Properties

Label 435.2.f.a.289.1
Level $435$
Weight $2$
Character 435.289
Analytic conductor $3.473$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [435,2,Mod(289,435)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("435.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(435, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.47349248793\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 435.289
Dual form 435.2.f.a.289.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +1.00000 q^{3} +2.00000 q^{4} +(2.00000 - 1.00000i) q^{5} -2.00000 q^{6} -4.00000i q^{7} +1.00000 q^{9} +(-4.00000 + 2.00000i) q^{10} -1.00000i q^{11} +2.00000 q^{12} -2.00000i q^{13} +8.00000i q^{14} +(2.00000 - 1.00000i) q^{15} -4.00000 q^{16} -6.00000 q^{17} -2.00000 q^{18} -4.00000i q^{19} +(4.00000 - 2.00000i) q^{20} -4.00000i q^{21} +2.00000i q^{22} +9.00000i q^{23} +(3.00000 - 4.00000i) q^{25} +4.00000i q^{26} +1.00000 q^{27} -8.00000i q^{28} +(-2.00000 + 5.00000i) q^{29} +(-4.00000 + 2.00000i) q^{30} -2.00000i q^{31} +8.00000 q^{32} -1.00000i q^{33} +12.0000 q^{34} +(-4.00000 - 8.00000i) q^{35} +2.00000 q^{36} -1.00000 q^{37} +8.00000i q^{38} -2.00000i q^{39} -9.00000i q^{41} +8.00000i q^{42} -1.00000 q^{43} -2.00000i q^{44} +(2.00000 - 1.00000i) q^{45} -18.0000i q^{46} +8.00000 q^{47} -4.00000 q^{48} -9.00000 q^{49} +(-6.00000 + 8.00000i) q^{50} -6.00000 q^{51} -4.00000i q^{52} -9.00000i q^{53} -2.00000 q^{54} +(-1.00000 - 2.00000i) q^{55} -4.00000i q^{57} +(4.00000 - 10.0000i) q^{58} +8.00000 q^{59} +(4.00000 - 2.00000i) q^{60} -6.00000i q^{61} +4.00000i q^{62} -4.00000i q^{63} -8.00000 q^{64} +(-2.00000 - 4.00000i) q^{65} +2.00000i q^{66} +12.0000i q^{67} -12.0000 q^{68} +9.00000i q^{69} +(8.00000 + 16.0000i) q^{70} +2.00000 q^{71} +15.0000 q^{73} +2.00000 q^{74} +(3.00000 - 4.00000i) q^{75} -8.00000i q^{76} -4.00000 q^{77} +4.00000i q^{78} +4.00000i q^{79} +(-8.00000 + 4.00000i) q^{80} +1.00000 q^{81} +18.0000i q^{82} +7.00000i q^{83} -8.00000i q^{84} +(-12.0000 + 6.00000i) q^{85} +2.00000 q^{86} +(-2.00000 + 5.00000i) q^{87} +2.00000i q^{89} +(-4.00000 + 2.00000i) q^{90} -8.00000 q^{91} +18.0000i q^{92} -2.00000i q^{93} -16.0000 q^{94} +(-4.00000 - 8.00000i) q^{95} +8.00000 q^{96} +11.0000 q^{97} +18.0000 q^{98} -1.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 2 q^{3} + 4 q^{4} + 4 q^{5} - 4 q^{6} + 2 q^{9} - 8 q^{10} + 4 q^{12} + 4 q^{15} - 8 q^{16} - 12 q^{17} - 4 q^{18} + 8 q^{20} + 6 q^{25} + 2 q^{27} - 4 q^{29} - 8 q^{30} + 16 q^{32} + 24 q^{34}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/435\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(146\) \(262\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.00000 1.00000
\(5\) 2.00000 1.00000i 0.894427 0.447214i
\(6\) −2.00000 −0.816497
\(7\) 4.00000i 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) −4.00000 + 2.00000i −1.26491 + 0.632456i
\(11\) 1.00000i 0.301511i −0.988571 0.150756i \(-0.951829\pi\)
0.988571 0.150756i \(-0.0481707\pi\)
\(12\) 2.00000 0.577350
\(13\) 2.00000i 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 8.00000i 2.13809i
\(15\) 2.00000 1.00000i 0.516398 0.258199i
\(16\) −4.00000 −1.00000
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) −2.00000 −0.471405
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 4.00000 2.00000i 0.894427 0.447214i
\(21\) 4.00000i 0.872872i
\(22\) 2.00000i 0.426401i
\(23\) 9.00000i 1.87663i 0.345782 + 0.938315i \(0.387614\pi\)
−0.345782 + 0.938315i \(0.612386\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 4.00000i 0.784465i
\(27\) 1.00000 0.192450
\(28\) 8.00000i 1.51186i
\(29\) −2.00000 + 5.00000i −0.371391 + 0.928477i
\(30\) −4.00000 + 2.00000i −0.730297 + 0.365148i
\(31\) 2.00000i 0.359211i −0.983739 0.179605i \(-0.942518\pi\)
0.983739 0.179605i \(-0.0574821\pi\)
\(32\) 8.00000 1.41421
\(33\) 1.00000i 0.174078i
\(34\) 12.0000 2.05798
\(35\) −4.00000 8.00000i −0.676123 1.35225i
\(36\) 2.00000 0.333333
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 8.00000i 1.29777i
\(39\) 2.00000i 0.320256i
\(40\) 0 0
\(41\) 9.00000i 1.40556i −0.711405 0.702782i \(-0.751941\pi\)
0.711405 0.702782i \(-0.248059\pi\)
\(42\) 8.00000i 1.23443i
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 2.00000i 0.301511i
\(45\) 2.00000 1.00000i 0.298142 0.149071i
\(46\) 18.0000i 2.65396i
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) −4.00000 −0.577350
\(49\) −9.00000 −1.28571
\(50\) −6.00000 + 8.00000i −0.848528 + 1.13137i
\(51\) −6.00000 −0.840168
\(52\) 4.00000i 0.554700i
\(53\) 9.00000i 1.23625i −0.786082 0.618123i \(-0.787894\pi\)
0.786082 0.618123i \(-0.212106\pi\)
\(54\) −2.00000 −0.272166
\(55\) −1.00000 2.00000i −0.134840 0.269680i
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 4.00000 10.0000i 0.525226 1.31306i
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 4.00000 2.00000i 0.516398 0.258199i
\(61\) 6.00000i 0.768221i −0.923287 0.384111i \(-0.874508\pi\)
0.923287 0.384111i \(-0.125492\pi\)
\(62\) 4.00000i 0.508001i
\(63\) 4.00000i 0.503953i
\(64\) −8.00000 −1.00000
\(65\) −2.00000 4.00000i −0.248069 0.496139i
\(66\) 2.00000i 0.246183i
\(67\) 12.0000i 1.46603i 0.680211 + 0.733017i \(0.261888\pi\)
−0.680211 + 0.733017i \(0.738112\pi\)
\(68\) −12.0000 −1.45521
\(69\) 9.00000i 1.08347i
\(70\) 8.00000 + 16.0000i 0.956183 + 1.91237i
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) 15.0000 1.75562 0.877809 0.479012i \(-0.159005\pi\)
