Properties

Label 435.2.c.e.349.8
Level $435$
Weight $2$
Character 435.349
Analytic conductor $3.473$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,2,Mod(349,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.47349248793\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.3899266318336.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 6x^{7} + 19x^{6} - 12x^{5} + 4x^{4} + 2x^{3} + 9x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.8
Root \(-0.604479 + 0.604479i\) of defining polynomial
Character \(\chi\) \(=\) 435.349
Dual form 435.2.c.e.349.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.71457i q^{2} +1.00000i q^{3} -0.939748 q^{4} +(1.51903 - 1.64090i) q^{5} -1.71457 q^{6} +0.654317i q^{7} +1.81788i q^{8} -1.00000 q^{9} +(2.81344 + 2.60448i) q^{10} +0.163559 q^{11} -0.939748i q^{12} +2.65432i q^{13} -1.12187 q^{14} +(1.64090 + 1.51903i) q^{15} -4.99637 q^{16} +3.86328i q^{17} -1.71457i q^{18} +3.47954 q^{19} +(-1.42750 + 1.54203i) q^{20} -0.654317 q^{21} +0.280433i q^{22} +7.69972i q^{23} -1.81788 q^{24} +(-0.385107 - 4.98515i) q^{25} -4.55101 q^{26} -1.00000i q^{27} -0.614893i q^{28} -1.00000 q^{29} +(-2.60448 + 2.81344i) q^{30} +5.05274 q^{31} -4.93087i q^{32} +0.163559i q^{33} -6.62385 q^{34} +(1.07367 + 0.993926i) q^{35} +0.939748 q^{36} -10.5904i q^{37} +5.96591i q^{38} -2.65432 q^{39} +(2.98295 + 2.76140i) q^{40} -6.17417 q^{41} -1.12187i q^{42} -10.5547i q^{43} -0.153704 q^{44} +(-1.51903 + 1.64090i) q^{45} -13.2017 q^{46} -10.3036i q^{47} -4.99637i q^{48} +6.57187 q^{49} +(8.54738 - 0.660292i) q^{50} -3.86328 q^{51} -2.49439i q^{52} +4.04766i q^{53} +1.71457 q^{54} +(0.248450 - 0.268383i) q^{55} -1.18947 q^{56} +3.47954i q^{57} -1.71457i q^{58} +0.328734 q^{59} +(-1.54203 - 1.42750i) q^{60} -5.72054 q^{61} +8.66328i q^{62} -0.654317i q^{63} -1.53842 q^{64} +(4.35547 + 4.03198i) q^{65} -0.280433 q^{66} -3.51985i q^{67} -3.63050i q^{68} -7.69972 q^{69} +(-1.70416 + 1.84088i) q^{70} +11.7457 q^{71} -1.81788i q^{72} -1.12143i q^{73} +18.1580 q^{74} +(4.98515 - 0.385107i) q^{75} -3.26989 q^{76} +0.107019i q^{77} -4.55101i q^{78} +12.4074 q^{79} +(-7.58963 + 8.19854i) q^{80} +1.00000 q^{81} -10.5860i q^{82} +7.89306i q^{83} +0.614893 q^{84} +(6.33925 + 5.86842i) q^{85} +18.0968 q^{86} -1.00000i q^{87} +0.297329i q^{88} -5.04702 q^{89} +(-2.81344 - 2.60448i) q^{90} -1.73677 q^{91} -7.23579i q^{92} +5.05274i q^{93} +17.6663 q^{94} +(5.28551 - 5.70957i) q^{95} +4.93087 q^{96} -8.49076i q^{97} +11.2679i q^{98} -0.163559 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{4} + 6 q^{6} - 10 q^{9} + 4 q^{10} + 24 q^{11} - 12 q^{14} + 2 q^{15} + 2 q^{16} + 4 q^{19} + 8 q^{20} + 16 q^{21} - 18 q^{24} + 2 q^{25} - 10 q^{29} - 18 q^{30} + 4 q^{31} - 8 q^{34} + 2 q^{35}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/435\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(146\) \(262\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.71457i 1.21238i 0.795319 + 0.606192i \(0.207304\pi\)
−0.795319 + 0.606192i \(0.792696\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −0.939748 −0.469874
\(5\) 1.51903 1.64090i 0.679330 0.733833i
\(6\) −1.71457 −0.699970
\(7\) 0.654317i 0.247309i 0.992325 + 0.123654i \(0.0394614\pi\)
−0.992325 + 0.123654i \(0.960539\pi\)
\(8\) 1.81788i 0.642716i
\(9\) −1.00000 −0.333333
\(10\) 2.81344 + 2.60448i 0.889687 + 0.823609i
\(11\) 0.163559 0.0493148 0.0246574 0.999696i \(-0.492151\pi\)
0.0246574 + 0.999696i \(0.492151\pi\)
\(12\) 0.939748i 0.271282i
\(13\) 2.65432i 0.736175i 0.929791 + 0.368088i \(0.119987\pi\)
−0.929791 + 0.368088i \(0.880013\pi\)
\(14\) −1.12187 −0.299833
\(15\) 1.64090 + 1.51903i 0.423679 + 0.392211i
\(16\) −4.99637 −1.24909
\(17\) 3.86328i 0.936982i 0.883468 + 0.468491i \(0.155202\pi\)
−0.883468 + 0.468491i \(0.844798\pi\)
\(18\) 1.71457i 0.404128i
\(19\) 3.47954 0.798260 0.399130 0.916894i \(-0.369312\pi\)
0.399130 + 0.916894i \(0.369312\pi\)
\(20\) −1.42750 + 1.54203i −0.319199 + 0.344809i
\(21\) −0.654317 −0.142784
\(22\) 0.280433i 0.0597884i
\(23\) 7.69972i 1.60550i 0.596314 + 0.802751i \(0.296631\pi\)
−0.596314 + 0.802751i \(0.703369\pi\)
\(24\) −1.81788 −0.371072
\(25\) −0.385107 4.98515i −0.0770214 0.997029i
\(26\) −4.55101 −0.892527
