Properties

Label 435.2.f.d.289.2
Level $435$
Weight $2$
Character 435.289
Analytic conductor $3.473$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,2,Mod(289,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.47349248793\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 435.289
Dual form 435.2.f.d.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -1.00000 q^{3} +2.00000 q^{4} +(2.00000 + 1.00000i) q^{5} -2.00000 q^{6} +4.00000i q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{2} -1.00000 q^{3} +2.00000 q^{4} +(2.00000 + 1.00000i) q^{5} -2.00000 q^{6} +4.00000i q^{7} +1.00000 q^{9} +(4.00000 + 2.00000i) q^{10} -1.00000i q^{11} -2.00000 q^{12} +2.00000i q^{13} +8.00000i q^{14} +(-2.00000 - 1.00000i) q^{15} -4.00000 q^{16} +6.00000 q^{17} +2.00000 q^{18} -4.00000i q^{19} +(4.00000 + 2.00000i) q^{20} -4.00000i q^{21} -2.00000i q^{22} -9.00000i q^{23} +(3.00000 + 4.00000i) q^{25} +4.00000i q^{26} -1.00000 q^{27} +8.00000i q^{28} +(-2.00000 + 5.00000i) q^{29} +(-4.00000 - 2.00000i) q^{30} -2.00000i q^{31} -8.00000 q^{32} +1.00000i q^{33} +12.0000 q^{34} +(-4.00000 + 8.00000i) q^{35} +2.00000 q^{36} +1.00000 q^{37} -8.00000i q^{38} -2.00000i q^{39} -9.00000i q^{41} -8.00000i q^{42} +1.00000 q^{43} -2.00000i q^{44} +(2.00000 + 1.00000i) q^{45} -18.0000i q^{46} -8.00000 q^{47} +4.00000 q^{48} -9.00000 q^{49} +(6.00000 + 8.00000i) q^{50} -6.00000 q^{51} +4.00000i q^{52} +9.00000i q^{53} -2.00000 q^{54} +(1.00000 - 2.00000i) q^{55} +4.00000i q^{57} +(-4.00000 + 10.0000i) q^{58} +8.00000 q^{59} +(-4.00000 - 2.00000i) q^{60} -6.00000i q^{61} -4.00000i q^{62} +4.00000i q^{63} -8.00000 q^{64} +(-2.00000 + 4.00000i) q^{65} +2.00000i q^{66} -12.0000i q^{67} +12.0000 q^{68} +9.00000i q^{69} +(-8.00000 + 16.0000i) q^{70} +2.00000 q^{71} -15.0000 q^{73} +2.00000 q^{74} +(-3.00000 - 4.00000i) q^{75} -8.00000i q^{76} +4.00000 q^{77} -4.00000i q^{78} +4.00000i q^{79} +(-8.00000 - 4.00000i) q^{80} +1.00000 q^{81} -18.0000i q^{82} -7.00000i q^{83} -8.00000i q^{84} +(12.0000 + 6.00000i) q^{85} +2.00000 q^{86} +(2.00000 - 5.00000i) q^{87} +2.00000i q^{89} +(4.00000 + 2.00000i) q^{90} -8.00000 q^{91} -18.0000i q^{92} +2.00000i q^{93} -16.0000 q^{94} +(4.00000 - 8.00000i) q^{95} +8.00000 q^{96} -11.0000 q^{97} -18.0000 q^{98} -1.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 2 q^{3} + 4 q^{4} + 4 q^{5} - 4 q^{6} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{2} - 2 q^{3} + 4 q^{4} + 4 q^{5} - 4 q^{6} + 2 q^{9} + 8 q^{10} - 4 q^{12} - 4 q^{15} - 8 q^{16} + 12 q^{17} + 4 q^{18} + 8 q^{20} + 6 q^{25} - 2 q^{27} - 4 q^{29} - 8 q^{30} - 16 q^{32} + 24 q^{34} - 8 q^{35} + 4 q^{36} + 2 q^{37} + 2 q^{43} + 4 q^{45} - 16 q^{47} + 8 q^{48} - 18 q^{49} + 12 q^{50} - 12 q^{51} - 4 q^{54} + 2 q^{55} - 8 q^{58} + 16 q^{59} - 8 q^{60} - 16 q^{64} - 4 q^{65} + 24 q^{68} - 16 q^{70} + 4 q^{71} - 30 q^{73} + 4 q^{74} - 6 q^{75} + 8 q^{77} - 16 q^{80} + 2 q^{81} + 24 q^{85} + 4 q^{86} + 4 q^{87} + 8 q^{90} - 16 q^{91} - 32 q^{94} + 8 q^{95} + 16 q^{96} - 22 q^{97} - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/435\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(146\) \(262\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(3\) −1.00000 −0.577350
\(4\) 2.00000 1.00000
\(5\) 2.00000 + 1.00000i 0.894427 + 0.447214i
\(6\) −2.00000 −0.816497
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 4.00000 + 2.00000i 1.26491 + 0.632456i
\(11\) 1.00000i 0.301511i −0.988571 0.150756i \(-0.951829\pi\)
0.988571 0.150756i \(-0.0481707\pi\)
\(12\) −2.00000 −0.577350
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 8.00000i 2.13809i
\(15\) −2.00000 1.00000i −0.516398 0.258199i
\(16\) −4.00000 −1.00000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 2.00000 0.471405
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 4.00000 + 2.00000i 0.894427 + 0.447214i
\(21\) 4.00000i 0.872872i
\(22\) 2.00000i 0.426401i
\(23\) 9.00000i 1.87663i −0.345782 0.938315i \(-0.612386\pi\)
0.345782 0.938315i \(-0.387614\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 4.00000i 0.784465i
\(27\) −1.00000 −0.192450
\(28\) 8.00000i 1.51186i
\(29\) −2.00000 + 5.00000i −0.371391 + 0.928477i
\(30\) −4.00000 2.00000i −0.730297 0.365148i
\(31\) 2.00000i 0.359211i −0.983739 0.179605i \(-0.942518\pi\)
0.983739 0.179605i \(-0.0574821\pi\)