0.877809 + 0.479012i \(0.159005\pi\)
\(74\) 2.00000 0.232495
\(75\) 3.00000 4.00000i 0.346410 0.461880i
\(76\) 8.00000i 0.917663i
\(77\) −4.00000 −0.455842
\(78\) 4.00000i 0.452911i
\(79\) 4.00000i 0.450035i 0.974355 + 0.225018i \(0.0722440\pi\)
−0.974355 + 0.225018i \(0.927756\pi\)
\(80\) −8.00000 + 4.00000i −0.894427 + 0.447214i
\(81\) 1.00000 0.111111
\(82\) 18.0000i 1.98777i
\(83\) 7.00000i 0.768350i 0.923260 + 0.384175i \(0.125514\pi\)
−0.923260 + 0.384175i \(0.874486\pi\)
\(84\) 8.00000i 0.872872i
\(85\) −12.0000 + 6.00000i −1.30158 + 0.650791i
\(86\) 2.00000 0.215666
\(87\) −2.00000 + 5.00000i −0.214423 + 0.536056i
\(88\) 0 0
\(89\) 2.00000i 0.212000i 0.994366 + 0.106000i \(0.0338043\pi\)
−0.994366 + 0.106000i \(0.966196\pi\)
\(90\) −4.00000 + 2.00000i −0.421637 + 0.210819i
\(91\) −8.00000 −0.838628
\(92\) 18.0000i 1.87663i
\(93\) 2.00000i 0.207390i
\(94\) −16.0000 −1.65027
\(95\) −4.00000 8.00000i −0.410391 0.820783i
\(96\) 8.00000 0.816497
\(97\) 11.0000 1.11688 0.558440 0.829545i \(-0.311400\pi\)
0.558440 + 0.829545i \(0.311400\pi\)
\(98\) 18.0000 1.81827
\(99\) 1.00000i 0.100504i
\(100\) 6.00000 8.00000i 0.600000 0.800000i
\(101\) 3.00000i 0.298511i 0.988799 + 0.149256i \(0.0476877\pi\)
−0.988799 + 0.149256i \(0.952312\pi\)
\(102\) 12.0000 1.18818
\(103\) 6.00000i 0.591198i 0.955312 + 0.295599i \(0.0955191\pi\)
−0.955312 + 0.295599i \(0.904481\pi\)
\(104\) 0 0
\(105\) −4.00000 8.00000i −0.390360 0.780720i
\(106\) 18.0000i 1.74831i
\(107\) 4.00000i 0.386695i −0.981130 0.193347i \(-0.938066\pi\)
0.981130 0.193347i \(-0.0619344\pi\)
\(108\) 2.00000 0.192450
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 2.00000 + 4.00000i 0.190693 + 0.381385i
\(111\) −1.00000 −0.0949158
\(112\) 16.0000i 1.51186i
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 8.00000i 0.749269i
\(115\) 9.00000 + 18.0000i 0.839254 + 1.67851i
\(116\) −4.00000 + 10.0000i −0.371391 + 0.928477i
\(117\) 2.00000i 0.184900i
\(118\) −16.0000 −1.47292
\(119\) 24.0000i 2.20008i
\(120\) 0 0
\(121\) 10.0000 0.909091
\(122\) 12.0000i 1.08643i
\(123\) 9.00000i 0.811503i
\(124\) 4.00000i 0.359211i
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 8.00000i 0.712697i
\(127\) 7.00000 0.621150 0.310575 0.950549i \(-0.399478\pi\)
0.310575 + 0.950549i \(0.399478\pi\)
\(128\) 0 0
\(129\) −1.00000 −0.0880451
\(130\) 4.00000 + 8.00000i 0.350823 + 0.701646i
\(131\) 20.0000i 1.74741i 0.486458 + 0.873704i \(0.338289\pi\)
−0.486458 + 0.873704i \(0.661711\pi\)
\(132\) 2.00000i 0.174078i
\(133\) −16.0000 −1.38738
\(134\) 24.0000i 2.07328i
\(135\) 2.00000 1.00000i 0.172133 0.0860663i
\(136\) 0 0
\(137\) −16.0000 −1.36697 −0.683486 0.729964i \(-0.739537\pi\)
−0.683486 + 0.729964i \(0.739537\pi\)
\(138\) 18.0000i 1.53226i
\(139\) 11.0000 0.933008 0.466504 0.884519i \(-0.345513\pi\)
0.466504 + 0.884519i \(0.345513\pi\)
\(140\) −8.00000 16.0000i −0.676123 1.35225i
\(141\) 8.00000 0.673722
\(142\) −4.00000 −0.335673
\(143\) −2.00000 −0.167248
\(144\) −4.00000 −0.333333
\(145\) 1.00000 + 12.0000i 0.0830455 + 0.996546i
\(146\) −30.0000 −2.48282
\(147\) −9.00000 −0.742307
\(148\) −2.00000 −0.164399
\(149\) 14.0000 1.14692 0.573462 0.819232i \(-0.305600\pi\)
0.573462 + 0.819232i \(0.305600\pi\)
\(150\) −6.00000 + 8.00000i −0.489898 + 0.653197i
\(151\) −17.0000 −1.38344 −0.691720 0.722166i \(-0.743147\pi\)
−0.691720 + 0.722166i \(0.743147\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 8.00000 0.644658
\(155\) −2.00000 4.00000i −0.160644 0.321288i
\(156\) 4.00000i 0.320256i
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 8.00000i 0.636446i
\(159\) 9.00000i 0.713746i
\(160\) 16.0000 8.00000i 1.26491 0.632456i
\(161\) 36.0000 2.83720
\(162\) −2.00000 −0.157135
\(163\) −13.0000 −1.01824 −0.509119 0.860696i \(-0.670029\pi\)
−0.509119 + 0.860696i \(0.670029\pi\)
\(164\) 18.0000i 1.40556i
\(165\) −1.00000 2.00000i −0.0778499 0.155700i
\(166\) 14.0000i 1.08661i
\(167\) 24.0000i 1.85718i −0.371113 0.928588i \(-0.621024\pi\)
0.371113 0.928588i \(-0.378976\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 24.0000 12.0000i 1.84072 0.920358i
\(171\) 4.00000i 0.305888i
\(172\) −2.00000 −0.152499
\(173\) 21.0000i 1.59660i 0.602260 + 0.798300i \(0.294267\pi\)
−0.602260 + 0.798300i \(0.705733\pi\)
\(174\) 4.00000 10.0000i 0.303239 0.758098i
\(175\) −16.0000 12.0000i −1.20949 0.907115i
\(176\) 4.00000i 0.301511i
\(177\) 8.00000 0.601317
\(178\) 4.00000i 0.299813i
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 4.00000 2.00000i 0.298142 0.149071i
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 16.0000 1.18600
\(183\) 6.00000i 0.443533i
\(184\) 0 0
\(185\) −2.00000 + 1.00000i −0.147043 + 0.0735215i
\(186\) 4.00000i 0.293294i
\(187\) 6.00000i 0.438763i
\(188\) 16.0000 1.16692
\(189\) 4.00000i 0.290957i
\(190\) 8.00000 + 16.0000i 0.580381 + 1.16076i
\(191\) 3.00000i 0.217072i 0.994092 + 0.108536i \(0.0346163\pi\)
−0.994092 + 0.108536i \(0.965384\pi\)
\(192\) −8.00000 −0.577350
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) −22.0000 −1.57951
\(195\) −2.00000 4.00000i −0.143223 0.286446i
\(196\) −18.0000 −1.28571
\(197\) 23.0000i 1.63868i −0.573306 0.819341i \(-0.694340\pi\)
0.573306 0.819341i \(-0.305660\pi\)
\(198\) 2.00000i 0.142134i
\(199\) −19.0000 −1.34687 −0.673437 0.739244i \(-0.735183\pi\)
−0.673437 + 0.739244i \(0.735183\pi\)
\(200\) 0 0
\(201\) 12.0000i 0.846415i
\(202\) 6.00000i 0.422159i