\(27\) 1.00000i 0.192450i
\(28\) 0.614893i 0.116204i
\(29\) −1.00000 −0.185695
\(30\) −2.60448 + 2.81344i −0.475511 + 0.513661i
\(31\) 5.05274 0.907499 0.453750 0.891129i \(-0.350086\pi\)
0.453750 + 0.891129i \(0.350086\pi\)
\(32\) 4.93087i 0.871663i
\(33\) 0.163559i 0.0284719i
\(34\) −6.62385 −1.13598
\(35\) 1.07367 + 0.993926i 0.181483 + 0.168004i
\(36\) 0.939748 0.156625
\(37\) 10.5904i 1.74106i −0.492118 0.870528i \(-0.663777\pi\)
0.492118 0.870528i \(-0.336223\pi\)
\(38\) 5.96591i 0.967798i
\(39\) −2.65432 −0.425031
\(40\) 2.98295 + 2.76140i 0.471646 + 0.436616i
\(41\) −6.17417 −0.964244 −0.482122 0.876104i \(-0.660134\pi\)
−0.482122 + 0.876104i \(0.660134\pi\)
\(42\) 1.12187i 0.173109i
\(43\) 10.5547i 1.60958i −0.593559 0.804790i \(-0.702278\pi\)
0.593559 0.804790i \(-0.297722\pi\)
\(44\) −0.153704 −0.0231717
\(45\) −1.51903 + 1.64090i −0.226443 + 0.244611i
\(46\) −13.2017 −1.94648
\(47\) 10.3036i 1.50294i −0.659767 0.751470i \(-0.729345\pi\)
0.659767 0.751470i \(-0.270655\pi\)
\(48\) 4.99637i 0.721164i
\(49\) 6.57187 0.938838
\(50\) 8.54738 0.660292i 1.20878 0.0933795i
\(51\) −3.86328 −0.540967
\(52\) 2.49439i 0.345909i
\(53\) 4.04766i 0.555989i 0.960583 + 0.277995i \(0.0896697\pi\)
−0.960583 + 0.277995i \(0.910330\pi\)
\(54\) 1.71457 0.233323
\(55\) 0.248450 0.268383i 0.0335010 0.0361888i
\(56\) −1.18947 −0.158949
\(57\) 3.47954i 0.460876i
\(58\) 1.71457i 0.225134i
\(59\) 0.328734 0.0427975 0.0213988 0.999771i \(-0.493188\pi\)
0.0213988 + 0.999771i \(0.493188\pi\)
\(60\) −1.54203 1.42750i −0.199076 0.184290i
\(61\) −5.72054 −0.732441 −0.366220 0.930528i \(-0.619348\pi\)
−0.366220 + 0.930528i \(0.619348\pi\)
\(62\) 8.66328i 1.10024i
\(63\) 0.654317i 0.0824362i
\(64\) −1.53842 −0.192303
\(65\) 4.35547 + 4.03198i 0.540230 + 0.500106i
\(66\) −0.280433 −0.0345189
\(67\) 3.51985i 0.430019i −0.976612 0.215009i \(-0.931022\pi\)
0.976612 0.215009i \(-0.0689782\pi\)
\(68\) 3.63050i 0.440263i
\(69\) −7.69972 −0.926937
\(70\) −1.70416 + 1.84088i −0.203686 + 0.220027i
\(71\) 11.7457 1.39396 0.696981 0.717090i \(-0.254526\pi\)
0.696981 + 0.717090i \(0.254526\pi\)
\(72\) 1.81788i 0.214239i
\(73\) 1.12143i 0.131253i −0.997844 0.0656267i \(-0.979095\pi\)
0.997844 0.0656267i \(-0.0209047\pi\)
\(74\) 18.1580 2.11083
\(75\) 4.98515 0.385107i 0.575635 0.0444683i
\(76\) −3.26989 −0.375082
\(77\) 0.107019i 0.0121960i
\(78\) 4.55101i 0.515300i
\(79\) 12.4074 1.39594 0.697970 0.716127i \(-0.254087\pi\)
0.697970 + 0.716127i \(0.254087\pi\)
\(80\) −7.58963 + 8.19854i −0.848546 + 0.916625i
\(81\) 1.00000 0.111111
\(82\) 10.5860i 1.16903i
\(83\) 7.89306i 0.866376i 0.901304 + 0.433188i \(0.142611\pi\)
−0.901304 + 0.433188i \(0.857389\pi\)
\(84\) 0.614893 0.0670903
\(85\) 6.33925 + 5.86842i 0.687588 + 0.636520i
\(86\) 18.0968 1.95143
\(87\) 1.00000i 0.107211i
\(88\) 0.297329i 0.0316954i
\(89\) −5.04702 −0.534983 −0.267491 0.963560i \(-0.586195\pi\)
−0.267491 + 0.963560i \(0.586195\pi\)
\(90\) −2.81344 2.60448i −0.296562 0.274536i
\(91\) −1.73677 −0.182062
\(92\) 7.23579i 0.754383i
\(93\) 5.05274i 0.523945i
\(94\) 17.6663 1.82214
\(95\) 5.28551 5.70957i 0.542282 0.585790i
\(96\) 4.93087 0.503255
\(97\) 8.49076i 0.862106i −0.902327 0.431053i \(-0.858142\pi\)
0.902327 0.431053i \(-0.141858\pi\)
\(98\) 11.2679i 1.13823i
\(99\) −0.163559 −0.0164383
\(100\) 0.361903 + 4.68478i 0.0361903 + 0.468478i
\(101\) 1.81126 0.180227 0.0901136 0.995931i \(-0.471277\pi\)
0.0901136 + 0.995931i \(0.471277\pi\)
\(102\) 6.62385i 0.655859i
\(103\) 5.80807i 0.572286i 0.958187 + 0.286143i \(0.0923733\pi\)
−0.958187 + 0.286143i \(0.907627\pi\)
\(104\) −4.82522 −0.473152
\(105\) −0.993926 + 1.07367i −0.0969973 + 0.104779i
\(106\) −6.94000 −0.674072
\(107\) 3.48568i 0.336973i −0.985704 0.168487i \(-0.946112\pi\)
0.985704 0.168487i \(-0.0538880\pi\)
\(108\) 0.939748i 0.0904273i
\(109\) −8.11029 −0.776825 −0.388412 0.921486i \(-0.626976\pi\)
−0.388412 + 0.921486i \(0.626976\pi\)
\(110\) 0.460162 + 0.425985i 0.0438747 + 0.0406161i
\(111\) 10.5904 1.00520
\(112\) 3.26921i 0.308911i
\(113\) 2.06715i 0.194461i 0.995262 + 0.0972307i \(0.0309985\pi\)
−0.995262 + 0.0972307i \(0.969002\pi\)
\(114\) −5.96591 −0.558758
\(115\) 12.6345 + 11.6961i 1.17817 + 1.09067i
\(116\) 0.939748 0.0872534
