Properties

Label 435.2.f.b
Level $435$
Weight $2$
Character orbit 435.f
Analytic conductor $3.473$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,2,Mod(289,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.47349248793\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - q^{3} - q^{4} + (\beta - 1) q^{5} + q^{6} + \beta q^{7} + 3 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} - q^{3} - q^{4} + (\beta - 1) q^{5} + q^{6} + \beta q^{7} + 3 q^{8} + q^{9} + ( - \beta + 1) q^{10} - \beta q^{11} + q^{12} + 2 \beta q^{13} - \beta q^{14} + ( - \beta + 1) q^{15} - q^{16} - 6 q^{17} - q^{18} - \beta q^{19} + ( - \beta + 1) q^{20} - \beta q^{21} + \beta q^{22} - 3 \beta q^{23} - 3 q^{24} + ( - 2 \beta - 3) q^{25} - 2 \beta q^{26} - q^{27} - \beta q^{28} + ( - \beta - 5) q^{29} + (\beta - 1) q^{30} + \beta q^{31} - 5 q^{32} + \beta q^{33} + 6 q^{34} + ( - \beta - 4) q^{35} - q^{36} - 2 q^{37} + \beta q^{38} - 2 \beta q^{39} + (3 \beta - 3) q^{40} + \beta q^{42} + 4 q^{43} + \beta q^{44} + (\beta - 1) q^{45} + 3 \beta q^{46} - 8 q^{47} + q^{48} + 3 q^{49} + (2 \beta + 3) q^{50} + 6 q^{51} - 2 \beta q^{52} - 6 \beta q^{53} + q^{54} + (\beta + 4) q^{55} + 3 \beta q^{56} + \beta q^{57} + (\beta + 5) q^{58} - 4 q^{59} + (\beta - 1) q^{60} - 6 \beta q^{61} - \beta q^{62} + \beta q^{63} + 7 q^{64} + ( - 2 \beta - 8) q^{65} - \beta q^{66} + 3 \beta q^{67} + 6 q^{68} + 3 \beta q^{69} + (\beta + 4) q^{70} + 8 q^{71} + 3 q^{72} - 6 q^{73} + 2 q^{74} + (2 \beta + 3) q^{75} + \beta q^{76} + 4 q^{77} + 2 \beta q^{78} + \beta q^{79} + ( - \beta + 1) q^{80} + q^{81} - \beta q^{83} + \beta q^{84} + ( - 6 \beta + 6) q^{85} - 4 q^{86} + (\beta + 5) q^{87} - 3 \beta q^{88} + 8 \beta q^{89} + ( - \beta + 1) q^{90} - 8 q^{91} + 3 \beta q^{92} - \beta q^{93} + 8 q^{94} + (\beta + 4) q^{95} + 5 q^{96} - 14 q^{97} - 3 q^{98} - \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 6 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 6 q^{8} + 2 q^{9} + 2 q^{10} + 2 q^{12} + 2 q^{15} - 2 q^{16} - 12 q^{17} - 2 q^{18} + 2 q^{20} - 6 q^{24} - 6 q^{25} - 2 q^{27} - 10 q^{29} - 2 q^{30} - 10 q^{32} + 12 q^{34} - 8 q^{35} - 2 q^{36} - 4 q^{37} - 6 q^{40} + 8 q^{43} - 2 q^{45} - 16 q^{47} + 2 q^{48} + 6 q^{49} + 6 q^{50} + 12 q^{51} + 2 q^{54} + 8 q^{55} + 10 q^{58} - 8 q^{59} - 2 q^{60} + 14 q^{64} - 16 q^{65} + 12 q^{68} + 8 q^{70} + 16 q^{71} + 6 q^{72} - 12 q^{73} + 4 q^{74} + 6 q^{75} + 8 q^{77} + 2 q^{80} + 2 q^{81} + 12 q^{85} - 8 q^{86} + 10 q^{87} + 2 q^{90} - 16 q^{91} + 16 q^{94} + 8 q^{95} + 10 q^{96} - 28 q^{97} - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/435\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(146\) \(262\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
1.00000i
1.00000i
−1.00000 −1.00000 −1.00000 −1.00000 2.00000i 1.00000 2.00000i 3.00000 1.00000 1.00000 + 2.00000i
289.2 −1.00000 −1.00000 −1.00000 −1.00000 + 2.00000i 1.00000 2.00000i 3.00000 1.00000 1.00000 2.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
145.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.2.f.b 2
3.b odd 2 1 1305.2.f.c 2
5.b even 2 1 435.2.f.c yes 2
5.c odd 4 1 2175.2.d.c 2
5.c odd 4 1 2175.2.d.d 2
15.d odd 2 1 1305.2.f.b 2
29.b even 2 1 435.2.f.c yes 2
87.d odd 2 1 1305.2.f.b 2
145.d even 2 1 inner 435.2.f.b 2
145.h odd 4 1 2175.2.d.c 2
145.h odd 4 1 2175.2.d.d 2
435.b odd 2 1 1305.2.f.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.2.f.b 2 1.a even 1 1 trivial
435.2.f.b 2 145.d even 2 1 inner
435.2.f.c yes 2 5.b even 2 1
435.2.f.c yes 2 29.b even 2 1
1305.2.f.b 2 15.d odd 2 1
1305.2.f.b 2 87.d odd 2 1
1305.2.f.c 2 3.b odd 2 1
1305.2.f.c 2 435.b odd 2 1
2175.2.d.c 2 5.c odd 4 1
2175.2.d.c 2 145.h odd 4 1
2175.2.d.d 2 5.c odd 4 1
2175.2.d.d 2 145.h odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(435, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{2} + 4 \) Copy content Toggle raw display
$13$ \( T^{2} + 16 \) Copy content Toggle raw display
$17$ \( (T + 6)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4 \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( T^{2} + 10T + 29 \) Copy content Toggle raw display
$31$ \( T^{2} + 4 \) Copy content Toggle raw display
$37$ \( (T + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( (T + 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 144 \) Copy content Toggle raw display
$59$ \( (T + 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 144 \) Copy content Toggle raw display
$67$ \( T^{2} + 36 \) Copy content Toggle raw display
$71$ \( (T - 8)^{2} \) Copy content Toggle raw display
$73$ \( (T + 6)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 4 \) Copy content Toggle raw display
$83$ \( T^{2} + 4 \) Copy content Toggle raw display
$89$ \( T^{2} + 256 \) Copy content Toggle raw display
$97$ \( (T + 14)^{2} \) Copy content Toggle raw display
show more
show less