 0.314850
\(181\) 2084.75 0.856122 0.428061 0.903750i \(-0.359197\pi\)
0.428061 + 0.903750i \(0.359197\pi\)
\(182\) −3520.06 −1.43365
\(183\) 2300.86 0.929425
\(184\) −260.327 −0.104302
\(185\) −91.2739 −0.0362735
\(186\) −403.150 −0.158927
\(187\) 2185.58 0.854682
\(188\) 198.068 0.0768382
\(189\) −607.705 −0.233884
\(190\) 2578.37 0.984499
\(191\) 4206.24 1.59347 0.796735 0.604328i \(-0.206558\pi\)
0.796735 + 0.604328i \(0.206558\pi\)
\(192\) 940.201 0.353402
\(193\) −2047.28 −0.763558 −0.381779 0.924254i \(-0.624688\pi\)
−0.381779 + 0.924254i \(0.624688\pi\)
\(194\) −1943.63 −0.719301
\(195\) −470.156 −0.172659
\(196\) 2764.15 1.00734
\(197\) 4461.88 1.61369 0.806843 0.590766i \(-0.201174\pi\)
0.806843 + 0.590766i \(0.201174\pi\)
\(198\) 1474.67 0.529295
\(199\) −1926.80 −0.686367 −0.343183 0.939268i \(-0.611505\pi\)
−0.343183 + 0.939268i \(0.611505\pi\)
\(200\) −1109.78 −0.392365
\(201\) −768.339 −0.269624
\(202\) −1369.95 −0.477177
\(203\) −652.720 −0.225675
\(204\) 3373.70 1.15787
\(205\) −577.819 −0.196862
\(206\) 4196.86 1.41946
\(207\) 52.7796 0.0177219
\(208\) 2705.69 0.901950
\(209\) 3393.81 1.12323
\(210\) 1684.58 0.553556
\(211\) −4487.22 −1.46404 −0.732021 0.681282i \(-0.761423\pi\)
−0.732021 + 0.681282i \(0.761423\pi\)
\(212\) −4647.57 −1.50564
\(213\) 2135.25 0.686878
\(214\) 7429.81 2.37332
\(215\) 2078.90 0.659441
\(216\) 1198.56 0.377554
\(217\) −606.184 −0.189633
\(218\) 4925.39 1.53023
\(219\) −136.340 −0.0420684
\(220\) −2774.30 −0.850195
\(221\) −2086.10 −0.634961
\(222\) −273.255 −0.0826111
\(223\) −5113.28 −1.53547 −0.767737 0.640765i \(-0.778617\pi\)
−0.767737 + 0.640765i \(0.778617\pi\)
\(224\) −1701.42 −0.507505
\(225\) 225.000 0.0666667
\(226\) −675.827 −0.198918
\(227\) −5258.42 −1.53751 −0.768753 0.639546i \(-0.779122\pi\)
−0.768753 + 0.639546i \(0.779122\pi\)
\(228\) 5238.74 1.52168
\(229\) −5242.30 −1.51276 −0.756378 0.654135i \(-0.773033\pi\)
−0.756378 + 0.654135i \(0.773033\pi\)
\(230\) −146.306 −0.0419442
\(231\) 2217.34 0.631560
\(232\) 1287.34 0.364302
\(233\) −6046.86 −1.70018 −0.850092 0.526635i \(-0.823453\pi\)
−0.850092 + 0.526635i \(0.823453\pi\)
\(234\) −1407.55 −0.393224
\(235\) 58.6116 0.0162698
\(236\) 3589.98 0.990203
\(237\) −987.442 −0.270638
\(238\) 7474.53 2.03572
\(239\) −212.645 −0.0575518 −0.0287759 0.999586i \(-0.509161\pi\)
−0.0287759 + 0.999586i \(0.509161\pi\)
\(240\) −1294.85 −0.348258
\(241\) −5857.59 −1.56565 −0.782823 0.622245i \(-0.786221\pi\)
−0.782823 + 0.622245i \(0.786221\pi\)
\(242\) 1260.57 0.334844
\(243\) −243.000 −0.0641500
\(244\) −12958.9 −3.40005
\(245\) 817.958 0.213295
\(246\) −1729.87 −0.448343
\(247\) −3239.34 −0.834470
\(248\) 1195.56 0.306121
\(249\) 849.844 0.216292
\(250\) −623.707 −0.157787
\(251\) −3510.70 −0.882842 −0.441421 0.897300i \(-0.645525\pi\)
−0.441421 + 0.897300i \(0.645525\pi\)
\(252\) 3422.72 0.855600
\(253\) −192.578 −0.0478547
\(254\) −7681.18 −1.89748
\(255\) 998.334 0.245169
\(256\) −8312.88 −2.02951
\(257\) 2682.10 0.650990 0.325495 0.945544i \(-0.394469\pi\)
0.325495 + 0.945544i \(0.394469\pi\)
\(258\) 6223.79 1.50185
\(259\) −410.871 −0.0985725
\(260\) 2648.02 0.631627
\(261\) −261.000 −0.0618984
\(262\) −8108.45 −1.91199
\(263\) 4147.94 0.972521 0.486261 0.873814i \(-0.338361\pi\)
0.486261 + 0.873814i \(0.338361\pi\)
\(264\) −4373.20 −1.01952
\(265\) −1375.29 −0.318806
\(266\) 11606.6 2.67536
\(267\) 2408.46 0.552043
\(268\) 4327.45 0.986346
\(269\) −7462.57 −1.69145 −0.845726 0.533617i \(-0.820832\pi\)
−0.845726 + 0.533617i \(0.820832\pi\)
\(270\) 673.603 0.151830
\(271\) 6848.81 1.53519 0.767594 0.640937i \(-0.221454\pi\)
0.767594 + 0.640937i \(0.221454\pi\)
\(272\) −5745.28 −1.28073
\(273\) −2116.42 −0.469199
\(274\) 4616.01 1.01775
\(275\) −820.961 −0.180021
\(276\) −297.266 −0.0648307
\(277\) −100.396 −0.0217769 −0.0108884 0.999941i \(-0.503466\pi\)
−0.0108884 + 0.999941i \(0.503466\pi\)