\(203\) 20.0000 + 8.00000i 1.40372 + 0.561490i
\(204\) −12.0000 −0.840168
\(205\) −9.00000 18.0000i −0.628587 1.25717i
\(206\) 12.0000i 0.836080i
\(207\) 9.00000i 0.625543i
\(208\) 8.00000i 0.554700i
\(209\) −4.00000 −0.276686
\(210\) 8.00000 + 16.0000i 0.552052 + 1.10410i
\(211\) 2.00000i 0.137686i 0.997628 + 0.0688428i \(0.0219307\pi\)
−0.997628 + 0.0688428i \(0.978069\pi\)
\(212\) 18.0000i 1.23625i
\(213\) 2.00000 0.137038
\(214\) 8.00000i 0.546869i
\(215\) −2.00000 + 1.00000i −0.136399 + 0.0681994i
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 2.00000 0.135457
\(219\) 15.0000 1.01361
\(220\) −2.00000 4.00000i −0.134840 0.269680i
\(221\) 12.0000i 0.807207i
\(222\) 2.00000 0.134231
\(223\) 4.00000i 0.267860i −0.990991 0.133930i \(-0.957240\pi\)
0.990991 0.133930i \(-0.0427597\pi\)
\(224\) 32.0000i 2.13809i
\(225\) 3.00000 4.00000i 0.200000 0.266667i
\(226\) 16.0000 1.06430
\(227\) 7.00000i 0.464606i 0.972643 + 0.232303i \(0.0746261\pi\)
−0.972643 + 0.232303i \(0.925374\pi\)
\(228\) 8.00000i 0.529813i
\(229\) 4.00000i 0.264327i −0.991228 0.132164i \(-0.957808\pi\)
0.991228 0.132164i \(-0.0421925\pi\)
\(230\) −18.0000 36.0000i −1.18688 2.37377i
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) 1.00000i 0.0655122i 0.999463 + 0.0327561i \(0.0104285\pi\)
−0.999463 + 0.0327561i \(0.989572\pi\)
\(234\) 4.00000i 0.261488i
\(235\) 16.0000 8.00000i 1.04372 0.521862i
\(236\) 16.0000 1.04151
\(237\) 4.00000i 0.259828i
\(238\) 48.0000i 3.11138i
\(239\) −26.0000 −1.68180 −0.840900 0.541190i \(-0.817974\pi\)
−0.840900 + 0.541190i \(0.817974\pi\)
\(240\) −8.00000 + 4.00000i −0.516398 + 0.258199i
\(241\) 11.0000 0.708572 0.354286 0.935137i \(-0.384724\pi\)
0.354286 + 0.935137i \(0.384724\pi\)
\(242\) −20.0000 −1.28565
\(243\) 1.00000 0.0641500
\(244\) 12.0000i 0.768221i
\(245\) −18.0000 + 9.00000i −1.14998 + 0.574989i
\(246\) 18.0000i 1.14764i
\(247\) −8.00000 −0.509028
\(248\) 0 0
\(249\) 7.00000i 0.443607i
\(250\) −4.00000 + 22.0000i −0.252982 + 1.39140i
\(251\) 12.0000i 0.757433i −0.925513 0.378717i \(-0.876365\pi\)
0.925513 0.378717i \(-0.123635\pi\)
\(252\) 8.00000i 0.503953i
\(253\) 9.00000 0.565825
\(254\) −14.0000 −0.878438
\(255\) −12.0000 + 6.00000i −0.751469 + 0.375735i
\(256\) 16.0000 1.00000
\(257\) 15.0000i 0.935674i 0.883815 + 0.467837i \(0.154967\pi\)
−0.883815 + 0.467837i \(0.845033\pi\)
\(258\) 2.00000 0.124515
\(259\) 4.00000i 0.248548i
\(260\) −4.00000 8.00000i −0.248069 0.496139i
\(261\) −2.00000 + 5.00000i −0.123797 + 0.309492i
\(262\) 40.0000i 2.47121i
\(263\) 26.0000 1.60323 0.801614 0.597841i \(-0.203975\pi\)
0.801614 + 0.597841i \(0.203975\pi\)
\(264\) 0 0
\(265\) −9.00000 18.0000i −0.552866 1.10573i
\(266\) 32.0000 1.96205
\(267\) 2.00000i 0.122398i
\(268\) 24.0000i 1.46603i
\(269\) 10.0000i 0.609711i 0.952399 + 0.304855i \(0.0986081\pi\)
−0.952399 + 0.304855i \(0.901392\pi\)
\(270\) −4.00000 + 2.00000i −0.243432 + 0.121716i
\(271\) 2.00000i 0.121491i −0.998153 0.0607457i \(-0.980652\pi\)
0.998153 0.0607457i \(-0.0193479\pi\)
\(272\) 24.0000 1.45521
\(273\) −8.00000 −0.484182
\(274\) 32.0000 1.93319
\(275\) −4.00000 3.00000i −0.241209 0.180907i
\(276\) 18.0000i 1.08347i
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) −22.0000 −1.31947
\(279\) 2.00000i 0.119737i
\(280\) 0 0
\(281\) −24.0000 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(282\) −16.0000 −0.952786
\(283\) 22.0000i 1.30776i 0.756596 + 0.653882i \(0.226861\pi\)
−0.756596 + 0.653882i \(0.773139\pi\)
\(284\) 4.00000 0.237356
\(285\) −4.00000 8.00000i −0.236940 0.473879i
\(286\) 4.00000 0.236525
\(287\) −36.0000 −2.12501
\(288\) 8.00000 0.471405
\(289\) 19.0000 1.11765
\(290\) −2.00000 24.0000i −0.117444 1.40933i
\(291\) 11.0000 0.644831
\(292\) 30.0000 1.75562
\(293\) 2.00000 0.116841 0.0584206 0.998292i \(-0.481394\pi\)
0.0584206 + 0.998292i \(0.481394\pi\)
\(294\) 18.0000 1.04978
\(295\) 16.0000 8.00000i 0.931556 0.465778i
\(296\) 0 0
\(297\) 1.00000i 0.0580259i
\(298\) −28.0000 −1.62200
\(299\) 18.0000 1.04097
\(300\) 6.00000 8.00000i 0.346410 0.461880i
\(301\) 4.00000i 0.230556i
\(302\) 34.0000 1.95648
\(303\) 3.00000i 0.172345i
\(304\) 16.0000i 0.917663i
\(305\) −6.00000 12.0000i −0.343559 0.687118i
\(306\) 12.0000 0.685994
\(307\) 15.0000 0.856095 0.428048 0.903756i \(-0.359202\pi\)
0.428048 + 0.903756i \(0.359202\pi\)
\(308\) −8.00000 −0.455842
\(309\) 6.00000i 0.341328i
\(310\) 4.00000 + 8.00000i 0.227185 + 0.454369i
\(311\) 23.0000i 1.30421i 0.758129 + 0.652105i \(0.226114\pi\)
−0.758129 + 0.652105i \(0.773886\pi\)
\(312\) 0 0
\(313\) 8.00000i 0.452187i −0.974106 0.226093i \(-0.927405\pi\)
0.974106 0.226093i \(-0.0725954\pi\)
\(314\) −28.0000 −1.58013
\(315\) −4.00000 8.00000i −0.225374 0.450749i
\(316\) 8.00000i 0.450035i
\(317\) −12.0000 −0.673987 −0.336994 0.941507i \(-0.609410\pi\)
−0.336994 + 0.941507i \(0.609410\pi\)
\(318\) 18.0000i 1.00939i
\(319\) 5.00000 + 2.00000i 0.279946 + 0.111979i
\(320\) −16.0000 + 8.00000i −0.894427 + 0.447214i
\(321\) 4.00000i 0.223258i
\(322\) −72.0000 −4.01240
\(323\) 24.0000i 1.33540i
\(324\) 2.00000 0.111111
\(325\) −8.00000 6.00000i −0.443760 0.332820i
\(326\) 26.0000 1.44001
\(327\) −1.00000 −0.0553001
\(328\) 0 0
\(329\) 32.0000i 1.76422i
\(330\) 2.00000 + 4.00000i 0.110096 + 0.220193i
\(331\) 32.0000i 1.75888i 0.476011 + 0.879440i \(0.342082\pi\)
−0.476011 + 0.879440i \(0.657918\pi\)
\(332\) 14.0000i 0.768350i
\(333\) −1.00000 −0.0547997
\(334\) 48.0000i 2.62644i