\(32\) −8.00000 −1.41421
\(33\) 1.00000i 0.174078i
\(34\) 12.0000 2.05798
\(35\) −4.00000 + 8.00000i −0.676123 + 1.35225i
\(36\) 2.00000 0.333333
\(37\) 1.00000 0.164399 0.0821995 0.996616i \(-0.473806\pi\)
0.0821995 + 0.996616i \(0.473806\pi\)
\(38\) 8.00000i 1.29777i
\(39\) 2.00000i 0.320256i
\(40\) 0 0
\(41\) 9.00000i 1.40556i −0.711405 0.702782i \(-0.751941\pi\)
0.711405 0.702782i \(-0.248059\pi\)
\(42\) 8.00000i 1.23443i
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 2.00000i 0.301511i
\(45\) 2.00000 + 1.00000i 0.298142 + 0.149071i
\(46\) 18.0000i 2.65396i
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 4.00000 0.577350
\(49\) −9.00000 −1.28571
\(50\) 6.00000 + 8.00000i 0.848528 + 1.13137i
\(51\) −6.00000 −0.840168
\(52\) 4.00000i 0.554700i
\(53\) 9.00000i 1.23625i 0.786082 + 0.618123i \(0.212106\pi\)
−0.786082 + 0.618123i \(0.787894\pi\)
\(54\) −2.00000 −0.272166
\(55\) 1.00000 2.00000i 0.134840 0.269680i
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) −4.00000 + 10.0000i −0.525226 + 1.31306i
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) −4.00000 2.00000i −0.516398 0.258199i
\(61\) 6.00000i 0.768221i −0.923287 0.384111i \(-0.874508\pi\)
0.923287 0.384111i \(-0.125492\pi\)
\(62\) 4.00000i 0.508001i
\(63\) 4.00000i 0.503953i
\(64\) −8.00000 −1.00000
\(65\) −2.00000 + 4.00000i −0.248069 + 0.496139i
\(66\) 2.00000i 0.246183i
\(67\) 12.0000i 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) 12.0000 1.45521
\(69\) 9.00000i 1.08347i
\(70\) −8.00000 + 16.0000i −0.956183 + 1.91237i
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) −15.0000 −1.75562 −0.877809 0.479012i \(-0.840995\pi\)
−0.877809 + 0.479012i \(0.840995\pi\)
\(74\) 2.00000 0.232495
\(75\) −3.00000 4.00000i −0.346410 0.461880i
\(76\) 8.00000i 0.917663i
\(77\) 4.00000 0.455842
\(78\) 4.00000i 0.452911i
\(79\) 4.00000i 0.450035i 0.974355 + 0.225018i \(0.0722440\pi\)
−0.974355 + 0.225018i \(0.927756\pi\)
\(80\) −8.00000 4.00000i −0.894427 0.447214i
\(81\) 1.00000 0.111111
\(82\) 18.0000i 1.98777i
\(83\) 7.00000i 0.768350i −0.923260 0.384175i \(-0.874486\pi\)
0.923260 0.384175i \(-0.125514\pi\)
\(84\) 8.00000i 0.872872i
\(85\) 12.0000 + 6.00000i 1.30158 + 0.650791i
\(86\) 2.00000 0.215666
\(87\) 2.00000 5.00000i 0.214423 0.536056i
\(88\) 0 0
\(89\) 2.00000i 0.212000i 0.994366 + 0.106000i \(0.0338043\pi\)
−0.994366 + 0.106000i \(0.966196\pi\)
\(90\) 4.00000 + 2.00000i 0.421637 + 0.210819i
\(91\) −8.00000 −0.838628
\(92\) 18.0000i 1.87663i
\(93\) 2.00000i 0.207390i
\(94\) −16.0000 −1.65027
\(95\) 4.00000 8.00000i 0.410391 0.820783i
\(96\) 8.00000 0.816497
\(97\) −11.0000 −1.11688 −0.558440 0.829545i \(-0.688600\pi\)
−0.558440 + 0.829545i \(0.688600\pi\)
\(98\) −18.0000 −1.81827
\(99\) 1.00000i 0.100504i
\(100\) 6.00000 + 8.00000i 0.600000 + 0.800000i
\(101\) 3.00000i 0.298511i 0.988799 + 0.149256i \(0.0476877\pi\)
−0.988799 + 0.149256i \(0.952312\pi\)
\(102\) −12.0000 −1.18818
\(103\) 6.00000i 0.591198i −0.955312 0.295599i \(-0.904481\pi\)
0.955312 0.295599i \(-0.0955191\pi\)
\(104\) 0 0
\(105\) 4.00000 8.00000i 0.390360 0.780720i
\(106\) 18.0000i 1.74831i
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) −2.00000 −0.192450
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 2.00000 4.00000i 0.190693 0.381385i
\(111\) −1.00000 −0.0949158
\(112\) 16.0000i 1.51186i
\(113\) 8.00000 0.752577 0.376288 0.926503i \(-0.377200\pi\)
0.376288 + 0.926503i \(0.377200\pi\)
\(114\) 8.00000i 0.749269i
\(115\) 9.00000 18.0000i 0.839254 1.67851i
\(116\) −4.00000 + 10.0000i −0.371391 + 0.928477i
\(117\) 2.00000i 0.184900i
\(118\) 16.0000 1.47292
\(119\) 24.0000i 2.20008i
\(120\) 0 0
\(121\) 10.0000 0.909091
\(122\) 12.0000i 1.08643i
\(123\) 9.00000i 0.811503i
\(124\) 4.00000i 0.359211i
\(125\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(126\) 8.00000i 0.712697i
\(127\) −7.00000 −0.621150 −0.310575 0.950549i \(-0.600522\pi\)
−0.310575 + 0.950549i \(0.600522\pi\)
\(128\) 0 0
\(129\) −1.00000 −0.0880451
\(130\) −4.00000 + 8.00000i −0.350823 + 0.701646i
\(131\) 20.0000i 1.74741i 0.486458 + 0.873704i \(0.338289\pi\)
−0.486458 + 0.873704i \(0.661711\pi\)
\(132\) 2.00000i 0.174078i
\(133\) 16.0000 1.38738
\(134\) 24.0000i 2.07328i
\(135\) −2.00000 1.00000i −0.172133 0.0860663i
\(136\) 0 0