\(278\) 16127.2 3.47931
\(279\) −242.392 −0.0520130
\(280\) −4995.68 −1.06625
\(281\) 3619.61 0.768426 0.384213 0.923244i \(-0.374473\pi\)
0.384213 + 0.923244i \(0.374473\pi\)
\(282\) 175.471 0.0370537
\(283\) −3692.84 −0.775677 −0.387839 0.921727i \(-0.626778\pi\)
−0.387839 + 0.921727i \(0.626778\pi\)
\(284\) −12026.2 −2.51276
\(285\) 1550.23 0.322203
\(286\) 5135.75 1.06183
\(287\) −2601.06 −0.534968
\(288\) −680.339 −0.139199
\(289\) −483.352 −0.0983823
\(290\) 723.500 0.146501
\(291\) −1168.60 −0.235410
\(292\) 767.893 0.153896
\(293\) −1172.85 −0.233851 −0.116926 0.993141i \(-0.537304\pi\)
−0.116926 + 0.993141i \(0.537304\pi\)
\(294\) 2448.79 0.485771
\(295\) 1062.34 0.209667
\(296\) 810.349 0.159124
\(297\) 886.638 0.173225
\(298\) −3813.84 −0.741375
\(299\) 183.812 0.0355523
\(300\) −1267.25 −0.243882
\(301\) 9358.20 1.79202
\(302\) −13580.0 −2.58756
\(303\) −823.678 −0.156168
\(304\) −8921.38 −1.68315
\(305\) −3834.77 −0.719929
\(306\) 2988.80 0.558361
\(307\) −4625.08 −0.859829 −0.429915 0.902870i \(-0.641456\pi\)
−0.429915 + 0.902870i \(0.641456\pi\)
\(308\) −12488.5 −2.31039
\(309\) 2523.34 0.464556
\(310\) 671.917 0.123104
\(311\) 5757.91 1.04984 0.524921 0.851151i \(-0.324095\pi\)
0.524921 + 0.851151i \(0.324095\pi\)
\(312\) 4174.15 0.757419
\(313\) −7518.69 −1.35777 −0.678884 0.734246i \(-0.737536\pi\)
−0.678884 + 0.734246i \(0.737536\pi\)
\(314\) −8783.66 −1.57863
\(315\) 1012.84 0.181166
\(316\) 5561.48 0.990056
\(317\) 695.769 0.123275 0.0616376 0.998099i \(-0.480368\pi\)
0.0616376 + 0.998099i \(0.480368\pi\)
\(318\) −4117.34 −0.726066
\(319\) 952.315 0.167145
\(320\) −1567.00 −0.273744
\(321\) 4467.13 0.776732
\(322\) −658.601 −0.113983
\(323\) 6878.44 1.18491
\(324\) 1368.63 0.234675
\(325\) 783.594 0.133741
\(326\) 17793.8 3.02303
\(327\) 2961.36 0.500806
\(328\) 5130.00 0.863588
\(329\) 263.841 0.0442129
\(330\) −2457.79 −0.409990
\(331\) −7536.11 −1.25143 −0.625713 0.780053i \(-0.715192\pi\)
−0.625713 + 0.780053i \(0.715192\pi\)
\(332\) −4786.50 −0.791245
\(333\) −164.293 −0.0270366
\(334\) 9859.92 1.61530
\(335\) 1280.56 0.208850
\(336\) −5828.77 −0.946385
\(337\) 6481.09 1.04762 0.523809 0.851836i \(-0.324511\pi\)
0.523809 + 0.851836i \(0.324511\pi\)
\(338\) 6060.28 0.975254
\(339\) −406.337 −0.0651009
\(340\) −5622.83 −0.896884
\(341\) 884.419 0.140452
\(342\) 4641.07 0.733802
\(343\) −4038.05 −0.635669
\(344\) −18456.9 −2.89282
\(345\) −87.9659 −0.0137273
\(346\) 9161.72 1.42352
\(347\) −1154.45 −0.178600 −0.0893000 0.996005i \(-0.528463\pi\)
−0.0893000 + 0.996005i \(0.528463\pi\)
\(348\) 1470.01 0.226439
\(349\) 7656.69 1.17436 0.587182 0.809455i \(-0.300237\pi\)
0.587182 + 0.809455i \(0.300237\pi\)
\(350\) −2807.63 −0.428783
\(351\) −846.281 −0.128693
\(352\) 2482.37 0.375882
\(353\) 1112.90 0.167801 0.0839003 0.996474i \(-0.473262\pi\)
0.0839003 + 0.996474i \(0.473262\pi\)
\(354\) 3180.41 0.477506
\(355\) −3558.75 −0.532053
\(356\) −13565.0 −2.01950
\(357\) 4494.02 0.666243
\(358\) −11186.1 −1.65141
\(359\) 12401.6 1.82321 0.911604 0.411068i \(-0.134844\pi\)
0.911604 + 0.411068i \(0.134844\pi\)
\(360\) −1997.60 −0.292452
\(361\) 3821.97 0.557220
\(362\) −10402.2 −1.51029
\(363\) 757.909 0.109587
\(364\) 11920.1 1.71644
\(365\) 227.233 0.0325860
\(366\) −11480.5 −1.63961
\(367\) 11259.8 1.60152 0.800759 0.598987i \(-0.204430\pi\)
0.800759 + 0.598987i \(0.204430\pi\)
\(368\) 506.232 0.0717097
\(369\) −1040.07 −0.146732
\(370\) 455.425 0.0639903
\(371\) −6190.91 −0.866350
\(372\) 1365.20 0.190275
\(373\) −8049.64 −1.11741 −0.558706 0.829366i \(-0.688702\pi\)
−0.558706 + 0.829366i \(0.688702\pi\)
\(374\) −10905.3 −1.50775
\(375\) −375.000 −0.0516398
\(376\) −520.367 −0.0713720
\(377\) −908.969 −0.124176
\(378\) 3032.24 0.412596
\(379\) 9811.51 1.32977 0.664886 0.746945i \(-0.268480\pi\)
0.664886 + 0.746945i \(0.268480\pi\)
\(380\) −8731.23 −1.17869