\(335\) 12.0000 + 24.0000i 0.655630 + 1.31126i
\(336\) 16.0000i 0.872872i
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) −18.0000 −0.979071
\(339\) −8.00000 −0.434500
\(340\) −24.0000 + 12.0000i −1.30158 + 0.650791i
\(341\) −2.00000 −0.108306
\(342\) 8.00000i 0.432590i
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 9.00000 + 18.0000i 0.484544 + 0.969087i
\(346\) 42.0000i 2.25793i
\(347\) 19.0000i 1.01997i −0.860182 0.509987i \(-0.829650\pi\)
0.860182 0.509987i \(-0.170350\pi\)
\(348\) −4.00000 + 10.0000i −0.214423 + 0.536056i
\(349\) −11.0000 −0.588817 −0.294408 0.955680i \(-0.595123\pi\)
−0.294408 + 0.955680i \(0.595123\pi\)
\(350\) 32.0000 + 24.0000i 1.71047 + 1.28285i
\(351\) 2.00000i 0.106752i
\(352\) 8.00000i 0.426401i
\(353\) 18.0000i 0.958043i 0.877803 + 0.479022i \(0.159008\pi\)
−0.877803 + 0.479022i \(0.840992\pi\)
\(354\) −16.0000 −0.850390
\(355\) 4.00000 2.00000i 0.212298 0.106149i
\(356\) 4.00000i 0.212000i
\(357\) 24.0000i 1.27021i
\(358\) −12.0000 −0.634220
\(359\) 21.0000i 1.10834i 0.832404 + 0.554169i \(0.186964\pi\)
−0.832404 + 0.554169i \(0.813036\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 14.0000 0.735824
\(363\) 10.0000 0.524864
\(364\) −16.0000 −0.838628
\(365\) 30.0000 15.0000i 1.57027 0.785136i
\(366\) 12.0000i 0.627250i
\(367\) 27.0000 1.40939 0.704694 0.709511i \(-0.251084\pi\)
0.704694 + 0.709511i \(0.251084\pi\)
\(368\) 36.0000i 1.87663i
\(369\) 9.00000i 0.468521i
\(370\) 4.00000 2.00000i 0.207950 0.103975i
\(371\) −36.0000 −1.86903
\(372\) 4.00000i 0.207390i
\(373\) 2.00000i 0.103556i 0.998659 + 0.0517780i \(0.0164888\pi\)
−0.998659 + 0.0517780i \(0.983511\pi\)
\(374\) 12.0000i 0.620505i
\(375\) 2.00000 11.0000i 0.103280 0.568038i
\(376\) 0 0
\(377\) 10.0000 + 4.00000i 0.515026 + 0.206010i
\(378\) 8.00000i 0.411476i
\(379\) 22.0000i 1.13006i 0.825069 + 0.565032i \(0.191136\pi\)
−0.825069 + 0.565032i \(0.808864\pi\)
\(380\) −8.00000 16.0000i −0.410391 0.820783i
\(381\) 7.00000 0.358621
\(382\) 6.00000i 0.306987i
\(383\) 27.0000i 1.37964i 0.723983 + 0.689818i \(0.242309\pi\)
−0.723983 + 0.689818i \(0.757691\pi\)
\(384\) 0 0
\(385\) −8.00000 + 4.00000i −0.407718 + 0.203859i
\(386\) −12.0000 −0.610784
\(387\) −1.00000 −0.0508329
\(388\) 22.0000 1.11688
\(389\) 3.00000i 0.152106i −0.997104 0.0760530i \(-0.975768\pi\)
0.997104 0.0760530i \(-0.0242318\pi\)
\(390\) 4.00000 + 8.00000i 0.202548 + 0.405096i
\(391\) 54.0000i 2.73090i
\(392\) 0 0
\(393\) 20.0000i 1.00887i
\(394\) 46.0000i 2.31745i
\(395\) 4.00000 + 8.00000i 0.201262 + 0.402524i
\(396\) 2.00000i 0.100504i
\(397\) 16.0000i 0.803017i −0.915855 0.401508i \(-0.868486\pi\)
0.915855 0.401508i \(-0.131514\pi\)
\(398\) 38.0000 1.90477
\(399\) −16.0000 −0.801002
\(400\) −12.0000 + 16.0000i −0.600000 + 0.800000i
\(401\) −12.0000 −0.599251 −0.299626 0.954057i \(-0.596862\pi\)
−0.299626 + 0.954057i \(0.596862\pi\)
\(402\) 24.0000i 1.19701i
\(403\) −4.00000 −0.199254
\(404\) 6.00000i 0.298511i
\(405\) 2.00000 1.00000i 0.0993808 0.0496904i
\(406\) −40.0000 16.0000i −1.98517 0.794067i
\(407\) 1.00000i 0.0495682i
\(408\) 0 0
\(409\) 14.0000i 0.692255i −0.938187 0.346128i \(-0.887496\pi\)
0.938187 0.346128i \(-0.112504\pi\)
\(410\) 18.0000 + 36.0000i 0.888957 + 1.77791i
\(411\) −16.0000 −0.789222
\(412\) 12.0000i 0.591198i
\(413\) 32.0000i 1.57462i
\(414\) 18.0000i 0.884652i
\(415\) 7.00000 + 14.0000i 0.343616 + 0.687233i
\(416\) 16.0000i 0.784465i
\(417\) 11.0000 0.538672
\(418\) 8.00000 0.391293
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) −8.00000 16.0000i −0.390360 0.780720i
\(421\) 22.0000i 1.07221i −0.844150 0.536107i \(-0.819894\pi\)
0.844150 0.536107i \(-0.180106\pi\)
\(422\) 4.00000i 0.194717i
\(423\) 8.00000 0.388973
\(424\) 0 0
\(425\) −18.0000 + 24.0000i −0.873128 + 1.16417i
\(426\) −4.00000 −0.193801
\(427\) −24.0000 −1.16144
\(428\) 8.00000i 0.386695i
\(429\) −2.00000 −0.0965609
\(430\) 4.00000 2.00000i 0.192897 0.0964486i
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) −4.00000 −0.192450
\(433\) 7.00000 0.336399 0.168199 0.985753i \(-0.446205\pi\)
0.168199 + 0.985753i \(0.446205\pi\)
\(434\) 16.0000 0.768025
\(435\) 1.00000 + 12.0000i 0.0479463 + 0.575356i
\(436\) −2.00000 −0.0957826
\(437\) 36.0000 1.72211
\(438\) −30.0000 −1.43346
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −9.00000 −0.428571
\(442\) 24.0000i 1.14156i
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) −2.00000 −0.0949158
\(445\) 2.00000 + 4.00000i 0.0948091 + 0.189618i
\(446\) 8.00000i 0.378811i
\(447\) 14.0000 0.662177
\(448\) 32.0000i 1.51186i
\(449\) 15.0000i 0.707894i −0.935266 0.353947i \(-0.884839\pi\)
0.935266 0.353947i \(-0.115161\pi\)
\(450\) −6.00000 + 8.00000i −0.282843 + 0.377124i
\(451\) −9.00000 −0.423793
\(452\) −16.0000 −0.752577
\(453\) −17.0000 −0.798730
\(454\) 14.0000i 0.657053i
\(455\) −16.0000 + 8.00000i −0.750092 + 0.375046i
\(456\) 0 0
\(457\) 10.0000i 0.467780i 0.972263 + 0.233890i \(0.0751456\pi\)
−0.972263 + 0.233890i \(0.924854\pi\)
\(458\) 8.00000i 0.373815i
\(459\) −6.00000 −0.280056
\(460\) 18.0000 + 36.0000i 0.839254 + 1.67851i
\(461\) 33.0000i 1.53696i −0.639872 0.768482i \(-0.721013\pi\)
0.639872 0.768482i \(-0.278987\pi\)
\(462\) 8.00000 0.372194
\(463\) 2.00000i 0.0929479i 0.998920 + 0.0464739i \(0.0147984\pi\)
−0.998920 + 0.0464739i \(0.985202\pi\)
\(464\) 8.00000 20.0000i 0.371391 0.928477i
\(465\) −2.00000 4.00000i −0.0927478 0.185496i