\(137\) 16.0000 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(138\) 18.0000i 1.53226i
\(139\) 11.0000 0.933008 0.466504 0.884519i \(-0.345513\pi\)
0.466504 + 0.884519i \(0.345513\pi\)
\(140\) −8.00000 + 16.0000i −0.676123 + 1.35225i
\(141\) 8.00000 0.673722
\(142\) 4.00000 0.335673
\(143\) 2.00000 0.167248
\(144\) −4.00000 −0.333333
\(145\) −9.00000 + 8.00000i −0.747409 + 0.664364i
\(146\) −30.0000 −2.48282
\(147\) 9.00000 0.742307
\(148\) 2.00000 0.164399
\(149\) 14.0000 1.14692 0.573462 0.819232i \(-0.305600\pi\)
0.573462 + 0.819232i \(0.305600\pi\)
\(150\) −6.00000 8.00000i −0.489898 0.653197i
\(151\) −17.0000 −1.38344 −0.691720 0.722166i \(-0.743147\pi\)
−0.691720 + 0.722166i \(0.743147\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 8.00000 0.644658
\(155\) 2.00000 4.00000i 0.160644 0.321288i
\(156\) 4.00000i 0.320256i
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 8.00000i 0.636446i
\(159\) 9.00000i 0.713746i
\(160\) −16.0000 8.00000i −1.26491 0.632456i
\(161\) 36.0000 2.83720
\(162\) 2.00000 0.157135
\(163\) 13.0000 1.01824 0.509119 0.860696i \(-0.329971\pi\)
0.509119 + 0.860696i \(0.329971\pi\)
\(164\) 18.0000i 1.40556i
\(165\) −1.00000 + 2.00000i −0.0778499 + 0.155700i
\(166\) 14.0000i 1.08661i
\(167\) 24.0000i 1.85718i 0.371113 + 0.928588i \(0.378976\pi\)
−0.371113 + 0.928588i \(0.621024\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 24.0000 + 12.0000i 1.84072 + 0.920358i
\(171\) 4.00000i 0.305888i
\(172\) 2.00000 0.152499
\(173\) 21.0000i 1.59660i −0.602260 0.798300i \(-0.705733\pi\)
0.602260 0.798300i \(-0.294267\pi\)
\(174\) 4.00000 10.0000i 0.303239 0.758098i
\(175\) −16.0000 + 12.0000i −1.20949 + 0.907115i
\(176\) 4.00000i 0.301511i
\(177\) −8.00000 −0.601317
\(178\) 4.00000i 0.299813i
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 4.00000 + 2.00000i 0.298142 + 0.149071i
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) −16.0000 −1.18600
\(183\) 6.00000i 0.443533i
\(184\) 0 0
\(185\) 2.00000 + 1.00000i 0.147043 + 0.0735215i
\(186\) 4.00000i 0.293294i
\(187\) 6.00000i 0.438763i
\(188\) −16.0000 −1.16692
\(189\) 4.00000i 0.290957i
\(190\) 8.00000 16.0000i 0.580381 1.16076i
\(191\) 3.00000i 0.217072i 0.994092 + 0.108536i \(0.0346163\pi\)
−0.994092 + 0.108536i \(0.965384\pi\)
\(192\) 8.00000 0.577350
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) −22.0000 −1.57951
\(195\) 2.00000 4.00000i 0.143223 0.286446i
\(196\) −18.0000 −1.28571
\(197\) 23.0000i 1.63868i 0.573306 + 0.819341i \(0.305660\pi\)
−0.573306 + 0.819341i \(0.694340\pi\)
\(198\) 2.00000i 0.142134i
\(199\) −19.0000 −1.34687 −0.673437 0.739244i \(-0.735183\pi\)
−0.673437 + 0.739244i \(0.735183\pi\)
\(200\) 0 0
\(201\) 12.0000i 0.846415i
\(202\) 6.00000i 0.422159i
\(203\) −20.0000 8.00000i −1.40372 0.561490i
\(204\) −12.0000 −0.840168
\(205\) 9.00000 18.0000i 0.628587 1.25717i
\(206\) 12.0000i 0.836080i
\(207\) 9.00000i 0.625543i
\(208\) 8.00000i 0.554700i
\(209\) −4.00000 −0.276686
\(210\) 8.00000 16.0000i 0.552052 1.10410i
\(211\) 2.00000i 0.137686i 0.997628 + 0.0688428i \(0.0219307\pi\)
−0.997628 + 0.0688428i \(0.978069\pi\)
\(212\) 18.0000i 1.23625i
\(213\) −2.00000 −0.137038
\(214\) 8.00000i 0.546869i
\(215\) 2.00000 + 1.00000i 0.136399 + 0.0681994i
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) −2.00000 −0.135457
\(219\) 15.0000 1.01361
\(220\) 2.00000 4.00000i 0.134840 0.269680i
\(221\) 12.0000i 0.807207i
\(222\) −2.00000 −0.134231
\(223\) 4.00000i 0.267860i 0.990991 + 0.133930i \(0.0427597\pi\)
−0.990991 + 0.133930i \(0.957240\pi\)
\(224\) 32.0000i 2.13809i
\(225\) 3.00000 + 4.00000i 0.200000 + 0.266667i
\(226\) 16.0000 1.06430
\(227\) 7.00000i 0.464606i −0.972643 0.232303i \(-0.925374\pi\)
0.972643 0.232303i \(-0.0746261\pi\)
\(228\) 8.00000i 0.529813i
\(229\) 4.00000i 0.264327i −0.991228 0.132164i \(-0.957808\pi\)
0.991228 0.132164i \(-0.0421925\pi\)
\(230\) 18.0000 36.0000i 1.18688 2.37377i
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) 1.00000i 0.0655122i −0.999463 0.0327561i \(-0.989572\pi\)
0.999463 0.0327561i \(-0.0104285\pi\)
\(234\) 4.00000i 0.261488i
\(235\) −16.0000 8.00000i −1.04372 0.521862i
\(236\) 16.0000 1.04151
\(237\) 4.00000i 0.259828i
\(238\) 48.0000i 3.11138i
\(239\) −26.0000 −1.68180 −0.840900 0.541190i \(-0.817974\pi\)