\(117\) 2.65432i 0.245392i
\(118\) 0.563637i 0.0518870i
\(119\) −2.52781 −0.231724
\(120\) −2.76140 + 2.98295i −0.252081 + 0.272305i
\(121\) −10.9732 −0.997568
\(122\) 9.80827i 0.887999i
\(123\) 6.17417i 0.556706i
\(124\) −4.74830 −0.426410
\(125\) −8.76512 6.94066i −0.783976 0.620791i
\(126\) 1.12187 0.0999443
\(127\) 12.9962i 1.15323i 0.817017 + 0.576613i \(0.195626\pi\)
−0.817017 + 0.576613i \(0.804374\pi\)
\(128\) 12.4995i 1.10481i
\(129\) 10.5547 0.929292
\(130\) −6.91311 + 7.46775i −0.606320 + 0.654965i
\(131\) 8.69003 0.759251 0.379626 0.925140i \(-0.376053\pi\)
0.379626 + 0.925140i \(0.376053\pi\)
\(132\) 0.153704i 0.0133782i
\(133\) 2.27672i 0.197417i
\(134\) 6.03504 0.521348
\(135\) −1.64090 1.51903i −0.141226 0.130737i
\(136\) −7.02295 −0.602213
\(137\) 14.4550i 1.23498i −0.786580 0.617489i \(-0.788150\pi\)
0.786580 0.617489i \(-0.211850\pi\)
\(138\) 13.2017i 1.12380i
\(139\) 1.72208 0.146065 0.0730324 0.997330i \(-0.476732\pi\)
0.0730324 + 0.997330i \(0.476732\pi\)
\(140\) −1.00898 0.934040i −0.0852742 0.0789408i
\(141\) 10.3036 0.867723
\(142\) 20.1389i 1.69002i
\(143\) 0.434137i 0.0363043i
\(144\) 4.99637 0.416364
\(145\) −1.51903 + 1.64090i −0.126148 + 0.136269i
\(146\) 1.92277 0.159129
\(147\) 6.57187i 0.542039i
\(148\) 9.95234i 0.818077i
\(149\) −16.1461 −1.32274 −0.661369 0.750060i \(-0.730024\pi\)
−0.661369 + 0.750060i \(0.730024\pi\)
\(150\) 0.660292 + 8.54738i 0.0539127 + 0.697891i
\(151\) −0.733083 −0.0596574 −0.0298287 0.999555i \(-0.509496\pi\)
−0.0298287 + 0.999555i \(0.509496\pi\)
\(152\) 6.32536i 0.513055i
\(153\) 3.86328i 0.312327i
\(154\) −0.183492 −0.0147862
\(155\) 7.67526 8.29105i 0.616492 0.665953i
\(156\) 2.49439 0.199711
\(157\) 10.8270i 0.864085i −0.901853 0.432043i \(-0.857793\pi\)
0.901853 0.432043i \(-0.142207\pi\)
\(158\) 21.2733i 1.69241i
\(159\) −4.04766 −0.321000
\(160\) −8.09107 7.49013i −0.639655 0.592147i
\(161\) −5.03806 −0.397054
\(162\) 1.71457i 0.134709i
\(163\) 13.5528i 1.06154i −0.847517 0.530768i \(-0.821904\pi\)
0.847517 0.530768i \(-0.178096\pi\)
\(164\) 5.80216 0.453073
\(165\) 0.268383 + 0.248450i 0.0208936 + 0.0193418i
\(166\) −13.5332 −1.05038
\(167\) 18.4671i 1.42902i −0.699623 0.714512i \(-0.746649\pi\)
0.699623 0.714512i \(-0.253351\pi\)
\(168\) 1.18947i 0.0917694i
\(169\) 5.95460 0.458046
\(170\) −10.0618 + 10.8691i −0.771706 + 0.833621i
\(171\) −3.47954 −0.266087
\(172\) 9.91878i 0.756300i
\(173\) 8.92785i 0.678772i −0.940647 0.339386i \(-0.889781\pi\)
0.940647 0.339386i \(-0.110219\pi\)
\(174\) 1.71457 0.129981
\(175\) 3.26187 0.251982i 0.246574 0.0190481i
\(176\) −0.817200 −0.0615987
\(177\) 0.328734i 0.0247092i
\(178\) 8.65346i 0.648604i
\(179\) 1.86896 0.139693 0.0698465 0.997558i \(-0.477749\pi\)
0.0698465 + 0.997558i \(0.477749\pi\)
\(180\) 1.42750 1.54203i 0.106400 0.114936i
\(181\) 16.8852 1.25507 0.627533 0.778590i \(-0.284065\pi\)
0.627533 + 0.778590i \(0.284065\pi\)
\(182\) 2.97780i 0.220730i
\(183\) 5.72054i 0.422875i
\(184\) −13.9971 −1.03188
\(185\) −17.3778 16.0872i −1.27764 1.18275i
\(186\) −8.66328 −0.635222
\(187\) 0.631872i 0.0462071i
\(188\) 9.68282i 0.706192i
\(189\) 0.654317 0.0475946
\(190\) 9.78946 + 9.06238i 0.710202 + 0.657454i
\(191\) 7.58677 0.548960 0.274480 0.961593i \(-0.411494\pi\)
0.274480 + 0.961593i \(0.411494\pi\)
\(192\) 1.53842i 0.111026i
\(193\) 27.2794i 1.96362i 0.189876 + 0.981808i \(0.439191\pi\)
−0.189876 + 0.981808i \(0.560809\pi\)
\(194\) 14.5580 1.04520
\(195\) −4.03198 + 4.35547i −0.288736 + 0.311902i
\(196\) −6.17590 −0.441136
\(197\) 9.70626i 0.691542i 0.938319 + 0.345771i \(0.112383\pi\)
−0.938319 + 0.345771i \(0.887617\pi\)
\(198\) 0.280433i 0.0199295i
\(199\) −22.9520 −1.62703 −0.813513 0.581547i \(-0.802448\pi\)
−0.813513 + 0.581547i \(0.802448\pi\)
\(200\) 9.06238 0.700077i 0.640807 0.0495029i
\(201\) 3.51985 0.248271
\(202\) 3.10553i 0.218504i
\(203\) 0.654317i 0.0459241i
\(204\) 3.63050 0.254186
\(205\) −9.37874 + 10.1312i −0.655040 + 0.707594i
\(206\) −9.95834 −0.693831
\(207\) 7.69972i 0.535167i
\(208\) 13.2619i 0.919551i
\(209\) 0.569108 0.0393660
\(210\) −1.84088 1.70416i −0.127033 0.117598i
\(211\) 18.0020 1.23931 0.619655 0.784874i \(-0.287273\pi\)
0.619655 + 0.784874i \(0.287273\pi\)