\(466\) 2.00000i 0.0926482i
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 4.00000i 0.184900i
\(469\) 48.0000 2.21643
\(470\) −32.0000 + 16.0000i −1.47605 + 0.738025i
\(471\) 14.0000 0.645086
\(472\) 0 0
\(473\) 1.00000i 0.0459800i
\(474\) 8.00000i 0.367452i
\(475\) −16.0000 12.0000i −0.734130 0.550598i
\(476\) 48.0000i 2.20008i
\(477\) 9.00000i 0.412082i
\(478\) 52.0000 2.37842
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 16.0000 8.00000i 0.730297 0.365148i
\(481\) 2.00000i 0.0911922i
\(482\) −22.0000 −1.00207
\(483\) 36.0000 1.63806
\(484\) 20.0000 0.909091
\(485\) 22.0000 11.0000i 0.998969 0.499484i
\(486\) −2.00000 −0.0907218
\(487\) 4.00000i 0.181257i 0.995885 + 0.0906287i \(0.0288876\pi\)
−0.995885 + 0.0906287i \(0.971112\pi\)
\(488\) 0 0
\(489\) −13.0000 −0.587880
\(490\) 36.0000 18.0000i 1.62631 0.813157i
\(491\) 8.00000i 0.361035i 0.983572 + 0.180517i \(0.0577772\pi\)
−0.983572 + 0.180517i \(0.942223\pi\)
\(492\) 18.0000i 0.811503i
\(493\) 12.0000 30.0000i 0.540453 1.35113i
\(494\) 16.0000 0.719874
\(495\) −1.00000 2.00000i −0.0449467 0.0898933i
\(496\) 8.00000i 0.359211i
\(497\) 8.00000i 0.358849i
\(498\) 14.0000i 0.627355i
\(499\) −12.0000 −0.537194 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(500\) 4.00000 22.0000i 0.178885 0.983870i
\(501\) 24.0000i 1.07224i
\(502\) 24.0000i 1.07117i
\(503\) −8.00000 −0.356702 −0.178351 0.983967i \(-0.557076\pi\)
−0.178351 + 0.983967i \(0.557076\pi\)
\(504\) 0 0
\(505\) 3.00000 + 6.00000i 0.133498 + 0.266996i
\(506\) −18.0000 −0.800198
\(507\) 9.00000 0.399704
\(508\) 14.0000 0.621150
\(509\) −28.0000 −1.24108 −0.620539 0.784176i \(-0.713086\pi\)
−0.620539 + 0.784176i \(0.713086\pi\)
\(510\) 24.0000 12.0000i 1.06274 0.531369i
\(511\) 60.0000i 2.65424i
\(512\) −32.0000 −1.41421
\(513\) 4.00000i 0.176604i
\(514\) 30.0000i 1.32324i
\(515\) 6.00000 + 12.0000i 0.264392 + 0.528783i
\(516\) −2.00000 −0.0880451
\(517\) 8.00000i 0.351840i
\(518\) 8.00000i 0.351500i
\(519\) 21.0000i 0.921798i
\(520\) 0 0
\(521\) −8.00000 −0.350486 −0.175243 0.984525i \(-0.556071\pi\)
−0.175243 + 0.984525i \(0.556071\pi\)
\(522\) 4.00000 10.0000i 0.175075 0.437688i
\(523\) 2.00000i 0.0874539i 0.999044 + 0.0437269i \(0.0139232\pi\)
−0.999044 + 0.0437269i \(0.986077\pi\)
\(524\) 40.0000i 1.74741i
\(525\) −16.0000 12.0000i −0.698297 0.523723i
\(526\) −52.0000 −2.26731
\(527\) 12.0000i 0.522728i
\(528\) 4.00000i 0.174078i
\(529\) −58.0000 −2.52174
\(530\) 18.0000 + 36.0000i 0.781870 + 1.56374i
\(531\) 8.00000 0.347170
\(532\) −32.0000 −1.38738
\(533\) −18.0000 −0.779667
\(534\) 4.00000i 0.173097i
\(535\) −4.00000 8.00000i −0.172935 0.345870i
\(536\) 0 0
\(537\) 6.00000 0.258919
\(538\) 20.0000i 0.862261i
\(539\) 9.00000i 0.387657i
\(540\) 4.00000 2.00000i 0.172133 0.0860663i
\(541\) 32.0000i 1.37579i 0.725811 + 0.687894i \(0.241464\pi\)
−0.725811 + 0.687894i \(0.758536\pi\)
\(542\) 4.00000i 0.171815i
\(543\) −7.00000 −0.300399
\(544\) −48.0000 −2.05798
\(545\) −2.00000 + 1.00000i −0.0856706 + 0.0428353i
\(546\) 16.0000 0.684737
\(547\) 26.0000i 1.11168i −0.831289 0.555840i \(-0.812397\pi\)
0.831289 0.555840i \(-0.187603\pi\)
\(548\) −32.0000 −1.36697
\(549\) 6.00000i 0.256074i
\(550\) 8.00000 + 6.00000i 0.341121 + 0.255841i
\(551\) 20.0000 + 8.00000i 0.852029 + 0.340811i
\(552\) 0 0
\(553\) 16.0000 0.680389
\(554\) 4.00000i 0.169944i
\(555\) −2.00000 + 1.00000i −0.0848953 + 0.0424476i
\(556\) 22.0000 0.933008
\(557\) 45.0000i 1.90671i −0.301849 0.953356i \(-0.597604\pi\)
0.301849 0.953356i \(-0.402396\pi\)
\(558\) 4.00000i 0.169334i
\(559\) 2.00000i 0.0845910i
\(560\) 16.0000 + 32.0000i 0.676123 + 1.35225i
\(561\) 6.00000i 0.253320i
\(562\) 48.0000 2.02476
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 16.0000 0.673722
\(565\) −16.0000 + 8.00000i −0.673125 + 0.336563i
\(566\) 44.0000i 1.84946i
\(567\) 4.00000i 0.167984i
\(568\) 0 0
\(569\) 38.0000i 1.59304i 0.604610 + 0.796521i \(0.293329\pi\)
−0.604610 + 0.796521i \(0.706671\pi\)
\(570\) 8.00000 + 16.0000i 0.335083 + 0.670166i
\(571\) −23.0000 −0.962520 −0.481260 0.876578i \(-0.659821\pi\)
−0.481260 + 0.876578i \(0.659821\pi\)
\(572\) −4.00000 −0.167248
\(573\) 3.00000i 0.125327i
\(574\) 72.0000 3.00522
\(575\) 36.0000 + 27.0000i 1.50130 + 1.12598i
\(576\) −8.00000 −0.333333
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) −38.0000 −1.58059
\(579\) 6.00000 0.249351
\(580\) 2.00000 + 24.0000i 0.0830455 + 0.996546i
\(581\) 28.0000 1.16164
\(582\) −22.0000 −0.911929
\(583\) −9.00000 −0.372742
\(584\) 0 0
\(585\) −2.00000 4.00000i −0.0826898 0.165380i
\(586\) −4.00000 −0.165238
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) −18.0000 −0.742307
\(589\) −8.00000 −0.329634
\(590\) −32.0000 + 16.0000i −1.31742 + 0.658710i
\(591\) 23.0000i 0.946094i
\(592\) 4.00000 0.164399
\(593\) 14.0000i 0.574911i −0.957794 0.287456i \(-0.907191\pi\)
0.957794 0.287456i \(-0.0928094\pi\)
\(594\) 2.00000i 0.0820610i
\(595\) 24.0000 + 48.0000i 0.983904 + 1.96781i
\(596\) 28.0000 1.14692
\(597\) −19.0000 −0.777618
\(598\) −36.0000 −1.47215
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 26.0000i 1.06056i 0.847822 + 0.530281i \(0.177914\pi\)
−0.847822 + 0.530281i \(0.822086\pi\)
\(602\) 8.00000i 0.326056i
\(603\) 12.0000i 0.488678i
\(604\) −34.0000 −1.38344
\(605\) 20.0000 10.0000i 0.813116 0.406558i
\(606\) 6.00000i 0.243733i
\(607\) 40.0000 1.62355 0.811775 0.583970i \(-0.198502\pi\)