−0.840900 + 0.541190i \(0.817974\pi\)
\(240\) 8.00000 + 4.00000i 0.516398 + 0.258199i
\(241\) 11.0000 0.708572 0.354286 0.935137i \(-0.384724\pi\)
0.354286 + 0.935137i \(0.384724\pi\)
\(242\) 20.0000 1.28565
\(243\) −1.00000 −0.0641500
\(244\) 12.0000i 0.768221i
\(245\) −18.0000 9.00000i −1.14998 0.574989i
\(246\) 18.0000i 1.14764i
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) 7.00000i 0.443607i
\(250\) 4.00000 + 22.0000i 0.252982 + 1.39140i
\(251\) 12.0000i 0.757433i −0.925513 0.378717i \(-0.876365\pi\)
0.925513 0.378717i \(-0.123635\pi\)
\(252\) 8.00000i 0.503953i
\(253\) −9.00000 −0.565825
\(254\) −14.0000 −0.878438
\(255\) −12.0000 6.00000i −0.751469 0.375735i
\(256\) 16.0000 1.00000
\(257\) 15.0000i 0.935674i −0.883815 0.467837i \(-0.845033\pi\)
0.883815 0.467837i \(-0.154967\pi\)
\(258\) −2.00000 −0.124515
\(259\) 4.00000i 0.248548i
\(260\) −4.00000 + 8.00000i −0.248069 + 0.496139i
\(261\) −2.00000 + 5.00000i −0.123797 + 0.309492i
\(262\) 40.0000i 2.47121i
\(263\) −26.0000 −1.60323 −0.801614 0.597841i \(-0.796025\pi\)
−0.801614 + 0.597841i \(0.796025\pi\)
\(264\) 0 0
\(265\) −9.00000 + 18.0000i −0.552866 + 1.10573i
\(266\) 32.0000 1.96205
\(267\) 2.00000i 0.122398i
\(268\) 24.0000i 1.46603i
\(269\) 10.0000i 0.609711i 0.952399 + 0.304855i \(0.0986081\pi\)
−0.952399 + 0.304855i \(0.901392\pi\)
\(270\) −4.00000 2.00000i −0.243432 0.121716i
\(271\) 2.00000i 0.121491i −0.998153 0.0607457i \(-0.980652\pi\)
0.998153 0.0607457i \(-0.0193479\pi\)
\(272\) −24.0000 −1.45521
\(273\) 8.00000 0.484182
\(274\) 32.0000 1.93319
\(275\) 4.00000 3.00000i 0.241209 0.180907i
\(276\) 18.0000i 1.08347i
\(277\) 2.00000i 0.120168i −0.998193 0.0600842i \(-0.980863\pi\)
0.998193 0.0600842i \(-0.0191369\pi\)
\(278\) 22.0000 1.31947
\(279\) 2.00000i 0.119737i
\(280\) 0 0
\(281\) −24.0000 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(282\) 16.0000 0.952786
\(283\) 22.0000i 1.30776i −0.756596 0.653882i \(-0.773139\pi\)
0.756596 0.653882i \(-0.226861\pi\)
\(284\) 4.00000 0.237356
\(285\) −4.00000 + 8.00000i −0.236940 + 0.473879i
\(286\) 4.00000 0.236525
\(287\) 36.0000 2.12501
\(288\) −8.00000 −0.471405
\(289\) 19.0000 1.11765
\(290\) −18.0000 + 16.0000i −1.05700 + 0.939552i
\(291\) 11.0000 0.644831
\(292\) −30.0000 −1.75562
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 18.0000 1.04978
\(295\) 16.0000 + 8.00000i 0.931556 + 0.465778i
\(296\) 0 0
\(297\) 1.00000i 0.0580259i
\(298\) 28.0000 1.62200
\(299\) 18.0000 1.04097
\(300\) −6.00000 8.00000i −0.346410 0.461880i
\(301\) 4.00000i 0.230556i
\(302\) −34.0000 −1.95648
\(303\) 3.00000i 0.172345i
\(304\) 16.0000i 0.917663i
\(305\) 6.00000 12.0000i 0.343559 0.687118i
\(306\) 12.0000 0.685994
\(307\) −15.0000 −0.856095 −0.428048 0.903756i \(-0.640798\pi\)
−0.428048 + 0.903756i \(0.640798\pi\)
\(308\) 8.00000 0.455842
\(309\) 6.00000i 0.341328i
\(310\) 4.00000 8.00000i 0.227185 0.454369i
\(311\) 23.0000i 1.30421i 0.758129 + 0.652105i \(0.226114\pi\)
−0.758129 + 0.652105i \(0.773886\pi\)
\(312\) 0 0
\(313\) 8.00000i 0.452187i 0.974106 + 0.226093i \(0.0725954\pi\)
−0.974106 + 0.226093i \(0.927405\pi\)
\(314\) −28.0000 −1.58013
\(315\) −4.00000 + 8.00000i −0.225374 + 0.450749i
\(316\) 8.00000i 0.450035i
\(317\) 12.0000 0.673987 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(318\) 18.0000i 1.00939i
\(319\) 5.00000 + 2.00000i 0.279946 + 0.111979i
\(320\) −16.0000 8.00000i −0.894427 0.447214i
\(321\) 4.00000i 0.223258i
\(322\) 72.0000 4.01240
\(323\) 24.0000i 1.33540i
\(324\) 2.00000 0.111111
\(325\) −8.00000 + 6.00000i −0.443760 + 0.332820i
\(326\) 26.0000 1.44001
\(327\) 1.00000 0.0553001
\(328\) 0 0
\(329\) 32.0000i 1.76422i
\(330\) −2.00000 + 4.00000i −0.110096 + 0.220193i
\(331\) 32.0000i 1.75888i 0.476011 + 0.879440i \(0.342082\pi\)
−0.476011 + 0.879440i \(0.657918\pi\)
\(332\) 14.0000i 0.768350i
\(333\) 1.00000 0.0547997
\(334\) 48.0000i 2.62644i
\(335\) 12.0000 24.0000i 0.655630 1.31126i
\(336\) 16.0000i 0.872872i
\(337\) 10.0000 0.544735 0.272367 0.962193i \(-0.412193\pi\)
0.272367 + 0.962193i \(0.412193\pi\)
\(338\) 18.0000 0.979071
\(339\) −8.00000 −0.434500
\(340\) 24.0000 + 12.0000i 1.30158 + 0.650791i
\(341\) −2.00000 −0.108306
\(342\) 8.00000i 0.432590i
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) −9.00000 + 18.0000i −0.484544 + 0.969087i