\(212\) 3.80378i 0.261245i
\(213\) 11.7457i 0.804804i
\(214\) 5.97644 0.408541
\(215\) −17.3192 16.0329i −1.18116 1.09344i
\(216\) 1.81788 0.123691
\(217\) 3.30610i 0.224432i
\(218\) 13.9057i 0.941810i
\(219\) 1.12143 0.0757792
\(220\) −0.233481 + 0.252213i −0.0157413 + 0.0170042i
\(221\) −10.2544 −0.689783
\(222\) 18.1580i 1.21869i
\(223\) 19.1383i 1.28160i −0.767708 0.640799i \(-0.778603\pi\)
0.767708 0.640799i \(-0.221397\pi\)
\(224\) 3.22635 0.215570
\(225\) 0.385107 + 4.98515i 0.0256738 + 0.332343i
\(226\) −3.54428 −0.235762
\(227\) 13.3621i 0.886872i 0.896306 + 0.443436i \(0.146241\pi\)
−0.896306 + 0.443436i \(0.853759\pi\)
\(228\) 3.26989i 0.216554i
\(229\) −7.45145 −0.492405 −0.246203 0.969218i \(-0.579183\pi\)
−0.246203 + 0.969218i \(0.579183\pi\)
\(230\) −20.0538 + 21.6627i −1.32231 + 1.42839i
\(231\) −0.107019 −0.00704135
\(232\) 1.81788i 0.119349i
\(233\) 21.5080i 1.40904i 0.709687 + 0.704518i \(0.248837\pi\)
−0.709687 + 0.704518i \(0.751163\pi\)
\(234\) 4.55101 0.297509
\(235\) −16.9072 15.6515i −1.10291 1.02099i
\(236\) −0.308927 −0.0201094
\(237\) 12.4074i 0.805946i
\(238\) 4.33410i 0.280938i
\(239\) −24.1169 −1.55999 −0.779997 0.625784i \(-0.784779\pi\)
−0.779997 + 0.625784i \(0.784779\pi\)
\(240\) −8.19854 7.58963i −0.529214 0.489908i
\(241\) −7.22805 −0.465600 −0.232800 0.972525i \(-0.574789\pi\)
−0.232800 + 0.972525i \(0.574789\pi\)
\(242\) 18.8144i 1.20944i
\(243\) 1.00000i 0.0641500i
\(244\) 5.37587 0.344155
\(245\) 9.98285 10.7838i 0.637781 0.688951i
\(246\) 10.5860 0.674942
\(247\) 9.23579i 0.587659i
\(248\) 9.18526i 0.583264i
\(249\) −7.89306 −0.500203
\(250\) 11.9002 15.0284i 0.752637 0.950480i
\(251\) −8.74458 −0.551953 −0.275977 0.961164i \(-0.589001\pi\)
−0.275977 + 0.961164i \(0.589001\pi\)
\(252\) 0.614893i 0.0387346i
\(253\) 1.25936i 0.0791750i
\(254\) −22.2829 −1.39815
\(255\) −5.86842 + 6.33925i −0.367495 + 0.396979i
\(256\) 18.3544 1.14715
\(257\) 10.1877i 0.635494i 0.948176 + 0.317747i \(0.102926\pi\)
−0.948176 + 0.317747i \(0.897074\pi\)
\(258\) 18.0968i 1.12666i
\(259\) 6.92950 0.430578
\(260\) −4.09304 3.78905i −0.253840 0.234987i
\(261\) 1.00000 0.0618984
\(262\) 14.8997i 0.920504i
\(263\) 11.6794i 0.720184i 0.932917 + 0.360092i \(0.117255\pi\)
−0.932917 + 0.360092i \(0.882745\pi\)
\(264\) −0.297329 −0.0182994
\(265\) 6.64181 + 6.14851i 0.408003 + 0.377700i
\(266\) −3.90359 −0.239345
\(267\) 5.04702i 0.308872i
\(268\) 3.30778i 0.202055i
\(269\) −23.0385 −1.40468 −0.702342 0.711839i \(-0.747862\pi\)
−0.702342 + 0.711839i \(0.747862\pi\)
\(270\) 2.60448 2.81344i 0.158504 0.171220i
\(271\) −4.45505 −0.270625 −0.135312 0.990803i \(-0.543204\pi\)
−0.135312 + 0.990803i \(0.543204\pi\)
\(272\) 19.3024i 1.17038i
\(273\) 1.73677i 0.105114i
\(274\) 24.7842 1.49727
\(275\) −0.0629876 0.815364i −0.00379829 0.0491683i
\(276\) 7.23579 0.435543
\(277\) 15.7000i 0.943321i −0.881780 0.471661i \(-0.843655\pi\)
0.881780 0.471661i \(-0.156345\pi\)
\(278\) 2.95262i 0.177087i
\(279\) −5.05274 −0.302500
\(280\) −1.80683 + 1.95180i −0.107979 + 0.116642i
\(281\) 13.4721 0.803677 0.401838 0.915711i \(-0.368371\pi\)
0.401838 + 0.915711i \(0.368371\pi\)
\(282\) 17.6663i 1.05201i
\(283\) 5.86481i 0.348627i 0.984690 + 0.174313i \(0.0557706\pi\)
−0.984690 + 0.174313i \(0.944229\pi\)
\(284\) −11.0380 −0.654986
\(285\) 5.70957 + 5.28551i 0.338206 + 0.313087i
\(286\) −0.744357 −0.0440148
\(287\) 4.03987i 0.238466i
\(288\) 4.93087i 0.290554i
\(289\) 2.07510 0.122065
\(290\) −2.81344 2.60448i −0.165211 0.152940i
\(291\) 8.49076 0.497737
\(292\) 1.05386i 0.0616726i
\(293\) 10.3642i 0.605485i −0.953072 0.302742i \(-0.902098\pi\)
0.953072 0.302742i \(-0.0979022\pi\)
\(294\) −11.2679 −0.657159
\(295\) 0.499356 0.539420i 0.0290737 0.0314062i
\(296\) 19.2521 1.11901
\(297\) 0.163559i 0.00949064i
\(298\) 27.6836i 1.60367i
\(299\) −20.4375 −1.18193
\(300\) −4.68478 + 0.361903i −0.270476 + 0.0208945i
\(301\) 6.90614 0.398063
\(302\) 1.25692i 0.0723277i
\(303\) 1.81126i 0.104054i
\(304\) −17.3850 −0.997101
\(305\) −8.68967 + 9.38684i −0.497569 + 0.537489i
\(306\) 6.62385 0.378660
\(307\) 16.0760i 0.917504i 0.888564 + 0.458752i \(0.151703\pi\)
−0.888564 + 0.458752i \(0.848297\pi\)
\(308\) 0.100571i 0.00573057i
\(309\) −5.80807 −0.330410
