Properties

Label 435.4.a.g
Level $435$
Weight $4$
Character orbit 435.a
Self dual yes
Analytic conductor $25.666$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 31x^{4} + 9x^{3} + 230x^{2} + 32x - 128 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 3 q^{3} + (\beta_{4} + \beta_{2} + \beta_1 + 2) q^{4} + 5 q^{5} + 3 \beta_1 q^{6} + ( - \beta_{5} + \beta_{4} + \beta_{3} + \cdots + 3) q^{7}+ \cdots + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} - 3 q^{3} + (\beta_{4} + \beta_{2} + \beta_1 + 2) q^{4} + 5 q^{5} + 3 \beta_1 q^{6} + ( - \beta_{5} + \beta_{4} + \beta_{3} + \cdots + 3) q^{7}+ \cdots + (36 \beta_{5} - 18 \beta_{4} + \cdots - 144) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 18 q^{3} + 15 q^{4} + 30 q^{5} + 3 q^{6} + 23 q^{7} - 51 q^{8} + 54 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{2} - 18 q^{3} + 15 q^{4} + 30 q^{5} + 3 q^{6} + 23 q^{7} - 51 q^{8} + 54 q^{9} - 5 q^{10} - 111 q^{11} - 45 q^{12} - 83 q^{13} - 102 q^{14} - 90 q^{15} - 37 q^{16} - 35 q^{17} - 9 q^{18} - 76 q^{19} + 75 q^{20} - 69 q^{21} + 66 q^{22} + 166 q^{23} + 153 q^{24} + 150 q^{25} - 282 q^{26} - 162 q^{27} + 368 q^{28} - 174 q^{29} + 15 q^{30} - 164 q^{31} - 259 q^{32} + 333 q^{33} + 512 q^{34} + 115 q^{35} + 135 q^{36} - 538 q^{37} + 6 q^{38} + 249 q^{39} - 255 q^{40} - 1250 q^{41} + 306 q^{42} - 80 q^{43} - 1004 q^{44} + 270 q^{45} - 1190 q^{46} - 491 q^{47} + 111 q^{48} - 969 q^{49} - 25 q^{50} + 105 q^{51} - 336 q^{52} - 356 q^{53} + 27 q^{54} - 555 q^{55} - 1260 q^{56} + 228 q^{57} + 29 q^{58} - 646 q^{59} - 225 q^{60} - 1476 q^{61} - 4 q^{62} + 207 q^{63} - 845 q^{64} - 415 q^{65} - 198 q^{66} + 87 q^{67} - 558 q^{68} - 498 q^{69} - 510 q^{70} - 1312 q^{71} - 459 q^{72} - 1142 q^{73} - 2270 q^{74} - 450 q^{75} - 1594 q^{76} - 2561 q^{77} + 846 q^{78} - 142 q^{79} - 185 q^{80} + 486 q^{81} - 1544 q^{82} + 346 q^{83} - 1104 q^{84} - 175 q^{85} - 2056 q^{86} + 522 q^{87} + 1400 q^{88} - 2827 q^{89} - 45 q^{90} + 1379 q^{91} - 1434 q^{92} + 492 q^{93} + 978 q^{94} - 380 q^{95} + 777 q^{96} - 4 q^{97} - 1903 q^{98} - 999 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 31x^{4} + 9x^{3} + 230x^{2} + 32x - 128 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 17\nu^{2} + 18\nu + 16 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 2\nu^{2} - 15\nu + 12 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{4} + 2\nu^{3} + 25\nu^{2} - 26\nu - 96 ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 25\nu^{3} + 26\nu^{2} + 128\nu - 24 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{2} + \beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{4} + 2\beta_{3} + 2\beta_{2} + 17\beta _1 + 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 21\beta_{4} + 4\beta_{3} + 29\beta_{2} + 33\beta _1 + 170 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8\beta_{5} + 66\beta_{4} + 58\beta_{3} + 82\beta_{2} + 337\beta _1 + 304 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.98965
3.33404
0.691666
−0.886494
−3.16884
−3.96002
−4.98965 −3.00000 16.8966 5.00000 14.9690 22.5076 −44.3911 9.00000 −24.9483
1.2 −3.33404 −3.00000 3.11579 5.00000 10.0021 1.26363 16.2841 9.00000 −16.6702
1.3 −0.691666 −3.00000 −7.52160 5.00000 2.07500 −14.5720 10.7358 9.00000 −3.45833
1.4 0.886494 −3.00000 −7.21413 5.00000 −2.65948 17.9759 −13.4872 9.00000 4.43247
1.5 3.16884 −3.00000 2.04152 5.00000 −9.50651 −6.36645 −18.8814 9.00000 15.8442
1.6 3.96002 −3.00000 7.68179 5.00000 −11.8801 2.19133 −1.26012 9.00000 19.8001
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.4.a.g 6
3.b odd 2 1 1305.4.a.i 6
5.b even 2 1 2175.4.a.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.4.a.g 6 1.a even 1 1 trivial
1305.4.a.i 6 3.b odd 2 1
2175.4.a.l 6 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + T_{2}^{5} - 31T_{2}^{4} - 9T_{2}^{3} + 230T_{2}^{2} - 32T_{2} - 128 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(435))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{5} + \cdots - 128 \) Copy content Toggle raw display
$3$ \( (T + 3)^{6} \) Copy content Toggle raw display
$5$ \( (T - 5)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 23 T^{5} + \cdots + 103936 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 4447644416 \) Copy content Toggle raw display
$13$ \( T^{6} + 83 T^{5} + \cdots - 755576576 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 35167804928 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 70167660032 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 17557826816 \) Copy content Toggle raw display
$29$ \( (T + 29)^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 679337811968 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 11015322431488 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 2844920728576 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 1852550152192 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 36309886959616 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 31\!\cdots\!44 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 82\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 99\!\cdots\!48 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 136347629123072 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 859390658797568 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 17\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 34\!\cdots\!76 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 45\!\cdots\!08 \) Copy content Toggle raw display
show more
show less