\(346\) 42.0000i 2.25793i
\(347\) 19.0000i 1.01997i 0.860182 + 0.509987i \(0.170350\pi\)
−0.860182 + 0.509987i \(0.829650\pi\)
\(348\) 4.00000 10.0000i 0.214423 0.536056i
\(349\) −11.0000 −0.588817 −0.294408 0.955680i \(-0.595123\pi\)
−0.294408 + 0.955680i \(0.595123\pi\)
\(350\) −32.0000 + 24.0000i −1.71047 + 1.28285i
\(351\) 2.00000i 0.106752i
\(352\) 8.00000i 0.426401i
\(353\) 18.0000i 0.958043i −0.877803 0.479022i \(-0.840992\pi\)
0.877803 0.479022i \(-0.159008\pi\)
\(354\) −16.0000 −0.850390
\(355\) 4.00000 + 2.00000i 0.212298 + 0.106149i
\(356\) 4.00000i 0.212000i
\(357\) 24.0000i 1.27021i
\(358\) 12.0000 0.634220
\(359\) 21.0000i 1.10834i 0.832404 + 0.554169i \(0.186964\pi\)
−0.832404 + 0.554169i \(0.813036\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) −14.0000 −0.735824
\(363\) −10.0000 −0.524864
\(364\) −16.0000 −0.838628
\(365\) −30.0000 15.0000i −1.57027 0.785136i
\(366\) 12.0000i 0.627250i
\(367\) −27.0000 −1.40939 −0.704694 0.709511i \(-0.748916\pi\)
−0.704694 + 0.709511i \(0.748916\pi\)
\(368\) 36.0000i 1.87663i
\(369\) 9.00000i 0.468521i
\(370\) 4.00000 + 2.00000i 0.207950 + 0.103975i
\(371\) −36.0000 −1.86903
\(372\) 4.00000i 0.207390i
\(373\) 2.00000i 0.103556i −0.998659 0.0517780i \(-0.983511\pi\)
0.998659 0.0517780i \(-0.0164888\pi\)
\(374\) 12.0000i 0.620505i
\(375\) −2.00000 11.0000i −0.103280 0.568038i
\(376\) 0 0
\(377\) −10.0000 4.00000i −0.515026 0.206010i
\(378\) 8.00000i 0.411476i
\(379\) 22.0000i 1.13006i 0.825069 + 0.565032i \(0.191136\pi\)
−0.825069 + 0.565032i \(0.808864\pi\)
\(380\) 8.00000 16.0000i 0.410391 0.820783i
\(381\) 7.00000 0.358621
\(382\) 6.00000i 0.306987i
\(383\) 27.0000i 1.37964i −0.723983 0.689818i \(-0.757691\pi\)
0.723983 0.689818i \(-0.242309\pi\)
\(384\) 0 0
\(385\) 8.00000 + 4.00000i 0.407718 + 0.203859i
\(386\) −12.0000 −0.610784
\(387\) 1.00000 0.0508329
\(388\) −22.0000 −1.11688
\(389\) 3.00000i 0.152106i −0.997104 0.0760530i \(-0.975768\pi\)
0.997104 0.0760530i \(-0.0242318\pi\)
\(390\) 4.00000 8.00000i 0.202548 0.405096i
\(391\) 54.0000i 2.73090i
\(392\) 0 0
\(393\) 20.0000i 1.00887i
\(394\) 46.0000i 2.31745i
\(395\) −4.00000 + 8.00000i −0.201262 + 0.402524i
\(396\) 2.00000i 0.100504i
\(397\) 16.0000i 0.803017i 0.915855 + 0.401508i \(0.131514\pi\)
−0.915855 + 0.401508i \(0.868486\pi\)
\(398\) −38.0000 −1.90477
\(399\) −16.0000 −0.801002
\(400\) −12.0000 16.0000i −0.600000 0.800000i
\(401\) −12.0000 −0.599251 −0.299626 0.954057i \(-0.596862\pi\)
−0.299626 + 0.954057i \(0.596862\pi\)
\(402\) 24.0000i 1.19701i
\(403\) 4.00000 0.199254
\(404\) 6.00000i 0.298511i
\(405\) 2.00000 + 1.00000i 0.0993808 + 0.0496904i
\(406\) −40.0000 16.0000i −1.98517 0.794067i
\(407\) 1.00000i 0.0495682i
\(408\) 0 0
\(409\) 14.0000i 0.692255i −0.938187 0.346128i \(-0.887496\pi\)
0.938187 0.346128i \(-0.112504\pi\)
\(410\) 18.0000 36.0000i 0.888957 1.77791i
\(411\) −16.0000 −0.789222
\(412\) 12.0000i 0.591198i
\(413\) 32.0000i 1.57462i
\(414\) 18.0000i 0.884652i
\(415\) 7.00000 14.0000i 0.343616 0.687233i
\(416\) 16.0000i 0.784465i
\(417\) −11.0000 −0.538672
\(418\) −8.00000 −0.391293
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 8.00000 16.0000i 0.390360 0.780720i
\(421\) 22.0000i 1.07221i −0.844150 0.536107i \(-0.819894\pi\)
0.844150 0.536107i \(-0.180106\pi\)
\(422\) 4.00000i 0.194717i
\(423\) −8.00000 −0.388973
\(424\) 0 0
\(425\) 18.0000 + 24.0000i 0.873128 + 1.16417i
\(426\) −4.00000 −0.193801
\(427\) 24.0000 1.16144
\(428\) 8.00000i 0.386695i
\(429\) −2.00000 −0.0965609
\(430\) 4.00000 + 2.00000i 0.192897 + 0.0964486i
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) 4.00000 0.192450
\(433\) −7.00000 −0.336399 −0.168199 0.985753i \(-0.553795\pi\)
−0.168199 + 0.985753i \(0.553795\pi\)
\(434\) 16.0000 0.768025
\(435\) 9.00000 8.00000i 0.431517 0.383571i
\(436\) −2.00000 −0.0957826
\(437\) −36.0000 −1.72211
\(438\) 30.0000 1.43346
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −9.00000 −0.428571
\(442\) 24.0000i 1.14156i
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) −2.00000 −0.0949158
\(445\) −2.00000 + 4.00000i −0.0948091 + 0.189618i
\(446\) 8.00000i 0.378811i
\(447\) −14.0000 −0.662177
\(448\) 32.0000i 1.51186i
\(449\) 15.0000i 0.707894i −0.935266 0.353947i \(-0.884839\pi\)
0.935266 0.353947i \(-0.115161\pi\)