0.811775 + 0.583970i \(0.198502\pi\)
\(608\) 32.0000i 1.29777i
\(609\) 20.0000 + 8.00000i 0.810441 + 0.324176i
\(610\) 12.0000 + 24.0000i 0.485866 + 0.971732i
\(611\) 16.0000i 0.647291i
\(612\) −12.0000 −0.485071
\(613\) 6.00000i 0.242338i 0.992632 + 0.121169i \(0.0386643\pi\)
−0.992632 + 0.121169i \(0.961336\pi\)
\(614\) −30.0000 −1.21070
\(615\) −9.00000 18.0000i −0.362915 0.725830i
\(616\) 0 0
\(617\) 36.0000 1.44931 0.724653 0.689114i \(-0.242000\pi\)
0.724653 + 0.689114i \(0.242000\pi\)
\(618\) 12.0000i 0.482711i
\(619\) 10.0000i 0.401934i −0.979598 0.200967i \(-0.935592\pi\)
0.979598 0.200967i \(-0.0644084\pi\)
\(620\) −4.00000 8.00000i −0.160644 0.321288i
\(621\) 9.00000i 0.361158i
\(622\) 46.0000i 1.84443i
\(623\) 8.00000 0.320513
\(624\) 8.00000i 0.320256i
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 16.0000i 0.639489i
\(627\) −4.00000 −0.159745
\(628\) 28.0000 1.11732
\(629\) 6.00000 0.239236
\(630\) 8.00000 + 16.0000i 0.318728 + 0.637455i
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) 2.00000i 0.0794929i
\(634\) 24.0000 0.953162
\(635\) 14.0000 7.00000i 0.555573 0.277787i
\(636\) 18.0000i 0.713746i
\(637\) 18.0000i 0.713186i
\(638\) −10.0000 4.00000i −0.395904 0.158362i
\(639\) 2.00000 0.0791188
\(640\) 0 0
\(641\) 33.0000i 1.30342i −0.758468 0.651711i \(-0.774052\pi\)
0.758468 0.651711i \(-0.225948\pi\)
\(642\) 8.00000i 0.315735i
\(643\) 24.0000i 0.946468i 0.880937 + 0.473234i \(0.156913\pi\)
−0.880937 + 0.473234i \(0.843087\pi\)
\(644\) 72.0000 2.83720
\(645\) −2.00000 + 1.00000i −0.0787499 + 0.0393750i
\(646\) 48.0000i 1.88853i
\(647\) 17.0000i 0.668339i −0.942513 0.334169i \(-0.891544\pi\)
0.942513 0.334169i \(-0.108456\pi\)
\(648\) 0 0
\(649\) 8.00000i 0.314027i
\(650\) 16.0000 + 12.0000i 0.627572 + 0.470679i
\(651\) −8.00000 −0.313545
\(652\) −26.0000 −1.01824
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 2.00000 0.0782062
\(655\) 20.0000 + 40.0000i 0.781465 + 1.56293i
\(656\) 36.0000i 1.40556i
\(657\) 15.0000 0.585206
\(658\) 64.0000i 2.49498i
\(659\) 29.0000i 1.12968i 0.825201 + 0.564840i \(0.191062\pi\)
−0.825201 + 0.564840i \(0.808938\pi\)
\(660\) −2.00000 4.00000i −0.0778499 0.155700i
\(661\) −5.00000 −0.194477 −0.0972387 0.995261i \(-0.531001\pi\)
−0.0972387 + 0.995261i \(0.531001\pi\)
\(662\) 64.0000i 2.48743i
\(663\) 12.0000i 0.466041i
\(664\) 0 0
\(665\) −32.0000 + 16.0000i −1.24091 + 0.620453i
\(666\) 2.00000 0.0774984
\(667\) −45.0000 18.0000i −1.74241 0.696963i
\(668\) 48.0000i 1.85718i
\(669\) 4.00000i 0.154649i
\(670\) −24.0000 48.0000i −0.927201 1.85440i
\(671\) −6.00000 −0.231627
\(672\) 32.0000i 1.23443i
\(673\) 32.0000i 1.23351i 0.787155 + 0.616755i \(0.211553\pi\)
−0.787155 + 0.616755i \(0.788447\pi\)
\(674\) 20.0000 0.770371
\(675\) 3.00000 4.00000i 0.115470 0.153960i
\(676\) 18.0000 0.692308
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 16.0000 0.614476
\(679\) 44.0000i 1.68857i
\(680\) 0 0
\(681\) 7.00000i 0.268241i
\(682\) 4.00000 0.153168
\(683\) 9.00000i 0.344375i 0.985064 + 0.172188i \(0.0550836\pi\)
−0.985064 + 0.172188i \(0.944916\pi\)
\(684\) 8.00000i 0.305888i
\(685\) −32.0000 + 16.0000i −1.22266 + 0.611329i
\(686\) 16.0000i 0.610883i
\(687\) 4.00000i 0.152610i
\(688\) 4.00000 0.152499
\(689\) −18.0000 −0.685745
\(690\) −18.0000 36.0000i −0.685248 1.37050i
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 42.0000i 1.59660i
\(693\) −4.00000 −0.151947
\(694\) 38.0000i 1.44246i
\(695\) 22.0000 11.0000i 0.834508 0.417254i
\(696\) 0 0
\(697\) 54.0000i 2.04540i
\(698\) 22.0000 0.832712
\(699\) 1.00000i 0.0378235i
\(700\) −32.0000 24.0000i −1.20949 0.907115i
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 4.00000i 0.150970i
\(703\) 4.00000i 0.150863i
\(704\) 8.00000i 0.301511i
\(705\) 16.0000 8.00000i 0.602595 0.301297i
\(706\) 36.0000i 1.35488i
\(707\) 12.0000 0.451306
\(708\) 16.0000 0.601317
\(709\) 19.0000 0.713560 0.356780 0.934188i \(-0.383875\pi\)
0.356780 + 0.934188i \(0.383875\pi\)
\(710\) −8.00000 + 4.00000i −0.300235 + 0.150117i
\(711\) 4.00000i 0.150012i
\(712\) 0 0
\(713\) 18.0000 0.674105
\(714\) 48.0000i 1.79635i
\(715\) −4.00000 + 2.00000i −0.149592 + 0.0747958i
\(716\) 12.0000 0.448461
\(717\) −26.0000 −0.970988
\(718\) 42.0000i 1.56743i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −8.00000 + 4.00000i −0.298142 + 0.149071i
\(721\) 24.0000 0.893807
\(722\) −6.00000 −0.223297
\(723\) 11.0000 0.409094
\(724\) −14.0000 −0.520306
\(725\) 14.0000 + 23.0000i 0.519947 + 0.854199i
\(726\) −20.0000 −0.742270
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −60.0000 + 30.0000i −2.22070 + 1.11035i
\(731\) 6.00000 0.221918
\(732\) 12.0000i 0.443533i
\(733\) 2.00000 0.0738717 0.0369358 0.999318i \(-0.488240\pi\)
0.0369358 + 0.999318i \(0.488240\pi\)
\(734\) −54.0000 −1.99318
\(735\) −18.0000 + 9.00000i −0.663940 + 0.331970i
\(736\) 72.0000i 2.65396i
\(737\) 12.0000 0.442026
\(738\) 18.0000i 0.662589i
\(739\) 10.0000i 0.367856i 0.982940 + 0.183928i \(0.0588813\pi\)
−0.982940 + 0.183928i \(0.941119\pi\)
\(740\) −4.00000 + 2.00000i −0.147043 + 0.0735215i
\(741\) −8.00000 −0.293887
\(742\) 72.0000 2.64320
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 0 0
\(745\) 28.0000 14.0000i 1.02584 0.512920i
\(746\) 4.00000i 0.146450i
\(747\) 7.00000i 0.256117i
\(748\) 12.0000i 0.438763i
\(749\) −16.0000 −0.584627
\(750\) −4.00000 + 22.0000i −0.146059 + 0.803326i
\(751\) 28.0000i 1.02173i 0.859660 + 0.510867i \(0.170676\pi\)
