Defining parameters
Level: | \( N \) | \(=\) | \( 435 = 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 435.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(435))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 56 | 128 |
Cusp forms | 176 | 56 | 120 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(29\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(5\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(8\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(6\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(9\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(7\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(8\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(10\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(3\) |
Plus space | \(+\) | \(32\) | ||
Minus space | \(-\) | \(24\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(435))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(435))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(435)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 2}\)