\(381\) −4618.27 −0.621000
\(382\) −20987.7 −2.81106
\(383\) 6660.10 0.888551 0.444276 0.895890i \(-0.353461\pi\)
0.444276 + 0.895890i \(0.353461\pi\)
\(384\) −6505.51 −0.864539
\(385\) −3695.57 −0.489205
\(386\) 10215.2 1.34700
\(387\) 3742.02 0.491518
\(388\) 6581.78 0.861183
\(389\) −15036.0 −1.95979 −0.979894 0.199521i \(-0.936061\pi\)
−0.979894 + 0.199521i \(0.936061\pi\)
\(390\) 2345.92 0.304590
\(391\) −390.308 −0.0504827
\(392\) −7262.00 −0.935680
\(393\) −4875.16 −0.625749
\(394\) −22263.2 −2.84672
\(395\) 1645.74 0.209636
\(396\) −4993.73 −0.633698
\(397\) −2227.56 −0.281607 −0.140804 0.990038i \(-0.544969\pi\)
−0.140804 + 0.990038i \(0.544969\pi\)
\(398\) 9614.05 1.21083
\(399\) 6978.40 0.875581
\(400\) 2158.08 0.269759
\(401\) −7601.22 −0.946600 −0.473300 0.880901i \(-0.656937\pi\)
−0.473300 + 0.880901i \(0.656937\pi\)
\(402\) 3833.74 0.475646
\(403\) −844.163 −0.104344
\(404\) 4639.13 0.571300
\(405\) 405.000 0.0496904
\(406\) 3256.85 0.398115
\(407\) 599.458 0.0730075
\(408\) −8863.43 −1.07550
\(409\) −13097.7 −1.58347 −0.791733 0.610867i \(-0.790821\pi\)
−0.791733 + 0.610867i \(0.790821\pi\)
\(410\) 2883.12 0.347285
\(411\) 2775.35 0.333085
\(412\) −14212.0 −1.69945
\(413\) 4782.13 0.569765
\(414\) −263.352 −0.0312633
\(415\) −1416.41 −0.167539
\(416\) −2369.38 −0.279251
\(417\) 9696.41 1.13869
\(418\) −16934.0 −1.98150
\(419\) 10997.7 1.28227 0.641135 0.767428i \(-0.278464\pi\)
0.641135 + 0.767428i \(0.278464\pi\)
\(420\) −5704.54 −0.662745
\(421\) −13032.2 −1.50867 −0.754333 0.656492i \(-0.772040\pi\)
−0.754333 + 0.656492i \(0.772040\pi\)
\(422\) 22389.7 2.58273
\(423\) 105.501 0.0121268
\(424\) 12210.2 1.39853
\(425\) −1663.89 −0.189907
\(426\) −10654.2 −1.21173
\(427\) −17262.3 −1.95640
\(428\) −25159.8 −2.84146
\(429\) 3087.84 0.347511
\(430\) −10373.0 −1.16332
\(431\) −781.858 −0.0873800 −0.0436900 0.999045i \(-0.513911\pi\)
−0.0436900 + 0.999045i \(0.513911\pi\)
\(432\) −2330.72 −0.259576
\(433\) 9159.83 1.01661 0.508306 0.861176i \(-0.330272\pi\)
0.508306 + 0.861176i \(0.330272\pi\)
\(434\) 3024.65 0.334534
\(435\) 435.000 0.0479463
\(436\) −16679.0 −1.83206
\(437\) −606.078 −0.0663447
\(438\) 680.287 0.0742132
\(439\) −4048.62 −0.440160 −0.220080 0.975482i \(-0.570632\pi\)
−0.220080 + 0.975482i \(0.570632\pi\)
\(440\) 7288.67 0.789713
\(441\) 1472.32 0.158981
\(442\) 10408.9 1.12014
\(443\) −6522.28 −0.699510 −0.349755 0.936841i \(-0.613735\pi\)
−0.349755 + 0.936841i \(0.613735\pi\)
\(444\) 925.332 0.0989062
\(445\) −4014.10 −0.427611
\(446\) 25513.5 2.70874
\(447\) −2293.05 −0.242634
\(448\) −7053.88 −0.743894
\(449\) −4946.78 −0.519940 −0.259970 0.965617i \(-0.583713\pi\)
−0.259970 + 0.965617i \(0.583713\pi\)
\(450\) −1122.67 −0.117607
\(451\) 3794.94 0.396223
\(452\) 2288.58 0.238154
\(453\) −8164.91 −0.846846
\(454\) 26237.7 2.71233
\(455\) 3527.36 0.363440
\(456\) −13763.3 −1.41343
\(457\) 16111.7 1.64918 0.824590 0.565731i \(-0.191406\pi\)
0.824590 + 0.565731i \(0.191406\pi\)
\(458\) 26157.3 2.66866
\(459\) 1797.00 0.182738
\(460\) 495.443 0.0502177
\(461\) 3232.48 0.326576 0.163288 0.986578i \(-0.447790\pi\)
0.163288 + 0.986578i \(0.447790\pi\)
\(462\) −11063.8 −1.11414
\(463\) 6763.53 0.678894 0.339447 0.940625i \(-0.389760\pi\)
0.339447 + 0.940625i \(0.389760\pi\)
\(464\) −2503.37 −0.250465
\(465\) 403.986 0.0402891
\(466\) 30171.7 2.99931
\(467\) 2459.52 0.243711 0.121855 0.992548i \(-0.461116\pi\)
0.121855 + 0.992548i \(0.461116\pi\)
\(468\) 4766.43 0.470787
\(469\) 5764.48 0.567546
\(470\) −292.452 −0.0287017
\(471\) −5281.13 −0.516649
\(472\) −9431.66 −0.919761
\(473\) −13653.6 −1.32725
\(474\) 4926.99 0.477435
\(475\) −2583.72 −0.249577
\(476\) −25311.3 −2.43727
\(477\) −2475.53 −0.237624
\(478\) 1061.03 0.101528
\(479\) 3207.84 0.305991 0.152996 0.988227i \(-0.451108\pi\)
0.152996 + 0.988227i \(0.451108\pi\)
\(480\) 1133.90 0.107823
\(481\) −572.173 −0.0542388