\(310\) 14.2156 + 13.1598i 0.807390 + 0.747424i
\(311\) 16.9976 0.963846 0.481923 0.876214i \(-0.339939\pi\)
0.481923 + 0.876214i \(0.339939\pi\)
\(312\) 4.82522i 0.273174i
\(313\) 25.2391i 1.42660i 0.700858 + 0.713300i \(0.252800\pi\)
−0.700858 + 0.713300i \(0.747200\pi\)
\(314\) 18.5636 1.04760
\(315\) −1.07367 0.993926i −0.0604944 0.0560014i
\(316\) −11.6598 −0.655916
\(317\) 3.06731i 0.172277i −0.996283 0.0861386i \(-0.972547\pi\)
0.996283 0.0861386i \(-0.0274528\pi\)
\(318\) 6.94000i 0.389176i
\(319\) −0.163559 −0.00915753
\(320\) −2.33690 + 2.52439i −0.130637 + 0.141118i
\(321\) 3.48568 0.194552
\(322\) 8.63810i 0.481382i
\(323\) 13.4424i 0.747955i
\(324\) −0.939748 −0.0522082
\(325\) 13.2322 1.02220i 0.733988 0.0567012i
\(326\) 23.2372 1.28699
\(327\) 8.11029i 0.448500i
\(328\) 11.2239i 0.619735i
\(329\) 6.74185 0.371690
\(330\) −0.425985 + 0.460162i −0.0234497 + 0.0253311i
\(331\) −19.9971 −1.09914 −0.549571 0.835447i \(-0.685209\pi\)
−0.549571 + 0.835447i \(0.685209\pi\)
\(332\) 7.41749i 0.407088i
\(333\) 10.5904i 0.580352i
\(334\) 31.6631 1.73253
\(335\) −5.77573 5.34676i −0.315562 0.292125i
\(336\) 3.26921 0.178350
\(337\) 6.45613i 0.351688i 0.984418 + 0.175844i \(0.0562654\pi\)
−0.984418 + 0.175844i \(0.943735\pi\)
\(338\) 10.2096i 0.555328i
\(339\) −2.06715 −0.112272
\(340\) −5.95730 5.51484i −0.323080 0.299084i
\(341\) 0.826420 0.0447531
\(342\) 5.96591i 0.322599i
\(343\) 8.88031i 0.479491i
\(344\) 19.1872 1.03450
\(345\) −11.6961 + 12.6345i −0.629696 + 0.680217i
\(346\) 15.3074 0.822932
\(347\) 14.9415i 0.802099i 0.916056 + 0.401050i \(0.131355\pi\)
−0.916056 + 0.401050i \(0.868645\pi\)
\(348\) 0.939748i 0.0503758i
\(349\) 12.1055 0.647992 0.323996 0.946058i \(-0.394974\pi\)
0.323996 + 0.946058i \(0.394974\pi\)
\(350\) 0.432041 + 5.59270i 0.0230935 + 0.298942i
\(351\) 2.65432 0.141677
\(352\) 0.806487i 0.0429859i
\(353\) 18.1937i 0.968355i −0.874970 0.484178i \(-0.839119\pi\)
0.874970 0.484178i \(-0.160881\pi\)
\(354\) −0.563637 −0.0299570
\(355\) 17.8421 19.2736i 0.946960 1.02293i
\(356\) 4.74292 0.251374
\(357\) 2.52781i 0.133786i
\(358\) 3.20447i 0.169361i
\(359\) 35.1010 1.85256 0.926279 0.376838i \(-0.122989\pi\)
0.926279 + 0.376838i \(0.122989\pi\)
\(360\) −2.98295 2.76140i −0.157215 0.145539i
\(361\) −6.89283 −0.362780
\(362\) 28.9508i 1.52162i
\(363\) 10.9732i 0.575946i
\(364\) 1.63212 0.0855464
\(365\) −1.84015 1.70348i −0.0963181 0.0891644i
\(366\) 9.80827 0.512686
\(367\) 23.1943i 1.21073i −0.795946 0.605367i \(-0.793026\pi\)
0.795946 0.605367i \(-0.206974\pi\)
\(368\) 38.4706i 2.00542i
\(369\) 6.17417 0.321415
\(370\) 27.5826 29.7955i 1.43395 1.54900i
\(371\) −2.64845 −0.137501
\(372\) 4.74830i 0.246188i
\(373\) 4.99469i 0.258615i −0.991605 0.129308i \(-0.958725\pi\)
0.991605 0.129308i \(-0.0412754\pi\)
\(374\) −1.08339 −0.0560207
\(375\) 6.94066 8.76512i 0.358414 0.452629i
\(376\) 18.7307 0.965964
\(377\) 2.65432i 0.136704i
\(378\) 1.12187i 0.0577029i
\(379\) 28.7738 1.47801 0.739006 0.673699i \(-0.235296\pi\)
0.739006 + 0.673699i \(0.235296\pi\)
\(380\) −4.96705 + 5.36556i −0.254804 + 0.275247i
\(381\) −12.9962 −0.665816
\(382\) 13.0080i 0.665550i
\(383\) 24.9482i 1.27479i −0.770537 0.637396i \(-0.780012\pi\)
0.770537 0.637396i \(-0.219988\pi\)
\(384\) 12.4995 0.637861
\(385\) 0.175608 + 0.162565i 0.00894981 + 0.00828509i
\(386\) −46.7725 −2.38066
\(387\) 10.5547i 0.536527i
\(388\) 7.97917i 0.405081i
\(389\) −31.0949 −1.57657 −0.788286 0.615308i \(-0.789031\pi\)
−0.788286 + 0.615308i \(0.789031\pi\)
\(390\) −7.46775 6.91311i −0.378144 0.350059i
\(391\) −29.7461 −1.50433
\(392\) 11.9468i 0.603407i
\(393\) 8.69003i 0.438354i
\(394\) −16.6421 −0.838414
\(395\) 18.8472 20.3593i 0.948304 1.02439i
\(396\) 0.153704 0.00772391
\(397\) 12.1948i 0.612038i 0.952025 + 0.306019i \(0.0989971\pi\)
−0.952025 + 0.306019i \(0.901003\pi\)
\(398\) 39.3528i 1.97258i
\(399\) −2.27672 −0.113979
\(400\) 1.92414 + 24.9076i 0.0962068 + 1.24538i
\(401\) 4.33039 0.216249 0.108125 0.994137i \(-0.465515\pi\)
0.108125 + 0.994137i \(0.465515\pi\)
\(402\) 6.03504i 0.301000i
\(403\) 13.4116i 0.668078i
\(404\) −1.70213 −0.0846841
\(405\) 1.51903 1.64090i 0.0754811 0.0815370i
\(406\) 1.12187 0.0556776
\(407\) 1.73216i 0.0858599i
