Properties

Label 435.3.b
Level $435$
Weight $3$
Character orbit 435.b
Rep. character $\chi_{435}(434,\cdot)$
Character field $\Q$
Dimension $116$
Newform subspaces $5$
Sturm bound $180$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 435.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 435 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(180\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(11\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(435, [\chi])\).

Total New Old
Modular forms 124 124 0
Cusp forms 116 116 0
Eisenstein series 8 8 0

Trace form

\( 116 q - 232 q^{4} + 4 q^{6} - 16 q^{9} + O(q^{10}) \) \( 116 q - 232 q^{4} + 4 q^{6} - 16 q^{9} + 440 q^{16} - 108 q^{24} - 64 q^{25} + 124 q^{30} + 56 q^{34} + 12 q^{36} - 76 q^{45} - 316 q^{49} + 112 q^{51} - 164 q^{54} - 544 q^{64} - 168 q^{81} + 336 q^{91} - 176 q^{94} + 180 q^{96} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(435, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
435.3.b.a 435.b 435.b $1$ $11.853$ \(\Q\) \(\Q(\sqrt{-435}) \) 435.3.b.a \(0\) \(-3\) \(-5\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-3q^{3}+4q^{4}-5q^{5}+9q^{9}-7q^{11}+\cdots\)
435.3.b.b 435.b 435.b $1$ $11.853$ \(\Q\) \(\Q(\sqrt{-435}) \) 435.3.b.a \(0\) \(-3\) \(5\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-3q^{3}+4q^{4}+5q^{5}+9q^{9}+7q^{11}+\cdots\)
435.3.b.c 435.b 435.b $1$ $11.853$ \(\Q\) \(\Q(\sqrt{-435}) \) 435.3.b.a \(0\) \(3\) \(-5\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+3q^{3}+4q^{4}-5q^{5}+9q^{9}+7q^{11}+\cdots\)
435.3.b.d 435.b 435.b $1$ $11.853$ \(\Q\) \(\Q(\sqrt{-435}) \) 435.3.b.a \(0\) \(3\) \(5\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+3q^{3}+4q^{4}+5q^{5}+9q^{9}-7q^{11}+\cdots\)
435.3.b.e 435.b 435.b $112$ $11.853$ None 435.3.b.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$