Properties

Label 435.2.d
Level $435$
Weight $2$
Character orbit 435.d
Rep. character $\chi_{435}(376,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $2$
Sturm bound $120$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(120\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(435, [\chi])\).

Total New Old
Modular forms 64 20 44
Cusp forms 56 20 36
Eisenstein series 8 0 8

Trace form

\( 20 q - 28 q^{4} + 8 q^{7} - 20 q^{9} - 8 q^{13} + 28 q^{16} - 12 q^{22} - 8 q^{23} - 12 q^{24} + 20 q^{25} + 44 q^{28} + 16 q^{29} + 4 q^{30} - 16 q^{33} + 4 q^{34} + 8 q^{35} + 28 q^{36} - 40 q^{38} + 20 q^{42}+ \cdots + 64 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(435, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
435.2.d.a 435.d 29.b $10$ $3.473$ 10.0.\(\cdots\).1 None 435.2.d.a \(0\) \(0\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(-1+\beta _{2})q^{4}-q^{5}+\cdots\)
435.2.d.b 435.d 29.b $10$ $3.473$ 10.0.\(\cdots\).1 None 435.2.d.b \(0\) \(0\) \(10\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{7}q^{3}+(-1+\beta _{2})q^{4}+q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(435, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(435, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 2}\)