−0.859660 + 0.510867i \(0.829324\pi\)
\(752\) −32.0000 −1.16692
\(753\) 12.0000i 0.437304i
\(754\) −20.0000 8.00000i −0.728357 0.291343i
\(755\) −34.0000 + 17.0000i −1.23739 + 0.618693i
\(756\) 8.00000i 0.290957i
\(757\) −33.0000 −1.19941 −0.599703 0.800223i \(-0.704714\pi\)
−0.599703 + 0.800223i \(0.704714\pi\)
\(758\) 44.0000i 1.59815i
\(759\) 9.00000 0.326679
\(760\) 0 0
\(761\) −34.0000 −1.23250 −0.616250 0.787551i \(-0.711349\pi\)
−0.616250 + 0.787551i \(0.711349\pi\)
\(762\) −14.0000 −0.507166
\(763\) 4.00000i 0.144810i
\(764\) 6.00000i 0.217072i
\(765\) −12.0000 + 6.00000i −0.433861 + 0.216930i
\(766\) 54.0000i 1.95110i
\(767\) 16.0000i 0.577727i
\(768\) 16.0000 0.577350
\(769\) 14.0000i 0.504853i −0.967616 0.252426i \(-0.918771\pi\)
0.967616 0.252426i \(-0.0812286\pi\)
\(770\) 16.0000 8.00000i 0.576600 0.288300i
\(771\) 15.0000i 0.540212i
\(772\) 12.0000 0.431889
\(773\) 24.0000 0.863220 0.431610 0.902060i \(-0.357946\pi\)
0.431610 + 0.902060i \(0.357946\pi\)
\(774\) 2.00000 0.0718885
\(775\) −8.00000 6.00000i −0.287368 0.215526i
\(776\) 0 0
\(777\) 4.00000i 0.143499i
\(778\) 6.00000i 0.215110i
\(779\) −36.0000 −1.28983
\(780\) −4.00000 8.00000i −0.143223 0.286446i
\(781\) 2.00000i 0.0715656i
\(782\) 108.000i 3.86207i
\(783\) −2.00000 + 5.00000i −0.0714742 + 0.178685i
\(784\) 36.0000 1.28571
\(785\) 28.0000 14.0000i 0.999363 0.499681i
\(786\) 40.0000i 1.42675i
\(787\) 42.0000i 1.49714i −0.663057 0.748569i \(-0.730741\pi\)
0.663057 0.748569i \(-0.269259\pi\)
\(788\) 46.0000i 1.63868i
\(789\) 26.0000 0.925625
\(790\) −8.00000 16.0000i −0.284627 0.569254i
\(791\) 32.0000i 1.13779i
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 32.0000i 1.13564i
\(795\) −9.00000 18.0000i −0.319197 0.638394i
\(796\) −38.0000 −1.34687
\(797\) −16.0000 −0.566749 −0.283375 0.959009i \(-0.591454\pi\)
−0.283375 + 0.959009i \(0.591454\pi\)
\(798\) 32.0000 1.13279
\(799\) −48.0000 −1.69812
\(800\) 24.0000 32.0000i 0.848528 1.13137i
\(801\) 2.00000i 0.0706665i
\(802\) 24.0000 0.847469
\(803\) 15.0000i 0.529339i
\(804\) 24.0000i 0.846415i
\(805\) 72.0000 36.0000i 2.53767 1.26883i
\(806\) 8.00000 0.281788
\(807\) 10.0000i 0.352017i
\(808\) 0 0
\(809\) 51.0000i 1.79306i −0.442978 0.896532i \(-0.646078\pi\)
0.442978 0.896532i \(-0.353922\pi\)
\(810\) −4.00000 + 2.00000i −0.140546 + 0.0702728i
\(811\) 1.00000 0.0351147 0.0175574 0.999846i \(-0.494411\pi\)
0.0175574 + 0.999846i \(0.494411\pi\)
\(812\) 40.0000 + 16.0000i 1.40372 + 0.561490i
\(813\) 2.00000i 0.0701431i
\(814\) 2.00000i 0.0701000i
\(815\) −26.0000 + 13.0000i −0.910740 + 0.455370i
\(816\) 24.0000 0.840168
\(817\) 4.00000i 0.139942i
\(818\) 28.0000i 0.978997i
\(819\) −8.00000 −0.279543
\(820\) −18.0000 36.0000i −0.628587 1.25717i
\(821\) 44.0000 1.53561 0.767805 0.640683i \(-0.221349\pi\)
0.767805 + 0.640683i \(0.221349\pi\)
\(822\) 32.0000 1.11613
\(823\) 8.00000 0.278862 0.139431 0.990232i \(-0.455473\pi\)
0.139431 + 0.990232i \(0.455473\pi\)
\(824\) 0 0
\(825\) −4.00000 3.00000i −0.139262 0.104447i
\(826\) 64.0000i 2.22684i
\(827\) −42.0000 −1.46048 −0.730242 0.683189i \(-0.760592\pi\)
−0.730242 + 0.683189i \(0.760592\pi\)
\(828\) 18.0000i 0.625543i
\(829\) 34.0000i 1.18087i −0.807086 0.590434i \(-0.798956\pi\)
0.807086 0.590434i \(-0.201044\pi\)
\(830\) −14.0000 28.0000i −0.485947 0.971894i
\(831\) 2.00000i 0.0693792i
\(832\) 16.0000i 0.554700i
\(833\) 54.0000 1.87099
\(834\) −22.0000 −0.761798
\(835\) −24.0000 48.0000i −0.830554 1.66111i
\(836\) −8.00000 −0.276686
\(837\) 2.00000i 0.0691301i
\(838\) −60.0000 −2.07267
\(839\) 28.0000i 0.966667i −0.875436 0.483334i \(-0.839426\pi\)
0.875436 0.483334i \(-0.160574\pi\)
\(840\) 0 0
\(841\) −21.0000 20.0000i −0.724138 0.689655i
\(842\) 44.0000i 1.51634i
\(843\) −24.0000 −0.826604
\(844\) 4.00000i 0.137686i
\(845\) 18.0000 9.00000i 0.619219 0.309609i
\(846\) −16.0000 −0.550091
\(847\) 40.0000i 1.37442i
\(848\) 36.0000i 1.23625i
\(849\) 22.0000i 0.755038i
\(850\) 36.0000 48.0000i 1.23479 1.64639i
\(851\) 9.00000i 0.308516i
\(852\) 4.00000 0.137038
\(853\) −21.0000 −0.719026 −0.359513 0.933140i \(-0.617057\pi\)
−0.359513 + 0.933140i \(0.617057\pi\)
\(854\) 48.0000 1.64253
\(855\) −4.00000 8.00000i −0.136797 0.273594i
\(856\) 0 0
\(857\) 7.00000i 0.239115i −0.992827 0.119558i \(-0.961852\pi\)
0.992827 0.119558i \(-0.0381477\pi\)
\(858\) 4.00000 0.136558
\(859\) 44.0000i 1.50126i −0.660722 0.750630i \(-0.729750\pi\)
0.660722 0.750630i \(-0.270250\pi\)
\(860\) −4.00000 + 2.00000i −0.136399 + 0.0681994i
\(861\) −36.0000 −1.22688
\(862\) 12.0000 0.408722
\(863\) 20.0000i 0.680808i 0.940279 + 0.340404i \(0.110564\pi\)
−0.940279 + 0.340404i \(0.889436\pi\)
\(864\) 8.00000 0.272166
\(865\) 21.0000 + 42.0000i 0.714021 + 1.42804i
\(866\) −14.0000 −0.475739
\(867\) 19.0000 0.645274
\(868\) −16.0000 −0.543075
\(869\) 4.00000 0.135691
\(870\) −2.00000 24.0000i −0.0678064 0.813676i
\(871\) 24.0000 0.813209
\(872\) 0 0
\(873\) 11.0000 0.372294
\(874\) −72.0000 −2.43544
\(875\) −44.0000 8.00000i −1.48747 0.270449i
\(876\) 30.0000 1.01361
\(877\) 8.00000i 0.270141i 0.990836 + 0.135070i \(0.0431261\pi\)
−0.990836 + 0.135070i \(0.956874\pi\)
\(878\) 0 0
\(879\) 2.00000 0.0674583
\(880\) 4.00000 + 8.00000i 0.134840 + 0.269680i
\(881\) 15.0000i 0.505363i 0.967550 + 0.252681i \(0.0813125\pi\)
−0.967550 + 0.252681i \(0.918688\pi\)
\(882\) 18.0000 0.606092
\(883\) 2.00000i 0.0673054i −0.999434 0.0336527i \(-0.989286\pi\)
