Properties

Label 435.4.a.f
Level $435$
Weight $4$
Character orbit 435.a
Self dual yes
Analytic conductor $25.666$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 23x^{3} + 38x^{2} + 90x - 116 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 3 q^{3} + (\beta_{2} + 2) q^{4} - 5 q^{5} - 3 \beta_1 q^{6} + ( - \beta_{4} - 2 \beta_1 - 5) q^{7} + (\beta_{3} + \beta_{2} - \beta_1) q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} - 3 q^{3} + (\beta_{2} + 2) q^{4} - 5 q^{5} - 3 \beta_1 q^{6} + ( - \beta_{4} - 2 \beta_1 - 5) q^{7} + (\beta_{3} + \beta_{2} - \beta_1) q^{8} + 9 q^{9} - 5 \beta_1 q^{10} + (5 \beta_{2} + 3) q^{11} + ( - 3 \beta_{2} - 6) q^{12} + (\beta_{4} + 4 \beta_{2} + 2 \beta_1 - 7) q^{13} + ( - 2 \beta_{4} - 4 \beta_{2} + \cdots - 22) q^{14}+ \cdots + (45 \beta_{2} + 27) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} - 15 q^{3} + 10 q^{4} - 25 q^{5} - 6 q^{6} - 29 q^{7} + 45 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 2 q^{2} - 15 q^{3} + 10 q^{4} - 25 q^{5} - 6 q^{6} - 29 q^{7} + 45 q^{9} - 10 q^{10} + 15 q^{11} - 30 q^{12} - 31 q^{13} - 114 q^{14} + 75 q^{15} - 102 q^{16} + 119 q^{17} + 18 q^{18} + 46 q^{19} - 50 q^{20} + 87 q^{21} + 66 q^{22} + 170 q^{23} + 125 q^{25} + 138 q^{26} - 135 q^{27} + 32 q^{28} - 145 q^{29} + 30 q^{30} - 240 q^{31} + 152 q^{32} - 45 q^{33} + 290 q^{34} + 145 q^{35} + 90 q^{36} + 570 q^{37} + 1380 q^{38} + 93 q^{39} - 180 q^{41} + 342 q^{42} - 110 q^{43} + 1420 q^{44} - 225 q^{45} + 696 q^{46} + 697 q^{47} + 306 q^{48} - 362 q^{49} + 50 q^{50} - 357 q^{51} + 960 q^{52} + 960 q^{53} - 54 q^{54} - 75 q^{55} - 224 q^{56} - 138 q^{57} - 58 q^{58} + 154 q^{59} + 150 q^{60} + 360 q^{61} + 1176 q^{62} - 261 q^{63} - 486 q^{64} + 155 q^{65} - 198 q^{66} + 517 q^{67} + 1812 q^{68} - 510 q^{69} + 570 q^{70} - 172 q^{71} + 1882 q^{73} + 1476 q^{74} - 375 q^{75} + 884 q^{76} + 363 q^{77} - 414 q^{78} - 478 q^{79} + 510 q^{80} + 405 q^{81} - 1412 q^{82} + 2356 q^{83} - 96 q^{84} - 595 q^{85} + 272 q^{86} + 435 q^{87} + 1400 q^{88} + 449 q^{89} - 90 q^{90} - 645 q^{91} + 1072 q^{92} + 720 q^{93} + 466 q^{94} - 230 q^{95} - 456 q^{96} + 88 q^{97} + 1780 q^{98} + 135 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 23x^{3} + 38x^{2} + 90x - 116 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 15\nu + 10 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 23\nu^{2} - 4\nu + 76 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 15\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{4} + 23\beta_{2} + 4\beta _1 + 154 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.12552
−2.12043
1.13455
2.57832
4.53309
−4.12552 −3.00000 9.01995 −5.00000 12.3766 7.89008 −4.20783 9.00000 20.6276
1.2 −2.12043 −3.00000 −3.50376 −5.00000 6.36130 −1.40136 24.3930 9.00000 10.6022
1.3 1.13455 −3.00000 −6.71280 −5.00000 −3.40364 −29.0256 −16.6924 9.00000 −5.67274
1.4 2.57832 −3.00000 −1.35225 −5.00000 −7.73497 11.3529 −24.1131 9.00000 −12.8916
1.5 4.53309 −3.00000 12.5489 −5.00000 −13.5993 −17.8159 20.6204 9.00000 −22.6654
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.4.a.f 5
3.b odd 2 1 1305.4.a.g 5
5.b even 2 1 2175.4.a.j 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.4.a.f 5 1.a even 1 1 trivial
1305.4.a.g 5 3.b odd 2 1
2175.4.a.j 5 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{5} - 2T_{2}^{4} - 23T_{2}^{3} + 38T_{2}^{2} + 90T_{2} - 116 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(435))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 2 T^{4} + \cdots - 116 \) Copy content Toggle raw display
$3$ \( (T + 3)^{5} \) Copy content Toggle raw display
$5$ \( (T + 5)^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + 29 T^{4} + \cdots + 64912 \) Copy content Toggle raw display
$11$ \( T^{5} - 15 T^{4} + \cdots + 29068332 \) Copy content Toggle raw display
$13$ \( T^{5} + 31 T^{4} + \cdots + 8403376 \) Copy content Toggle raw display
$17$ \( T^{5} - 119 T^{4} + \cdots + 130071808 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 6222267424 \) Copy content Toggle raw display
$23$ \( T^{5} - 170 T^{4} + \cdots - 31859584 \) Copy content Toggle raw display
$29$ \( (T + 29)^{5} \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 22866112000 \) Copy content Toggle raw display
$37$ \( T^{5} - 570 T^{4} + \cdots + 318330576 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 4212050444712 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 66497819328 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 19681644288 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 15607459176 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 2775803904 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 10432735987200 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 3957838742128 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 1075530164736 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 1589482814112 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 5147612247168 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 216952111909256 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 170678758313808 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 79624452250024 \) Copy content Toggle raw display
show more
show less