\(482\) 29227.3 2.76197
\(483\) −395.980 −0.0373038
\(484\) −4268.70 −0.400892
\(485\) 1947.66 0.182348
\(486\) 1212.49 0.113168
\(487\) 12362.0 1.15026 0.575130 0.818062i \(-0.304952\pi\)
0.575130 + 0.818062i \(0.304952\pi\)
\(488\) 34045.9 3.15817
\(489\) 10698.4 0.989366
\(490\) −4081.32 −0.376276
\(491\) 18430.3 1.69399 0.846993 0.531604i \(-0.178410\pi\)
0.846993 + 0.531604i \(0.178410\pi\)
\(492\) 5857.92 0.536779
\(493\) 1930.11 0.176324
\(494\) 16163.2 1.47210
\(495\) −1477.73 −0.134180
\(496\) −2324.89 −0.210465
\(497\) −16019.8 −1.44585
\(498\) −4240.42 −0.381562
\(499\) 9338.78 0.837798 0.418899 0.908033i \(-0.362416\pi\)
0.418899 + 0.908033i \(0.362416\pi\)
\(500\) 2112.08 0.188910
\(501\) 5928.22 0.528649
\(502\) 17517.2 1.55743
\(503\) 19444.6 1.72364 0.861819 0.507216i \(-0.169326\pi\)
0.861819 + 0.507216i \(0.169326\pi\)
\(504\) −8992.23 −0.794733
\(505\) 1372.80 0.120968
\(506\) 960.895 0.0844210
\(507\) 3643.71 0.319177
\(508\) 26011.0 2.27176
\(509\) 11959.2 1.04142 0.520711 0.853733i \(-0.325667\pi\)
0.520711 + 0.853733i \(0.325667\pi\)
\(510\) −4981.34 −0.432505
\(511\) 1022.89 0.0885520
\(512\) 24130.3 2.08285
\(513\) 2790.42 0.240156
\(514\) −13382.7 −1.14842
\(515\) −4205.57 −0.359844
\(516\) −21075.8 −1.79808
\(517\) −384.943 −0.0327462
\(518\) 2050.10 0.173893
\(519\) 5508.43 0.465883
\(520\) −6956.91 −0.586694
\(521\) −2757.67 −0.231892 −0.115946 0.993256i \(-0.536990\pi\)
−0.115946 + 0.993256i \(0.536990\pi\)
\(522\) 1302.30 0.109196
\(523\) 3886.64 0.324954 0.162477 0.986712i \(-0.448052\pi\)
0.162477 + 0.986712i \(0.448052\pi\)
\(524\) 27457.9 2.28913
\(525\) −1688.07 −0.140330
\(526\) −20696.8 −1.71563
\(527\) 1792.50 0.148165
\(528\) 8504.14 0.700938
\(529\) −12132.6 −0.997173
\(530\) 6862.24 0.562409
\(531\) 1912.21 0.156276
\(532\) −39303.8 −3.20307
\(533\) −3622.20 −0.294362
\(534\) −12017.4 −0.973864
\(535\) −7445.22 −0.601654
\(536\) −11369.1 −0.916178
\(537\) −6725.60 −0.540467
\(538\) 37235.6 2.98390
\(539\) −5372.09 −0.429299
\(540\) −2281.04 −0.181779
\(541\) −11307.5 −0.898610 −0.449305 0.893379i \(-0.648328\pi\)
−0.449305 + 0.893379i \(0.648328\pi\)
\(542\) −34173.2 −2.70824
\(543\) −6254.24 −0.494282
\(544\) 5031.15 0.396524
\(545\) −4935.60 −0.387923
\(546\) 10560.2 0.827718
\(547\) 9195.12 0.718748 0.359374 0.933194i \(-0.382990\pi\)
0.359374 + 0.933194i \(0.382990\pi\)
\(548\) −15631.3 −1.21850
\(549\) −6902.59 −0.536604
\(550\) 4096.31 0.317577
\(551\) 2997.11 0.231727
\(552\) 780.981 0.0602187
\(553\) 7408.32 0.569681
\(554\) 500.940 0.0384168
\(555\) 273.822 0.0209425
\(556\) −54612.2 −4.16560
\(557\) 12391.1 0.942596 0.471298 0.881974i \(-0.343786\pi\)
0.471298 + 0.881974i \(0.343786\pi\)
\(558\) 1209.45 0.0917565
\(559\) 13032.1 0.986045
\(560\) 9714.62 0.733067
\(561\) −6556.75 −0.493451
\(562\) −18060.6 −1.35559
\(563\) 9161.81 0.685834 0.342917 0.939366i \(-0.388585\pi\)
0.342917 + 0.939366i \(0.388585\pi\)
\(564\) −594.203 −0.0443625
\(565\) 677.229 0.0504270
\(566\) 18426.0 1.36838
\(567\) 1823.11 0.135033
\(568\) 31595.4 2.33400
\(569\) −15614.8 −1.15045 −0.575226 0.817994i \(-0.695086\pi\)
−0.575226 + 0.817994i \(0.695086\pi\)
\(570\) −7735.12 −0.568401
\(571\) 13526.3 0.991345 0.495673 0.868509i \(-0.334922\pi\)
0.495673 + 0.868509i \(0.334922\pi\)
\(572\) −17391.4 −1.27128
\(573\) −12618.7 −0.919991
\(574\) 12978.4 0.943742
\(575\) 146.610 0.0106331
\(576\) −2820.60 −0.204037
\(577\) 21208.3 1.53018 0.765090 0.643923i \(-0.222694\pi\)
0.765090 + 0.643923i \(0.222694\pi\)
\(578\) 2411.76 0.173557
\(579\) 6141.85 0.440841
\(580\) −2450.01 −0.175399
\(581\) −6375.98 −0.455284
\(582\) 5830.89 0.415289
\(583\) 9032.50 0.641660
\(584\) −2017.42 −0.142948
\(585\) 1410.47 0.0996850
\(586\) 5852.09 0.412539
\(587\) 7975.12 0.560764 0.280382 0.959888i \(-0.409539\pi\)
0.280382 + 0.959888i \(0.409539\pi\)
\(588\) −8292.44 −0.581589