\(408\) 7.02295i 0.347688i
\(409\) −5.12178 −0.253256 −0.126628 0.991950i \(-0.540415\pi\)
−0.126628 + 0.991950i \(0.540415\pi\)
\(410\) −17.3706 16.0805i −0.857875 0.794159i
\(411\) 14.4550 0.713015
\(412\) 5.45812i 0.268902i
\(413\) 0.215096i 0.0105842i
\(414\) 13.2017 0.648828
\(415\) 12.9517 + 11.9898i 0.635775 + 0.588555i
\(416\) 13.0881 0.641697
\(417\) 1.72208i 0.0843306i
\(418\) 0.975776i 0.0477267i
\(419\) −14.1945 −0.693445 −0.346723 0.937968i \(-0.612705\pi\)
−0.346723 + 0.937968i \(0.612705\pi\)
\(420\) 0.934040 1.00898i 0.0455765 0.0492331i
\(421\) 4.83364 0.235577 0.117789 0.993039i \(-0.462419\pi\)
0.117789 + 0.993039i \(0.462419\pi\)
\(422\) 30.8657i 1.50252i
\(423\) 10.3036i 0.500980i
\(424\) −7.35815 −0.357343
\(425\) 19.2590 1.48777i 0.934198 0.0721676i
\(426\) −20.1389 −0.975731
\(427\) 3.74305i 0.181139i
\(428\) 3.27566i 0.158335i
\(429\) −0.434137 −0.0209603
\(430\) 27.4896 29.6950i 1.32566 1.43202i
\(431\) −18.0910 −0.871411 −0.435706 0.900089i \(-0.643501\pi\)
−0.435706 + 0.900089i \(0.643501\pi\)
\(432\) 4.99637i 0.240388i
\(433\) 1.71005i 0.0821798i −0.999155 0.0410899i \(-0.986917\pi\)
0.999155 0.0410899i \(-0.0130830\pi\)
\(434\) −5.66853 −0.272098
\(435\) −1.64090 1.51903i −0.0786751 0.0728318i
\(436\) 7.62163 0.365010
\(437\) 26.7914i 1.28161i
\(438\) 1.92277i 0.0918734i
\(439\) −24.3533 −1.16232 −0.581160 0.813789i \(-0.697401\pi\)
−0.581160 + 0.813789i \(0.697401\pi\)
\(440\) 0.487888 + 0.451652i 0.0232591 + 0.0215316i
\(441\) −6.57187 −0.312946
\(442\) 17.5818i 0.836281i
\(443\) 18.9066i 0.898280i 0.893461 + 0.449140i \(0.148270\pi\)
−0.893461 + 0.449140i \(0.851730\pi\)
\(444\) −9.95234 −0.472317
\(445\) −7.66656 + 8.28165i −0.363430 + 0.392588i
\(446\) 32.8140 1.55379
\(447\) 16.1461i 0.763684i
\(448\) 1.00661i 0.0475581i
\(449\) −25.2808 −1.19307 −0.596537 0.802586i \(-0.703457\pi\)
−0.596537 + 0.802586i \(0.703457\pi\)
\(450\) −8.54738 + 0.660292i −0.402927 + 0.0311265i
\(451\) −1.00984 −0.0475515
\(452\) 1.94260i 0.0913723i
\(453\) 0.733083i 0.0344432i
\(454\) −22.9102 −1.07523
\(455\) −2.63820 + 2.84986i −0.123680 + 0.133603i
\(456\) −6.32536 −0.296212
\(457\) 4.25835i 0.199197i −0.995028 0.0995986i \(-0.968244\pi\)
0.995028 0.0995986i \(-0.0317559\pi\)
\(458\) 12.7760i 0.596984i
\(459\) 3.86328 0.180322
\(460\) −11.8732 10.9914i −0.553591 0.512475i
\(461\) 2.48353 0.115670 0.0578349 0.998326i \(-0.481580\pi\)
0.0578349 + 0.998326i \(0.481580\pi\)
\(462\) 0.183492i 0.00853682i
\(463\) 27.4876i 1.27746i 0.769433 + 0.638728i \(0.220539\pi\)
−0.769433 + 0.638728i \(0.779461\pi\)
\(464\) 4.99637 0.231951
\(465\) 8.29105 + 7.67526i 0.384488 + 0.355932i
\(466\) −36.8769 −1.70829
\(467\) 6.24698i 0.289076i 0.989499 + 0.144538i \(0.0461695\pi\)
−0.989499 + 0.144538i \(0.953830\pi\)
\(468\) 2.49439i 0.115303i
\(469\) 2.30310 0.106347
\(470\) 26.8356 28.9886i 1.23783 1.33715i
\(471\) 10.8270 0.498880
\(472\) 0.597598i 0.0275067i
\(473\) 1.72632i 0.0793761i
\(474\) −21.2733 −0.977116
\(475\) −1.33999 17.3460i −0.0614831 0.795889i
\(476\) 2.37550 0.108881
\(477\) 4.04766i 0.185330i
\(478\) 41.3501i 1.89131i
\(479\) 11.5736 0.528812 0.264406 0.964412i \(-0.414824\pi\)
0.264406 + 0.964412i \(0.414824\pi\)
\(480\) 7.49013 8.09107i 0.341876 0.369305i
\(481\) 28.1104 1.28172
\(482\) 12.3930i 0.564485i
\(483\) 5.03806i 0.229240i
\(484\) 10.3121 0.468731
\(485\) −13.9325 12.8977i −0.632642 0.585654i
\(486\) −1.71457 −0.0777744
\(487\) 31.1947i 1.41357i 0.707431 + 0.706783i \(0.249854\pi\)
−0.707431 + 0.706783i \(0.750146\pi\)
\(488\) 10.3992i 0.470751i
\(489\) 13.5528 0.612878
\(490\) 18.4895 + 17.1163i 0.835272 + 0.773235i
\(491\) −7.93512 −0.358107 −0.179053 0.983839i \(-0.557303\pi\)
−0.179053 + 0.983839i \(0.557303\pi\)
\(492\) 5.80216i 0.261582i
\(493\) 3.86328i 0.173993i
\(494\) −15.8354 −0.712469
\(495\) −0.248450 + 0.268383i −0.0111670 + 0.0120629i
\(496\) −25.2454 −1.13355
\(497\) 7.68543i 0.344739i
\(498\) 13.5332i 0.606437i
\(499\) 32.8984 1.47274 0.736368 0.676581i \(-0.236539\pi\)
0.736368 + 0.676581i \(0.236539\pi\)
\(500\) 8.23700 + 6.52247i 0.368370 + 0.291694i
\(501\) 18.4671 0.825047
\(502\) 14.9932i 0.669179i
\(503\) 40.7038i 1.81489i −0.420168 0.907446i \(-0.638029\pi\)