0.999434 0.0336527i \(-0.0107140\pi\)
\(884\) 24.0000i 0.807207i
\(885\) 16.0000 8.00000i 0.537834 0.268917i
\(886\) −8.00000 −0.268765
\(887\) −30.0000 −1.00730 −0.503651 0.863907i \(-0.668010\pi\)
−0.503651 + 0.863907i \(0.668010\pi\)
\(888\) 0 0
\(889\) 28.0000i 0.939090i
\(890\) −4.00000 8.00000i −0.134080 0.268161i
\(891\) 1.00000i 0.0335013i
\(892\) 8.00000i 0.267860i
\(893\) 32.0000i 1.07084i
\(894\) −28.0000 −0.936460
\(895\) 12.0000 6.00000i 0.401116 0.200558i
\(896\) 0 0
\(897\) 18.0000 0.601003
\(898\) 30.0000i 1.00111i
\(899\) 10.0000 + 4.00000i 0.333519 + 0.133407i
\(900\) 6.00000 8.00000i 0.200000 0.266667i
\(901\) 54.0000i 1.79900i
\(902\) 18.0000 0.599334
\(903\) 4.00000i 0.133112i
\(904\) 0 0
\(905\) −14.0000 + 7.00000i −0.465376 + 0.232688i
\(906\) 34.0000 1.12957
\(907\) 41.0000 1.36138 0.680691 0.732570i \(-0.261680\pi\)
0.680691 + 0.732570i \(0.261680\pi\)
\(908\) 14.0000i 0.464606i
\(909\) 3.00000i 0.0995037i
\(910\) 32.0000 16.0000i 1.06079 0.530395i
\(911\) 21.0000i 0.695761i −0.937539 0.347881i \(-0.886901\pi\)
0.937539 0.347881i \(-0.113099\pi\)
\(912\) 16.0000i 0.529813i
\(913\) 7.00000 0.231666
\(914\) 20.0000i 0.661541i
\(915\) −6.00000 12.0000i −0.198354 0.396708i
\(916\) 8.00000i 0.264327i
\(917\) 80.0000 2.64183
\(918\) 12.0000 0.396059
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) 15.0000 0.494267
\(922\) 66.0000i 2.17359i
\(923\) 4.00000i 0.131662i
\(924\) −8.00000 −0.263181
\(925\) −3.00000 + 4.00000i −0.0986394 + 0.131519i
\(926\) 4.00000i 0.131448i
\(927\) 6.00000i 0.197066i
\(928\) −16.0000 + 40.0000i −0.525226 + 1.31306i
\(929\) 46.0000 1.50921 0.754606 0.656179i \(-0.227828\pi\)
0.754606 + 0.656179i \(0.227828\pi\)
\(930\) 4.00000 + 8.00000i 0.131165 + 0.262330i
\(931\) 36.0000i 1.17985i
\(932\) 2.00000i 0.0655122i
\(933\) 23.0000i 0.752986i
\(934\) 36.0000 1.17796
\(935\) 6.00000 + 12.0000i 0.196221 + 0.392442i
\(936\) 0 0
\(937\) 8.00000i 0.261349i −0.991425 0.130674i \(-0.958286\pi\)
0.991425 0.130674i \(-0.0417142\pi\)
\(938\) −96.0000 −3.13451
\(939\) 8.00000i 0.261070i
\(940\) 32.0000 16.0000i 1.04372 0.521862i
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) −28.0000 −0.912289
\(943\) 81.0000 2.63772
\(944\) −32.0000 −1.04151
\(945\) −4.00000 8.00000i −0.130120 0.260240i
\(946\) 2.00000i 0.0650256i
\(947\) −6.00000 −0.194974 −0.0974869 0.995237i \(-0.531080\pi\)
−0.0974869 + 0.995237i \(0.531080\pi\)
\(948\) 8.00000i 0.259828i
\(949\) 30.0000i 0.973841i
\(950\) 32.0000 + 24.0000i 1.03822 + 0.778663i
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) 2.00000i 0.0647864i −0.999475 0.0323932i \(-0.989687\pi\)
0.999475 0.0323932i \(-0.0103129\pi\)
\(954\) 18.0000i 0.582772i
\(955\) 3.00000 + 6.00000i 0.0970777 + 0.194155i
\(956\) −52.0000 −1.68180
\(957\) 5.00000 + 2.00000i 0.161627 + 0.0646508i
\(958\) 0 0
\(959\) 64.0000i 2.06667i
\(960\) −16.0000 + 8.00000i −0.516398 + 0.258199i
\(961\) 27.0000 0.870968
\(962\) 4.00000i 0.128965i
\(963\) 4.00000i 0.128898i
\(964\) 22.0000 0.708572
\(965\) 12.0000 6.00000i 0.386294 0.193147i
\(966\) −72.0000 −2.31656
\(967\) −31.0000 −0.996893 −0.498446 0.866921i \(-0.666096\pi\)
−0.498446 + 0.866921i \(0.666096\pi\)
\(968\) 0 0
\(969\) 24.0000i 0.770991i
\(970\) −44.0000 + 22.0000i −1.41275 + 0.706377i
\(971\) 51.0000i 1.63667i 0.574743 + 0.818334i \(0.305102\pi\)
−0.574743 + 0.818334i \(0.694898\pi\)
\(972\) 2.00000 0.0641500
\(973\) 44.0000i 1.41058i
\(974\) 8.00000i 0.256337i
\(975\) −8.00000 6.00000i −0.256205 0.192154i
\(976\) 24.0000i 0.768221i
\(977\) 29.0000i 0.927792i 0.885890 + 0.463896i \(0.153549\pi\)
−0.885890 + 0.463896i \(0.846451\pi\)
\(978\) 26.0000 0.831388
\(979\) 2.00000 0.0639203
\(980\) −36.0000 + 18.0000i −1.14998 + 0.574989i
\(981\) −1.00000 −0.0319275
\(982\) 16.0000i 0.510581i
\(983\) −54.0000 −1.72233 −0.861166 0.508323i \(-0.830265\pi\)
−0.861166 + 0.508323i \(0.830265\pi\)
\(984\) 0 0
\(985\) −23.0000 46.0000i −0.732841 1.46568i
\(986\) −24.0000 + 60.0000i −0.764316 + 1.91079i
\(987\) 32.0000i 1.01857i
\(988\) −16.0000 −0.509028
\(989\) 9.00000i 0.286183i
\(990\) 2.00000 + 4.00000i 0.0635642 + 0.127128i
\(991\) −47.0000 −1.49300 −0.746502 0.665383i \(-0.768268\pi\)
−0.746502 + 0.665383i \(0.768268\pi\)
\(992\) 16.0000i 0.508001i
\(993\) 32.0000i 1.01549i
\(994\) 16.0000i 0.507489i
\(995\) −38.0000 + 19.0000i −1.20468 + 0.602340i
\(996\) 14.0000i 0.443607i
\(997\) −55.0000 −1.74187 −0.870934 0.491400i \(-0.836485\pi\)
−0.870934 + 0.491400i \(0.836485\pi\)
\(998\) 24.0000 0.759707
\(999\) −1.00000 −0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.2.f.a.289.1 2
3.2 odd 2 1305.2.f.d.289.2 2
5.2 odd 4 2175.2.d.b.376.1 2
5.3 odd 4 2175.2.d.a.376.2 2
5.4 even 2 435.2.f.d.289.2 yes 2
15.14 odd 2 1305.2.f.a.289.1 2
29.28 even 2 435.2.f.d.289.1 yes 2
87.86 odd 2 1305.2.f.a.289.2 2
145.28 odd 4 2175.2.d.a.376.1 2
145.57 odd 4 2175.2.d.b.376.2 2
145.144 even 2 inner 435.2.f.a.289.2 yes 2
435.434 odd 2 1305.2.f.d.289.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.f.a.289.1 2 1.1 even 1 trivial
435.2.f.a.289.2 yes 2 145.144 even 2 inner
435.2.f.d.289.1 yes 2 29.28 even 2
435.2.f.d.289.2 yes 2 5.4 even 2
1305.2.f.a.289.1 2 15.14 odd 2
1305.2.f.a.289.2 2 87.86 odd 2
1305.2.f.d.289.1 2 435.434 odd 2
1305.2.f.d.289.2 2 3.2 odd 2
2175.2.d.a.376.1 2 145.28 odd 4
2175.2.d.a.376.2 2 5.3 odd 4
2175.2.d.b.376.1 2 5.2 odd 4
2175.2.d.b.376.2 2 145.57 odd 4