\(589\) 2783.43 0.194719
\(590\) −5300.69 −0.369875
\(591\) −13385.7 −0.931662
\(592\) −1575.81 −0.109401
\(593\) −6169.18 −0.427214 −0.213607 0.976920i \(-0.568521\pi\)
−0.213607 + 0.976920i \(0.568521\pi\)
\(594\) −4424.02 −0.305588
\(595\) −7490.03 −0.516069
\(596\) 12914.9 0.887611
\(597\) 5780.39 0.396274
\(598\) −917.158 −0.0627181
\(599\) 10909.8 0.744180 0.372090 0.928197i \(-0.378641\pi\)
0.372090 + 0.928197i \(0.378641\pi\)
\(600\) 3329.33 0.226532
\(601\) −11926.7 −0.809483 −0.404741 0.914431i \(-0.632638\pi\)
−0.404741 + 0.914431i \(0.632638\pi\)
\(602\) −46694.2 −3.16132
\(603\) 2305.02 0.155668
\(604\) 45986.5 3.09795
\(605\) −1263.18 −0.0848853
\(606\) 4109.86 0.275498
\(607\) −12043.2 −0.805301 −0.402650 0.915354i \(-0.631911\pi\)
−0.402650 + 0.915354i \(0.631911\pi\)
\(608\) 7812.47 0.521114
\(609\) 1958.16 0.130293
\(610\) 19134.2 1.27003
\(611\) 367.422 0.0243278
\(612\) −10121.1 −0.668498
\(613\) 11777.4 0.775992 0.387996 0.921661i \(-0.373168\pi\)
0.387996 + 0.921661i \(0.373168\pi\)
\(614\) 23077.6 1.51683
\(615\) 1733.46 0.113658
\(616\) 32810.1 2.14603
\(617\) −2907.19 −0.189691 −0.0948454 0.995492i \(-0.530236\pi\)
−0.0948454 + 0.995492i \(0.530236\pi\)
\(618\) −12590.6 −0.819527
\(619\) −839.647 −0.0545206 −0.0272603 0.999628i \(-0.508678\pi\)
−0.0272603 + 0.999628i \(0.508678\pi\)
\(620\) −2275.34 −0.147387
\(621\) −158.339 −0.0102317
\(622\) −28730.0 −1.85204
\(623\) −18069.6 −1.16203
\(624\) −8117.06 −0.520741
\(625\) 625.000 0.0400000
\(626\) 37515.6 2.39525
\(627\) −10181.4 −0.648497
\(628\) 29744.4 1.89002
\(629\) 1214.96 0.0770167
\(630\) −5053.73 −0.319596
\(631\) 9825.37 0.619876 0.309938 0.950757i \(-0.399692\pi\)
0.309938 + 0.950757i \(0.399692\pi\)
\(632\) −14611.2 −0.919625
\(633\) 13461.7 0.845265
\(634\) −3471.64 −0.217471
\(635\) 7697.11 0.481024
\(636\) 13942.7 0.869283
\(637\) 5127.57 0.318935
\(638\) −4751.72 −0.294863
\(639\) −6405.75 −0.396569
\(640\) 10842.5 0.669669
\(641\) −22040.3 −1.35810 −0.679049 0.734093i \(-0.737608\pi\)
−0.679049 + 0.734093i \(0.737608\pi\)
\(642\) −22289.4 −1.37024
\(643\) −21366.9 −1.31047 −0.655233 0.755427i \(-0.727429\pi\)
−0.655233 + 0.755427i \(0.727429\pi\)
\(644\) 2230.24 0.136466
\(645\) −6236.70 −0.380728
\(646\) −34321.0 −2.09031
\(647\) −5826.03 −0.354011 −0.177005 0.984210i \(-0.556641\pi\)
−0.177005 + 0.984210i \(0.556641\pi\)
\(648\) −3595.68 −0.217981
\(649\) −6977.10 −0.421995
\(650\) −3909.86 −0.235934
\(651\) 1818.55 0.109485
\(652\) −60255.8 −3.61933
\(653\) −20058.4 −1.20206 −0.601030 0.799227i \(-0.705243\pi\)
−0.601030 + 0.799227i \(0.705243\pi\)
\(654\) −14776.2 −0.883477
\(655\) 8125.26 0.484703
\(656\) −9975.82 −0.593735
\(657\) 409.019 0.0242882
\(658\) −1316.48 −0.0779963
\(659\) −28535.3 −1.68676 −0.843382 0.537315i \(-0.819439\pi\)
−0.843382 + 0.537315i \(0.819439\pi\)
\(660\) 8322.89 0.490860
\(661\) 15044.6 0.885274 0.442637 0.896701i \(-0.354043\pi\)
0.442637 + 0.896701i \(0.354043\pi\)
\(662\) 37602.6 2.20765
\(663\) 6258.31 0.366595
\(664\) 12575.2 0.734956
\(665\) −11630.7 −0.678222
\(666\) 819.765 0.0476956
\(667\) −170.067 −0.00987262
\(668\) −33389.0 −1.93392
\(669\) 15339.8 0.886506
\(670\) −6389.57 −0.368434
\(671\) 25185.6 1.44900
\(672\) 5104.27 0.293008
\(673\) 15511.3 0.888434 0.444217 0.895919i \(-0.353482\pi\)
0.444217 + 0.895919i \(0.353482\pi\)
\(674\) −32338.4 −1.84811
\(675\) −675.000 −0.0384900
\(676\) −20522.1 −1.16762
\(677\) −10695.3 −0.607170 −0.303585 0.952804i \(-0.598184\pi\)
−0.303585 + 0.952804i \(0.598184\pi\)
\(678\) 2027.48 0.114845
\(679\) 8767.43 0.495527
\(680\) 14772.4 0.833081
\(681\) 15775.3 0.887679
\(682\) −4412.94 −0.247772
\(683\) −11144.8 −0.624367 −0.312184 0.950022i \(-0.601060\pi\)
−0.312184 + 0.950022i \(0.601060\pi\)
\(684\) −15716.2 −0.878545
\(685\) −4625.58 −0.258006
\(686\) 20148.5 1.12139
\(687\) 15726.9 0.873390
\(688\) 35891.4 1.98887
