Defining parameters
Level: | \( N \) | \(=\) | \( 435 = 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 435.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 435 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(11\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(435, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 124 | 124 | 0 |
Cusp forms | 116 | 116 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(435, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
435.3.b.a | $1$ | $11.853$ | \(\Q\) | \(\Q(\sqrt{-435}) \) | \(0\) | \(-3\) | \(-5\) | \(0\) | \(q-3q^{3}+4q^{4}-5q^{5}+9q^{9}-7q^{11}+\cdots\) |
435.3.b.b | $1$ | $11.853$ | \(\Q\) | \(\Q(\sqrt{-435}) \) | \(0\) | \(-3\) | \(5\) | \(0\) | \(q-3q^{3}+4q^{4}+5q^{5}+9q^{9}+7q^{11}+\cdots\) |
435.3.b.c | $1$ | $11.853$ | \(\Q\) | \(\Q(\sqrt{-435}) \) | \(0\) | \(3\) | \(-5\) | \(0\) | \(q+3q^{3}+4q^{4}-5q^{5}+9q^{9}+7q^{11}+\cdots\) |
435.3.b.d | $1$ | $11.853$ | \(\Q\) | \(\Q(\sqrt{-435}) \) | \(0\) | \(3\) | \(5\) | \(0\) | \(q+3q^{3}+4q^{4}+5q^{5}+9q^{9}-7q^{11}+\cdots\) |
435.3.b.e | $112$ | $11.853$ | None | \(0\) | \(0\) | \(0\) | \(0\) |