\(450\) 6.00000 + 8.00000i 0.282843 + 0.377124i
\(451\) −9.00000 −0.423793
\(452\) 16.0000 0.752577
\(453\) 17.0000 0.798730
\(454\) 14.0000i 0.657053i
\(455\) −16.0000 8.00000i −0.750092 0.375046i
\(456\) 0 0
\(457\) 10.0000i 0.467780i −0.972263 0.233890i \(-0.924854\pi\)
0.972263 0.233890i \(-0.0751456\pi\)
\(458\) 8.00000i 0.373815i
\(459\) −6.00000 −0.280056
\(460\) 18.0000 36.0000i 0.839254 1.67851i
\(461\) 33.0000i 1.53696i −0.639872 0.768482i \(-0.721013\pi\)
0.639872 0.768482i \(-0.278987\pi\)
\(462\) −8.00000 −0.372194
\(463\) 2.00000i 0.0929479i −0.998920 0.0464739i \(-0.985202\pi\)
0.998920 0.0464739i \(-0.0147984\pi\)
\(464\) 8.00000 20.0000i 0.371391 0.928477i
\(465\) −2.00000 + 4.00000i −0.0927478 + 0.185496i
\(466\) 2.00000i 0.0926482i
\(467\) 18.0000 0.832941 0.416470 0.909149i \(-0.363267\pi\)
0.416470 + 0.909149i \(0.363267\pi\)
\(468\) 4.00000i 0.184900i
\(469\) 48.0000 2.21643
\(470\) −32.0000 16.0000i −1.47605 0.738025i
\(471\) 14.0000 0.645086
\(472\) 0 0
\(473\) 1.00000i 0.0459800i
\(474\) 8.00000i 0.367452i
\(475\) 16.0000 12.0000i 0.734130 0.550598i
\(476\) 48.0000i 2.20008i
\(477\) 9.00000i 0.412082i
\(478\) −52.0000 −2.37842
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 16.0000 + 8.00000i 0.730297 + 0.365148i
\(481\) 2.00000i 0.0911922i
\(482\) 22.0000 1.00207
\(483\) −36.0000 −1.63806
\(484\) 20.0000 0.909091
\(485\) −22.0000 11.0000i −0.998969 0.499484i
\(486\) −2.00000 −0.0907218
\(487\) 4.00000i 0.181257i −0.995885 0.0906287i \(-0.971112\pi\)
0.995885 0.0906287i \(-0.0288876\pi\)
\(488\) 0 0
\(489\) −13.0000 −0.587880
\(490\) −36.0000 18.0000i −1.62631 0.813157i
\(491\) 8.00000i 0.361035i 0.983572 + 0.180517i \(0.0577772\pi\)
−0.983572 + 0.180517i \(0.942223\pi\)
\(492\) 18.0000i 0.811503i
\(493\) −12.0000 + 30.0000i −0.540453 + 1.35113i
\(494\) 16.0000 0.719874
\(495\) 1.00000 2.00000i 0.0449467 0.0898933i
\(496\) 8.00000i 0.359211i
\(497\) 8.00000i 0.358849i
\(498\) 14.0000i 0.627355i
\(499\) −12.0000 −0.537194 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(500\) 4.00000 + 22.0000i 0.178885 + 0.983870i
\(501\) 24.0000i 1.07224i
\(502\) 24.0000i 1.07117i
\(503\) 8.00000 0.356702 0.178351 0.983967i \(-0.442924\pi\)
0.178351 + 0.983967i \(0.442924\pi\)
\(504\) 0 0
\(505\) −3.00000 + 6.00000i −0.133498 + 0.266996i
\(506\) −18.0000 −0.800198
\(507\) −9.00000 −0.399704
\(508\) −14.0000 −0.621150
\(509\) −28.0000 −1.24108 −0.620539 0.784176i \(-0.713086\pi\)
−0.620539 + 0.784176i \(0.713086\pi\)
\(510\) −24.0000 12.0000i −1.06274 0.531369i
\(511\) 60.0000i 2.65424i
\(512\) 32.0000 1.41421
\(513\) 4.00000i 0.176604i
\(514\) 30.0000i 1.32324i
\(515\) 6.00000 12.0000i 0.264392 0.528783i
\(516\) −2.00000 −0.0880451
\(517\) 8.00000i 0.351840i
\(518\) 8.00000i 0.351500i
\(519\) 21.0000i 0.921798i
\(520\) 0 0
\(521\) −8.00000 −0.350486 −0.175243 0.984525i \(-0.556071\pi\)
−0.175243 + 0.984525i \(0.556071\pi\)
\(522\) −4.00000 + 10.0000i −0.175075 + 0.437688i
\(523\) 2.00000i 0.0874539i −0.999044 0.0437269i \(-0.986077\pi\)
0.999044 0.0437269i \(-0.0139232\pi\)
\(524\) 40.0000i 1.74741i
\(525\) 16.0000 12.0000i 0.698297 0.523723i
\(526\) −52.0000 −2.26731
\(527\) 12.0000i 0.522728i
\(528\) 4.00000i 0.174078i
\(529\) −58.0000 −2.52174
\(530\) −18.0000 + 36.0000i −0.781870 + 1.56374i
\(531\) 8.00000 0.347170
\(532\) 32.0000 1.38738
\(533\) 18.0000 0.779667
\(534\) 4.00000i 0.173097i
\(535\) −4.00000 + 8.00000i −0.172935 + 0.345870i
\(536\) 0 0
\(537\) −6.00000 −0.258919
\(538\) 20.0000i 0.862261i
\(539\) 9.00000i 0.387657i
\(540\) −4.00000 2.00000i −0.172133 0.0860663i
\(541\) 32.0000i 1.37579i 0.725811 + 0.687894i \(0.241464\pi\)
−0.725811 + 0.687894i \(0.758536\pi\)
\(542\) 4.00000i 0.171815i
\(543\) 7.00000 0.300399
\(544\) −48.0000 −2.05798
\(545\) −2.00000 1.00000i −0.0856706 0.0428353i
\(546\) 16.0000 0.684737
\(547\) 26.0000i 1.11168i 0.831289 + 0.555840i \(0.187603\pi\)
−0.831289 + 0.555840i \(0.812397\pi\)
\(548\) 32.0000 1.36697
\(549\) 6.00000i 0.256074i
\(550\) 8.00000 6.00000i 0.341121 0.255841i
\(551\) 20.0000 + 8.00000i 0.852029 + 0.340811i
\(552\) 0 0
\(553\) −16.0000 −0.680389
\(554\) 4.00000i 0.169944i
\(555\) −2.00000 1.00000i −0.0848953 0.0424476i
\(556\) 22.0000 0.933008
\(557\) 45.0000i 1.90671i 0.301849 + 0.953356i \(0.402396\pi\)
−0.301849 + 0.953356i \(0.597604\pi\)