\(689\) −8621.37 −0.476703
\(690\) 438.919 0.0242165
\(691\) −5380.30 −0.296203 −0.148102 0.988972i \(-0.547316\pi\)
−0.148102 + 0.988972i \(0.547316\pi\)
\(692\) −31024.7 −1.70431
\(693\) −6652.03 −0.364632
\(694\) 5760.31 0.315070
\(695\) −16160.7 −0.882029
\(696\) −3862.02 −0.210330
\(697\) 7691.42 0.417982
\(698\) −38204.2 −2.07171
\(699\) 18140.6 0.981601
\(700\) 9507.56 0.513360
\(701\) 21377.2 1.15179 0.575896 0.817523i \(-0.304653\pi\)
0.575896 + 0.817523i \(0.304653\pi\)
\(702\) 4222.65 0.227028
\(703\) 1886.61 0.101216
\(704\) 10291.6 0.550964
\(705\) −175.835 −0.00939337
\(706\) −5552.97 −0.296018
\(707\) 6179.67 0.328727
\(708\) −10769.9 −0.571694
\(709\) −1384.02 −0.0733116 −0.0366558 0.999328i \(-0.511671\pi\)
−0.0366558 + 0.999328i \(0.511671\pi\)
\(710\) 17756.9 0.938600
\(711\) 2962.33 0.156253
\(712\) 35638.1 1.87583
\(713\) −157.942 −0.00829592
\(714\) −22423.6 −1.17532
\(715\) −5146.40 −0.269181
\(716\) 37880.0 1.97715
\(717\) 637.936 0.0332275
\(718\) −61879.7 −3.21634
\(719\) −10439.9 −0.541504 −0.270752 0.962649i \(-0.587272\pi\)
−0.270752 + 0.962649i \(0.587272\pi\)
\(720\) 3884.54 0.201067
\(721\) −18931.4 −0.977869
\(722\) −19070.3 −0.982996
\(723\) 17572.8 0.903926
\(724\) 35225.2 1.80820
\(725\) −725.000 −0.0371391
\(726\) −3781.70 −0.193322
\(727\) 24684.5 1.25928 0.629640 0.776887i \(-0.283203\pi\)
0.629640 + 0.776887i \(0.283203\pi\)
\(728\) −31316.7 −1.59433
\(729\) 729.000 0.0370370
\(730\) −1133.81 −0.0574853
\(731\) −27672.5 −1.40014
\(732\) 38876.8 1.96302
\(733\) −858.035 −0.0432363 −0.0216182 0.999766i \(-0.506882\pi\)
−0.0216182 + 0.999766i \(0.506882\pi\)
\(734\) −56182.5 −2.82525
\(735\) −2453.87 −0.123146
\(736\) −443.309 −0.0222019
\(737\) −8410.35 −0.420352
\(738\) 5189.61 0.258851
\(739\) −10331.9 −0.514299 −0.257149 0.966372i \(-0.582783\pi\)
−0.257149 + 0.966372i \(0.582783\pi\)
\(740\) −1542.22 −0.0766124
\(741\) 9718.01 0.481782
\(742\) 30890.5 1.52834
\(743\) −27385.1 −1.35217 −0.676084 0.736824i \(-0.736324\pi\)
−0.676084 + 0.736824i \(0.736324\pi\)
\(744\) −3586.68 −0.176739
\(745\) 3821.75 0.187944
\(746\) 40164.9 1.97123
\(747\) −2549.53 −0.124876
\(748\) 36929.0 1.80516
\(749\) −33514.8 −1.63499
\(750\) 1871.12 0.0910982
\(751\) −40267.8 −1.95658 −0.978291 0.207234i \(-0.933554\pi\)
−0.978291 + 0.207234i \(0.933554\pi\)
\(752\) 1011.91 0.0490697
\(753\) 10532.1 0.509709
\(754\) 4535.44 0.219060
\(755\) 13608.2 0.655964
\(756\) −10268.2 −0.493981
\(757\) −7047.02 −0.338346 −0.169173 0.985586i \(-0.554110\pi\)
−0.169173 + 0.985586i \(0.554110\pi\)
\(758\) −48956.0 −2.34586
\(759\) 577.733 0.0276290
\(760\) 22938.8 1.09484
\(761\) 38699.3 1.84343 0.921714 0.387871i \(-0.126789\pi\)
0.921714 + 0.387871i \(0.126789\pi\)
\(762\) 23043.5 1.09551
\(763\) −22217.7 −1.05417
\(764\) 71071.3 3.36554
\(765\) −2995.00 −0.141548
\(766\) −33231.6 −1.56750
\(767\) 6659.52 0.313509
\(768\) 24938.6 1.17174
\(769\) −2374.27 −0.111337 −0.0556686 0.998449i \(-0.517729\pi\)
−0.0556686 + 0.998449i \(0.517729\pi\)
\(770\) 18439.6 0.863010
\(771\) −8046.29 −0.375850
\(772\) −34592.2 −1.61270
\(773\) −12947.9 −0.602464 −0.301232 0.953551i \(-0.597398\pi\)
−0.301232 + 0.953551i \(0.597398\pi\)
\(774\) −18671.4 −0.867091
\(775\) −673.311 −0.0312078
\(776\) −17291.7 −0.799920
\(777\) 1232.61 0.0569109
\(778\) 75024.6 3.45728
\(779\) 11943.4 0.549314
\(780\) −7944.05 −0.364670
\(781\) 23372.8 1.07086
\(782\) 1947.50 0.0890570
\(783\) 783.000 0.0357371
\(784\) 14121.7 0.643300
\(785\) 8801.88 0.400194
\(786\) 24325.3 1.10389
\(787\) −15659.1 −0.709260 −0.354630 0.935007i \(-0.615393\pi\)
−0.354630 + 0.935007i \(0.615393\pi\)
\(788\) 75390.8 3.40823
\(789\) −12443.8 −0.561485
\(790\) −8211.66 −0.369820
\(791\) 3048.56 0.137034
\(792\) 13119.6 0.588617
\(793\) −24039.2 −1.07649
\(794\) 11114.7 0.496786
\(795\) 4125.88 0.184063
\(796\) −32556.4 −1.44966