0.420168 0.907446i \(-0.361971\pi\)
\(504\) 1.18947 0.0529831
\(505\) 2.75136 2.97210i 0.122434 0.132257i
\(506\) −2.15925 −0.0959905
\(507\) 5.95460i 0.264453i
\(508\) 12.2132i 0.541871i
\(509\) 36.9407 1.63737 0.818684 0.574245i \(-0.194704\pi\)
0.818684 + 0.574245i \(0.194704\pi\)
\(510\) −10.8691 10.0618i −0.481291 0.445545i
\(511\) 0.733771 0.0324601
\(512\) 6.47089i 0.285976i
\(513\) 3.47954i 0.153625i
\(514\) −17.4676 −0.770462
\(515\) 9.53047 + 8.82263i 0.419963 + 0.388771i
\(516\) −9.91878 −0.436650
\(517\) 1.68525i 0.0741172i
\(518\) 11.8811i 0.522026i
\(519\) 8.92785 0.391889
\(520\) −7.32964 + 7.91770i −0.321426 + 0.347214i
\(521\) −33.2555 −1.45695 −0.728476 0.685072i \(-0.759771\pi\)
−0.728476 + 0.685072i \(0.759771\pi\)
\(522\) 1.71457i 0.0750447i
\(523\) 0.341001i 0.0149109i −0.999972 0.00745547i \(-0.997627\pi\)
0.999972 0.00745547i \(-0.00237317\pi\)
\(524\) −8.16644 −0.356752
\(525\) 0.251982 + 3.26187i 0.0109974 + 0.142360i
\(526\) −20.0252 −0.873139
\(527\) 19.5201i 0.850310i
\(528\) 0.817200i 0.0355640i
\(529\) −36.2856 −1.57764
\(530\) −10.5421 + 11.3878i −0.457917 + 0.494656i
\(531\) −0.328734 −0.0142658
\(532\) 2.13954i 0.0927609i
\(533\) 16.3882i 0.709852i
\(534\) 8.65346 0.374472
\(535\) −5.71965 5.29484i −0.247282 0.228916i
\(536\) 6.39866 0.276380
\(537\) 1.86896i 0.0806518i
\(538\) 39.5012i 1.70302i
\(539\) 1.07489 0.0462986
\(540\) 1.54203 + 1.42750i 0.0663585 + 0.0614300i
\(541\) −18.4196 −0.791919 −0.395960 0.918268i \(-0.629588\pi\)
−0.395960 + 0.918268i \(0.629588\pi\)
\(542\) 7.63849i 0.328101i
\(543\) 16.8852i 0.724613i
\(544\) 19.0493 0.816732
\(545\) −12.3198 + 13.3082i −0.527720 + 0.570060i
\(546\) 2.97780 0.127438
\(547\) 42.5936i 1.82117i −0.413320 0.910586i \(-0.635631\pi\)
0.413320 0.910586i \(-0.364369\pi\)
\(548\) 13.5841i 0.580284i
\(549\) 5.72054 0.244147
\(550\) 1.39800 0.107997i 0.0596108 0.00460499i
\(551\) −3.47954 −0.148233
\(552\) 13.9971i 0.595757i
\(553\) 8.11836i 0.345228i
\(554\) 26.9187 1.14367
\(555\) 16.0872 17.3778i 0.682862 0.737648i
\(556\) −1.61832 −0.0686321
\(557\) 17.5805i 0.744908i −0.928051 0.372454i \(-0.878516\pi\)
0.928051 0.372454i \(-0.121484\pi\)
\(558\) 8.66328i 0.366746i
\(559\) 28.0156 1.18493
\(560\) −5.36445 4.96602i −0.226689 0.209853i
\(561\) −0.631872 −0.0266777
\(562\) 23.0988i 0.974365i
\(563\) 6.29621i 0.265354i 0.991159 + 0.132677i \(0.0423572\pi\)
−0.991159 + 0.132677i \(0.957643\pi\)
\(564\) −9.68282 −0.407720
\(565\) 3.39199 + 3.14006i 0.142702 + 0.132103i
\(566\) −10.0556 −0.422669
\(567\) 0.654317i 0.0274787i
\(568\) 21.3523i 0.895921i
\(569\) 42.3981 1.77742 0.888710 0.458469i \(-0.151602\pi\)
0.888710 + 0.458469i \(0.151602\pi\)
\(570\) −9.06238 + 9.78946i −0.379581 + 0.410035i
\(571\) −18.4882 −0.773708 −0.386854 0.922141i \(-0.626438\pi\)
−0.386854 + 0.922141i \(0.626438\pi\)
\(572\) 0.407979i 0.0170585i
\(573\) 7.58677i 0.316942i
\(574\) 6.92663 0.289112
\(575\) 38.3842 2.96521i 1.60073 0.123658i
\(576\) 1.53842 0.0641009
\(577\) 22.0727i 0.918897i 0.888204 + 0.459448i \(0.151953\pi\)
−0.888204 + 0.459448i \(0.848047\pi\)
\(578\) 3.55791i 0.147990i
\(579\) −27.2794 −1.13369
\(580\) 1.42750 1.54203i 0.0592739 0.0640294i
\(581\) −5.16457 −0.214262
\(582\) 14.5580i 0.603448i
\(583\) 0.662030i 0.0274185i
\(584\) 2.03862 0.0843587
\(585\) −4.35547 4.03198i −0.180077 0.166702i
\(586\) 17.7702 0.734080
\(587\) 44.1932i 1.82405i 0.410136 + 0.912024i \(0.365481\pi\)
−0.410136 + 0.912024i \(0.634519\pi\)
\(588\) 6.17590i 0.254690i
\(589\) 17.5812 0.724421
\(590\) 0.924873 + 0.856181i 0.0380764 + 0.0352484i
\(591\) −9.70626 −0.399262
\(592\) 52.9137i 2.17474i
\(593\) 17.4159i 0.715184i 0.933878 + 0.357592i \(0.116402\pi\)
−0.933878 + 0.357592i \(0.883598\pi\)
\(594\) 0.280433 0.0115063
\(595\) −3.83981 + 4.14788i −0.157417 + 0.170046i
\(596\) 15.1732 0.621520
\(597\) 22.9520i 0.939364i
\(598\) 35.0415i 1.43295i
\(599\) −7.70544 −0.314836 −0.157418 0.987532i \(-0.550317\pi\)
−0.157418 + 0.987532i \(0.550317\pi\)
\(600\) 0.700077 + 9.06238i 0.0285805 + 0.369970i
\(601\) −31.5500 −1.28695 −0.643476 0.765466i \(-0.722508\pi\)
−0.643476 + 0.765466i \(0.722508\pi\)
\(602\) 11.8410i 0.482605i
\(603\) 3.51985i 0.143340i
\(604\) 0.688913 0.0280315