\(558\) 4.00000i 0.169334i
\(559\) 2.00000i 0.0845910i
\(560\) 16.0000 32.0000i 0.676123 1.35225i
\(561\) 6.00000i 0.253320i
\(562\) −48.0000 −2.02476
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) 16.0000 0.673722
\(565\) 16.0000 + 8.00000i 0.673125 + 0.336563i
\(566\) 44.0000i 1.84946i
\(567\) 4.00000i 0.167984i
\(568\) 0 0
\(569\) 38.0000i 1.59304i 0.604610 + 0.796521i \(0.293329\pi\)
−0.604610 + 0.796521i \(0.706671\pi\)
\(570\) −8.00000 + 16.0000i −0.335083 + 0.670166i
\(571\) −23.0000 −0.962520 −0.481260 0.876578i \(-0.659821\pi\)
−0.481260 + 0.876578i \(0.659821\pi\)
\(572\) 4.00000 0.167248
\(573\) 3.00000i 0.125327i
\(574\) 72.0000 3.00522
\(575\) 36.0000 27.0000i 1.50130 1.12598i
\(576\) −8.00000 −0.333333
\(577\) 34.0000 1.41544 0.707719 0.706494i \(-0.249724\pi\)
0.707719 + 0.706494i \(0.249724\pi\)
\(578\) 38.0000 1.58059
\(579\) 6.00000 0.249351
\(580\) −18.0000 + 16.0000i −0.747409 + 0.664364i
\(581\) 28.0000 1.16164
\(582\) 22.0000 0.911929
\(583\) 9.00000 0.372742
\(584\) 0 0
\(585\) −2.00000 + 4.00000i −0.0826898 + 0.165380i
\(586\) −4.00000 −0.165238
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 18.0000 0.742307
\(589\) −8.00000 −0.329634
\(590\) 32.0000 + 16.0000i 1.31742 + 0.658710i
\(591\) 23.0000i 0.946094i
\(592\) −4.00000 −0.164399
\(593\) 14.0000i 0.574911i 0.957794 + 0.287456i \(0.0928094\pi\)
−0.957794 + 0.287456i \(0.907191\pi\)
\(594\) 2.00000i 0.0820610i
\(595\) −24.0000 + 48.0000i −0.983904 + 1.96781i
\(596\) 28.0000 1.14692
\(597\) 19.0000 0.777618
\(598\) 36.0000 1.47215
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 26.0000i 1.06056i 0.847822 + 0.530281i \(0.177914\pi\)
−0.847822 + 0.530281i \(0.822086\pi\)
\(602\) 8.00000i 0.326056i
\(603\) 12.0000i 0.488678i
\(604\) −34.0000 −1.38344
\(605\) 20.0000 + 10.0000i 0.813116 + 0.406558i
\(606\) 6.00000i 0.243733i
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 32.0000i 1.29777i
\(609\) 20.0000 + 8.00000i 0.810441 + 0.324176i
\(610\) 12.0000 24.0000i 0.485866 0.971732i
\(611\) 16.0000i 0.647291i
\(612\) 12.0000 0.485071
\(613\) 6.00000i 0.242338i −0.992632 0.121169i \(-0.961336\pi\)
0.992632 0.121169i \(-0.0386643\pi\)
\(614\) −30.0000 −1.21070
\(615\) −9.00000 + 18.0000i −0.362915 + 0.725830i
\(616\) 0 0
\(617\) −36.0000 −1.44931 −0.724653 0.689114i \(-0.758000\pi\)
−0.724653 + 0.689114i \(0.758000\pi\)
\(618\) 12.0000i 0.482711i
\(619\) 10.0000i 0.401934i −0.979598 0.200967i \(-0.935592\pi\)
0.979598 0.200967i \(-0.0644084\pi\)
\(620\) 4.00000 8.00000i 0.160644 0.321288i
\(621\) 9.00000i 0.361158i
\(622\) 46.0000i 1.84443i
\(623\) −8.00000 −0.320513
\(624\) 8.00000i 0.320256i
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 16.0000i 0.639489i
\(627\) 4.00000 0.159745
\(628\) −28.0000 −1.11732
\(629\) 6.00000 0.239236
\(630\) −8.00000 + 16.0000i −0.318728 + 0.637455i
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) 2.00000i 0.0794929i
\(634\) 24.0000 0.953162
\(635\) −14.0000 7.00000i −0.555573 0.277787i
\(636\) 18.0000i 0.713746i
\(637\) 18.0000i 0.713186i
\(638\) 10.0000 + 4.00000i 0.395904 + 0.158362i
\(639\) 2.00000 0.0791188
\(640\) 0 0
\(641\) 33.0000i 1.30342i −0.758468 0.651711i \(-0.774052\pi\)
0.758468 0.651711i \(-0.225948\pi\)
\(642\) 8.00000i 0.315735i
\(643\) 24.0000i 0.946468i −0.880937 0.473234i \(-0.843087\pi\)
0.880937 0.473234i \(-0.156913\pi\)
\(644\) 72.0000 2.83720
\(645\) −2.00000 1.00000i −0.0787499 0.0393750i
\(646\) 48.0000i 1.88853i
\(647\) 17.0000i 0.668339i 0.942513 + 0.334169i \(0.108456\pi\)
−0.942513 + 0.334169i \(0.891544\pi\)
\(648\) 0 0
\(649\) 8.00000i 0.314027i
\(650\) −16.0000 + 12.0000i −0.627572 + 0.470679i
\(651\) −8.00000 −0.313545
\(652\) 26.0000 1.01824
\(653\) 24.0000 0.939193 0.469596 0.882881i \(-0.344399\pi\)
0.469596 + 0.882881i \(0.344399\pi\)
\(654\) 2.00000 0.0782062
\(655\) −20.0000 + 40.0000i −0.781465 + 1.56293i
\(656\) 36.0000i 1.40556i
\(657\) −15.0000 −0.585206
\(658\) 64.0000i 2.49498i
\(659\) 29.0000i 1.12968i 0.825201 + 0.564840i \(0.191062\pi\)
−0.825201 + 0.564840i \(0.808938\pi\)
\(660\) −2.00000 + 4.00000i −0.0778499 + 0.155700i
\(661\) −5.00000 −0.194477 −0.0972387 0.995261i \(-0.531001\pi\)
−0.0972387 + 0.995261i \(0.531001\pi\)
\(662\) 64.0000i 2.48743i
\(663\) 12.0000i 0.466041i
\(664\) 0 0
