Defining parameters
Level: | \( N \) | \(=\) | \( 435 = 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 435.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 29 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(435, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 20 | 44 |
Cusp forms | 56 | 20 | 36 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(435, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
435.2.d.a | $10$ | $3.473$ | 10.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(-10\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(-1+\beta _{2})q^{4}-q^{5}+\cdots\) |
435.2.d.b | $10$ | $3.473$ | 10.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(10\) | \(8\) | \(q+\beta _{1}q^{2}-\beta _{7}q^{3}+(-1+\beta _{2})q^{4}+q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(435, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(435, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 2}\)