\(797\) 36033.7 1.60148 0.800739 0.599013i \(-0.204440\pi\)
0.800739 + 0.599013i \(0.204440\pi\)
\(798\) −34819.8 −1.54462
\(799\) −780.186 −0.0345444
\(800\) −1889.83 −0.0835195
\(801\) −7225.39 −0.318722
\(802\) 37927.4 1.66991
\(803\) −1492.39 −0.0655858
\(804\) −12982.3 −0.569467
\(805\) 659.967 0.0288954
\(806\) 4212.08 0.184075
\(807\) 22387.7 0.976560
\(808\) −12188.0 −0.530658
\(809\) 8941.26 0.388576 0.194288 0.980945i \(-0.437760\pi\)
0.194288 + 0.980945i \(0.437760\pi\)
\(810\) −2020.81 −0.0876593
\(811\) 31988.8 1.38506 0.692528 0.721391i \(-0.256497\pi\)
0.692528 + 0.721391i \(0.256497\pi\)
\(812\) −11028.8 −0.476643
\(813\) −20546.4 −0.886341
\(814\) −2991.09 −0.128793
\(815\) −17830.7 −0.766359
\(816\) 17235.8 0.739430
\(817\) −42970.3 −1.84008
\(818\) 65352.8 2.79341
\(819\) 6349.25 0.270892
\(820\) −9763.19 −0.415787
\(821\) −27919.3 −1.18683 −0.593417 0.804895i \(-0.702222\pi\)
−0.593417 + 0.804895i \(0.702222\pi\)
\(822\) −13848.0 −0.587597
\(823\) 44835.5 1.89899 0.949494 0.313784i \(-0.101597\pi\)
0.949494 + 0.313784i \(0.101597\pi\)
\(824\) 37337.9 1.57855
\(825\) 2462.88 0.103935
\(826\) −23861.2 −1.00513
\(827\) −26829.4 −1.12811 −0.564056 0.825737i \(-0.690760\pi\)
−0.564056 + 0.825737i \(0.690760\pi\)
\(828\) 891.797 0.0374300
\(829\) −34790.3 −1.45756 −0.728780 0.684748i \(-0.759912\pi\)
−0.728780 + 0.684748i \(0.759912\pi\)
\(830\) 7067.37 0.295557
\(831\) 301.187 0.0125729
\(832\) −9823.14 −0.409322
\(833\) −10887.9 −0.452874
\(834\) −48381.7 −2.00878
\(835\) −9880.36 −0.409490
\(836\) 57344.0 2.37235
\(837\) 727.176 0.0300297
\(838\) −54874.6 −2.26206
\(839\) 23387.9 0.962383 0.481192 0.876615i \(-0.340204\pi\)
0.481192 + 0.876615i \(0.340204\pi\)
\(840\) 14987.0 0.615598
\(841\) 841.000 0.0344828
\(842\) 65025.9 2.66145
\(843\) −10858.8 −0.443651
\(844\) −75818.9 −3.09217
\(845\) −6072.85 −0.247234
\(846\) −526.413 −0.0213930
\(847\) −5686.23 −0.230675
\(848\) −23743.9 −0.961520
\(849\) 11078.5 0.447838
\(850\) 8302.23 0.335017
\(851\) −107.053 −0.00431226
\(852\) 36078.5 1.45074
\(853\) 3915.34 0.157161 0.0785807 0.996908i \(-0.474961\pi\)
0.0785807 + 0.996908i \(0.474961\pi\)
\(854\) 86132.8 3.45129
\(855\) −4650.70 −0.186024
\(856\) 66100.3 2.63932
\(857\) 31094.8 1.23942 0.619708 0.784833i \(-0.287251\pi\)
0.619708 + 0.784833i \(0.287251\pi\)
\(858\) −15407.2 −0.613047
\(859\) 9069.15 0.360227 0.180114 0.983646i \(-0.442353\pi\)
0.180114 + 0.983646i \(0.442353\pi\)
\(860\) 35126.4 1.39279
\(861\) 7803.19 0.308864
\(862\) 3901.20 0.154148
\(863\) −18282.8 −0.721151 −0.360576 0.932730i \(-0.617420\pi\)
−0.360576 + 0.932730i \(0.617420\pi\)
\(864\) 2041.02 0.0803667
\(865\) −9180.72 −0.360872
\(866\) −45704.3 −1.79341
\(867\) 1450.06 0.0568011
\(868\) −10242.5 −0.400521
\(869\) −10808.7 −0.421933
\(870\) −2170.50 −0.0845825
\(871\) 8027.54 0.312288
\(872\) 43819.3 1.70173
\(873\) 3505.79 0.135914
\(874\) 3024.12 0.117039
\(875\) 2813.45 0.108699
\(876\) −2303.68 −0.0888517
\(877\) 4534.49 0.174594 0.0872970 0.996182i \(-0.472177\pi\)
0.0872970 + 0.996182i \(0.472177\pi\)
\(878\) 20201.2 0.776490
\(879\) 3518.54 0.135014
\(880\) −14173.6 −0.542944
\(881\) 27949.4 1.06883 0.534415 0.845223i \(-0.320532\pi\)
0.534415 + 0.845223i \(0.320532\pi\)
\(882\) −7346.38 −0.280460
\(883\) 7755.96 0.295593 0.147797 0.989018i \(-0.452782\pi\)
0.147797 + 0.989018i \(0.452782\pi\)
\(884\) −35248.1 −1.34109
\(885\) −3187.01 −0.121051
\(886\) 32543.9 1.23401
\(887\) 28219.5 1.06823 0.534115 0.845412i \(-0.320645\pi\)
0.534115 + 0.845412i \(0.320645\pi\)
\(888\) −2431.05 −0.0918701
\(889\) 34648.7 1.30718
\(890\) 20029.0 0.754352
\(891\) −2659.91 −0.100012
\(892\) −86397.2 −3.24304
\(893\) −1211.49 −0.0453985
\(894\) 11441.5 0.428033
\(895\) 11209.3 0.418644
\(896\) 48807.8 1.81981
\(897\) −551.436 −0.0205261
\(898\) 24682.7 0.917230
\(899\) 781.041 0.0289757
\(900\) 3801.74 0.140805