\(665\) 32.0000 + 16.0000i 1.24091 + 0.620453i
\(666\) 2.00000 0.0774984
\(667\) 45.0000 + 18.0000i 1.74241 + 0.696963i
\(668\) 48.0000i 1.85718i
\(669\) 4.00000i 0.154649i
\(670\) 24.0000 48.0000i 0.927201 1.85440i
\(671\) −6.00000 −0.231627
\(672\) 32.0000i 1.23443i
\(673\) 32.0000i 1.23351i −0.787155 0.616755i \(-0.788447\pi\)
0.787155 0.616755i \(-0.211553\pi\)
\(674\) 20.0000 0.770371
\(675\) −3.00000 4.00000i −0.115470 0.153960i
\(676\) 18.0000 0.692308
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) −16.0000 −0.614476
\(679\) 44.0000i 1.68857i
\(680\) 0 0
\(681\) 7.00000i 0.268241i
\(682\) −4.00000 −0.153168
\(683\) 9.00000i 0.344375i −0.985064 0.172188i \(-0.944916\pi\)
0.985064 0.172188i \(-0.0550836\pi\)
\(684\) 8.00000i 0.305888i
\(685\) 32.0000 + 16.0000i 1.22266 + 0.611329i
\(686\) 16.0000i 0.610883i
\(687\) 4.00000i 0.152610i
\(688\) −4.00000 −0.152499
\(689\) −18.0000 −0.685745
\(690\) −18.0000 + 36.0000i −0.685248 + 1.37050i
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 42.0000i 1.59660i
\(693\) 4.00000 0.151947
\(694\) 38.0000i 1.44246i
\(695\) 22.0000 + 11.0000i 0.834508 + 0.417254i
\(696\) 0 0
\(697\) 54.0000i 2.04540i
\(698\) −22.0000 −0.832712
\(699\) 1.00000i 0.0378235i
\(700\) −32.0000 + 24.0000i −1.20949 + 0.907115i
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 4.00000i 0.150970i
\(703\) 4.00000i 0.150863i
\(704\) 8.00000i 0.301511i
\(705\) 16.0000 + 8.00000i 0.602595 + 0.301297i
\(706\) 36.0000i 1.35488i
\(707\) −12.0000 −0.451306
\(708\) −16.0000 −0.601317
\(709\) 19.0000 0.713560 0.356780 0.934188i \(-0.383875\pi\)
0.356780 + 0.934188i \(0.383875\pi\)
\(710\) 8.00000 + 4.00000i 0.300235 + 0.150117i
\(711\) 4.00000i 0.150012i
\(712\) 0 0
\(713\) −18.0000 −0.674105
\(714\) 48.0000i 1.79635i
\(715\) 4.00000 + 2.00000i 0.149592 + 0.0747958i
\(716\) 12.0000 0.448461
\(717\) 26.0000 0.970988
\(718\) 42.0000i 1.56743i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −8.00000 4.00000i −0.298142 0.149071i
\(721\) 24.0000 0.893807
\(722\) 6.00000 0.223297
\(723\) −11.0000 −0.409094
\(724\) −14.0000 −0.520306
\(725\) −26.0000 + 7.00000i −0.965616 + 0.259973i
\(726\) −20.0000 −0.742270
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −60.0000 30.0000i −2.22070 1.11035i
\(731\) 6.00000 0.221918
\(732\) 12.0000i 0.443533i
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) −54.0000 −1.99318
\(735\) 18.0000 + 9.00000i 0.663940 + 0.331970i
\(736\) 72.0000i 2.65396i
\(737\) −12.0000 −0.442026
\(738\) 18.0000i 0.662589i
\(739\) 10.0000i 0.367856i 0.982940 + 0.183928i \(0.0588813\pi\)
−0.982940 + 0.183928i \(0.941119\pi\)
\(740\) 4.00000 + 2.00000i 0.147043 + 0.0735215i
\(741\) −8.00000 −0.293887
\(742\) −72.0000 −2.64320
\(743\) −6.00000 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(744\) 0 0
\(745\) 28.0000 + 14.0000i 1.02584 + 0.512920i
\(746\) 4.00000i 0.146450i
\(747\) 7.00000i 0.256117i
\(748\) 12.0000i 0.438763i
\(749\) −16.0000 −0.584627
\(750\) −4.00000 22.0000i −0.146059 0.803326i
\(751\) 28.0000i 1.02173i 0.859660 + 0.510867i \(0.170676\pi\)
−0.859660 + 0.510867i \(0.829324\pi\)
\(752\) 32.0000 1.16692
\(753\) 12.0000i 0.437304i
\(754\) −20.0000 8.00000i −0.728357 0.291343i
\(755\) −34.0000 17.0000i −1.23739 0.618693i
\(756\) 8.00000i 0.290957i
\(757\) 33.0000 1.19941 0.599703 0.800223i \(-0.295286\pi\)
0.599703 + 0.800223i \(0.295286\pi\)
\(758\) 44.0000i 1.59815i
\(759\) 9.00000 0.326679
\(760\) 0 0
\(761\) −34.0000 −1.23250 −0.616250 0.787551i \(-0.711349\pi\)
−0.616250 + 0.787551i \(0.711349\pi\)
\(762\) 14.0000 0.507166
\(763\) 4.00000i 0.144810i
\(764\) 6.00000i 0.217072i
\(765\) 12.0000 + 6.00000i 0.433861 + 0.216930i
\(766\) 54.0000i 1.95110i
\(767\) 16.0000i 0.577727i
\(768\) −16.0000 −0.577350
\(769\) 14.0000i 0.504853i −0.967616 0.252426i \(-0.918771\pi\)
0.967616 0.252426i \(-0.0812286\pi\)
\(770\) 16.0000 + 8.00000i 0.576600 + 0.288300i
\(771\) 15.0000i 0.540212i
\(772\) −12.0000 −0.431889
\(773\) −24.0000 −0.863220 −0.431610 0.902060i \(-0.642054\pi\)
−0.431610 + 0.902060i \(0.642054\pi\)
\(774\) 2.00000 0.0718885
\(775\) 8.00000 6.00000i 0.287368 0.215526i
\(776\) 0 0
\(777\) 4.00000i 0.143499i
\(778\) 6.00000i 0.215110i
\(779\) −36.0000 −1.28983
\(780\) 4.00000 8.00000i 0.143223 0.286446i
\(781\) 2.00000i 0.0715656i