\(901\) 18306.7 0.676897
\(902\) −18935.4 −0.698980
\(903\) −28074.6 −1.03462
\(904\) −6012.58 −0.221212
\(905\) 10423.7 0.382869
\(906\) 40740.1 1.49393
\(907\) 182.994 0.00669926 0.00334963 0.999994i \(-0.498934\pi\)
0.00334963 + 0.999994i \(0.498934\pi\)
\(908\) −88849.6 −3.24733
\(909\) 2471.03 0.0901639
\(910\) −17600.3 −0.641148
\(911\) −15870.4 −0.577179 −0.288590 0.957453i \(-0.593186\pi\)
−0.288590 + 0.957453i \(0.593186\pi\)
\(912\) 26764.1 0.971765
\(913\) 9302.52 0.337205
\(914\) −80391.9 −2.90933
\(915\) 11504.3 0.415651
\(916\) −88577.2 −3.19506
\(917\) 36576.0 1.31717
\(918\) −8966.41 −0.322370
\(919\) −14707.3 −0.527908 −0.263954 0.964535i \(-0.585027\pi\)
−0.263954 + 0.964535i \(0.585027\pi\)
\(920\) −1301.63 −0.0466452
\(921\) 13875.3 0.496423
\(922\) −16129.0 −0.576116
\(923\) −22308.9 −0.795566
\(924\) 37465.6 1.33391
\(925\) −456.369 −0.0162220
\(926\) −33747.6 −1.19764
\(927\) −7570.02 −0.268212
\(928\) 2192.20 0.0775459
\(929\) 4008.12 0.141552 0.0707762 0.997492i \(-0.477452\pi\)
0.0707762 + 0.997492i \(0.477452\pi\)
\(930\) −2015.75 −0.0710743
\(931\) −16907.0 −0.595171
\(932\) −102171. −3.59092
\(933\) −17273.7 −0.606127
\(934\) −12272.1 −0.429932
\(935\) 10927.9 0.382226
\(936\) −12522.4 −0.437296
\(937\) 17088.4 0.595788 0.297894 0.954599i \(-0.403716\pi\)
0.297894 + 0.954599i \(0.403716\pi\)
\(938\) −28762.8 −1.00121
\(939\) 22556.1 0.783908
\(940\) 990.339 0.0343631
\(941\) 1981.60 0.0686486 0.0343243 0.999411i \(-0.489072\pi\)
0.0343243 + 0.999411i \(0.489072\pi\)
\(942\) 26351.0 0.911424
\(943\) −677.712 −0.0234033
\(944\) 18340.8 0.632355
\(945\) −3038.52 −0.104596
\(946\) 68126.5 2.34142
\(947\) −19125.0 −0.656260 −0.328130 0.944633i \(-0.606418\pi\)
−0.328130 + 0.944633i \(0.606418\pi\)
\(948\) −16684.4 −0.571609
\(949\) 1424.46 0.0487251
\(950\) 12891.9 0.440281
\(951\) −2087.31 −0.0711730
\(952\) 66498.1 2.26388
\(953\) 10338.6 0.351416 0.175708 0.984442i \(-0.443778\pi\)
0.175708 + 0.984442i \(0.443778\pi\)
\(954\) 12352.0 0.419195
\(955\) 21031.2 0.712622
\(956\) −3592.99 −0.121554
\(957\) −2856.95 −0.0965015
\(958\) −16006.0 −0.539802
\(959\) −20822.1 −0.701128
\(960\) 4701.00 0.158046
\(961\) −29065.6 −0.975652
\(962\) 2854.94 0.0956831
\(963\) −13401.4 −0.448447
\(964\) −98973.5 −3.30677
\(965\) −10236.4 −0.341474
\(966\) 1975.80 0.0658079
\(967\) −18633.6 −0.619664 −0.309832 0.950791i \(-0.600273\pi\)
−0.309832 + 0.950791i \(0.600273\pi\)
\(968\) 11214.8 0.372373
\(969\) −20635.3 −0.684109
\(970\) −9718.15 −0.321681
\(971\) −39486.5 −1.30503 −0.652515 0.757776i \(-0.726286\pi\)
−0.652515 + 0.757776i \(0.726286\pi\)
\(972\) −4105.88 −0.135490
\(973\) −72747.6 −2.39690
\(974\) −61682.1 −2.02918
\(975\) −2350.78 −0.0772156
\(976\) −66205.8 −2.17131
\(977\) 33392.3 1.09346 0.546731 0.837308i \(-0.315872\pi\)
0.546731 + 0.837308i \(0.315872\pi\)
\(978\) −53381.5 −1.74535
\(979\) 26363.4 0.860651
\(980\) 13820.7 0.450497
\(981\) −8884.08 −0.289141
\(982\) −91960.7 −2.98838
\(983\) 20923.0 0.678880 0.339440 0.940628i \(-0.389762\pi\)
0.339440 + 0.940628i \(0.389762\pi\)
\(984\) −15390.0 −0.498593
\(985\) 22309.4 0.721662
\(986\) −9630.59 −0.311055
\(987\) −791.524 −0.0255263
\(988\) −54733.9 −1.76247
\(989\) 2438.30 0.0783957
\(990\) 7373.36 0.236708
\(991\) 44681.6 1.43225 0.716124 0.697973i \(-0.245914\pi\)
0.716124 + 0.697973i \(0.245914\pi\)
\(992\) 2035.91 0.0651615
\(993\) 22608.3 0.722512
\(994\) 79933.2 2.55063
\(995\) −9633.98 −0.306953
\(996\) 14359.5 0.456825
\(997\) −49844.7 −1.58335 −0.791674 0.610944i \(-0.790790\pi\)
−0.791674 + 0.610944i \(0.790790\pi\)
\(998\) −46597.2 −1.47797
\(999\) 492.879 0.0156096
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.4.a.g.1.1 6
3.2 odd 2 1305.4.a.i.1.6 6
5.4 even 2 2175.4.a.l.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.g.1.1 6 1.1 even 1 trivial
1305.4.a.i.1.6 6 3.2 odd 2
2175.4.a.l.1.6 6 5.4 even 2