\(605\) −16.6687 + 18.0060i −0.677678 + 0.732048i
\(606\) −3.10553 −0.126154
\(607\) 13.2516i 0.537864i 0.963159 + 0.268932i \(0.0866707\pi\)
−0.963159 + 0.268932i \(0.913329\pi\)
\(608\) 17.1571i 0.695814i
\(609\) 0.654317 0.0265143
\(610\) −16.0944 14.8990i −0.651643 0.603244i
\(611\) 27.3491 1.10643
\(612\) 3.63050i 0.146754i
\(613\) 29.4609i 1.18991i 0.803758 + 0.594957i \(0.202831\pi\)
−0.803758 + 0.594957i \(0.797169\pi\)
\(614\) −27.5634 −1.11237
\(615\) −10.1312 9.37874i −0.408529 0.378187i
\(616\) −0.194548 −0.00783855
\(617\) 5.61068i 0.225877i 0.993602 + 0.112939i \(0.0360264\pi\)
−0.993602 + 0.112939i \(0.963974\pi\)
\(618\) 9.95834i 0.400583i
\(619\) −40.5248 −1.62883 −0.814415 0.580282i \(-0.802942\pi\)
−0.814415 + 0.580282i \(0.802942\pi\)
\(620\) −7.21281 + 7.79149i −0.289673 + 0.312914i
\(621\) 7.69972 0.308979
\(622\) 29.1436i 1.16855i
\(623\) 3.30235i 0.132306i
\(624\) 13.2619 0.530903
\(625\) −24.7034 + 3.83963i −0.988135 + 0.153585i
\(626\) −43.2743 −1.72959
\(627\) 0.569108i 0.0227280i
\(628\) 10.1746i 0.406011i
\(629\) 40.9138 1.63134
\(630\) 1.70416 1.84088i 0.0678952 0.0733424i
\(631\) −20.2197 −0.804935 −0.402467 0.915434i \(-0.631847\pi\)
−0.402467 + 0.915434i \(0.631847\pi\)
\(632\) 22.5551i 0.897193i
\(633\) 18.0020i 0.715516i
\(634\) 5.25911 0.208866
\(635\) 21.3255 + 19.7416i 0.846276 + 0.783421i
\(636\) 3.80378 0.150830
\(637\) 17.4438i 0.691149i
\(638\) 0.280433i 0.0111024i
\(639\) −11.7457 −0.464654
\(640\) −20.5104 18.9870i −0.810744 0.750529i
\(641\) −44.0804 −1.74107 −0.870535 0.492107i \(-0.836227\pi\)
−0.870535 + 0.492107i \(0.836227\pi\)
\(642\) 5.97644i 0.235871i
\(643\) 3.56303i 0.140512i 0.997529 + 0.0702561i \(0.0223816\pi\)
−0.997529 + 0.0702561i \(0.977618\pi\)
\(644\) 4.73450 0.186566
\(645\) 16.0329 17.3192i 0.631296 0.681945i
\(646\) −23.0479 −0.906809
\(647\) 40.7523i 1.60214i 0.598573 + 0.801069i \(0.295735\pi\)
−0.598573 + 0.801069i \(0.704265\pi\)
\(648\) 1.81788i 0.0714129i
\(649\) 0.0537673 0.00211055
\(650\) 1.75263 + 22.6875i 0.0687436 + 0.889875i
\(651\) −3.30610 −0.129576
\(652\) 12.7362i 0.498788i
\(653\) 11.6902i 0.457472i −0.973489 0.228736i \(-0.926541\pi\)
0.973489 0.228736i \(-0.0734592\pi\)
\(654\) 13.9057 0.543754
\(655\) 13.2004 14.2595i 0.515782 0.557164i
\(656\) 30.8484 1.20443
\(657\) 1.12143i 0.0437511i
\(658\) 11.5594i 0.450631i
\(659\) 28.1795 1.09772 0.548858 0.835915i \(-0.315063\pi\)
0.548858 + 0.835915i \(0.315063\pi\)
\(660\) −0.252213 0.233481i −0.00981737 0.00908822i
\(661\) −20.6736 −0.804108 −0.402054 0.915616i \(-0.631704\pi\)
−0.402054 + 0.915616i \(0.631704\pi\)
\(662\) 34.2865i 1.33258i
\(663\) 10.2544i 0.398246i
\(664\) −14.3486 −0.556834
\(665\) 3.73587 + 3.45840i 0.144871 + 0.134111i
\(666\) −18.1580 −0.703610
\(667\) 7.69972i 0.298134i
\(668\) 17.3544i 0.671461i
\(669\) 19.1383 0.739931
\(670\) 9.16739 9.90289i 0.354167 0.382582i
\(671\) −0.935645 −0.0361202
\(672\) 3.22635i 0.124459i
\(673\) 44.7915i 1.72659i 0.504703 + 0.863293i \(0.331602\pi\)
−0.504703 + 0.863293i \(0.668398\pi\)
\(674\) −11.0695 −0.426380
\(675\) −4.98515 + 0.385107i −0.191878 + 0.0148228i
\(676\) −5.59582 −0.215224
\(677\) 16.8746i 0.648542i −0.945964 0.324271i \(-0.894881\pi\)
0.945964 0.324271i \(-0.105119\pi\)
\(678\) 3.54428i 0.136117i
\(679\) 5.55565 0.213206
\(680\) −10.6681 + 11.5240i −0.409102 + 0.441924i
\(681\) −13.3621 −0.512036
\(682\) 1.41695i 0.0542580i
\(683\) 28.6207i 1.09514i −0.836759 0.547571i \(-0.815553\pi\)
0.836759 0.547571i \(-0.184447\pi\)
\(684\) 3.26989 0.125027
\(685\) −23.7193 21.9576i −0.906267 0.838958i
\(686\) −15.2259 −0.581328
\(687\) 7.45145i 0.284290i
\(688\) 52.7353i 2.01051i
\(689\) −10.7438 −0.409305
\(690\) −21.6627 20.0538i −0.824684 0.763433i
\(691\) −28.5928 −1.08772 −0.543861 0.839175i \(-0.683038\pi\)
−0.543861 + 0.839175i \(0.683038\pi\)
\(692\) 8.38993i 0.318937i
\(693\) 0.107019i 0.00406532i
\(694\) −25.6182 −0.972452
\(695\) 2.61589 2.82576i 0.0992262 0.107187i
\(696\) 1.81788 0.0689064
\(697\) 23.8525i 0.903479i
\(698\) 20.7557i 0.785615i
\(699\) −21.5080 −0.813507
\(700\) −3.06533 + 0.236800i −0.115859 + 0.00895018i
\(701\) 49.6636 1.87577 0.937885 0.346946i \(-0.112781\pi\)
0.937885 + 0.346946i \(0.112781\pi\)
\(702\) 4.55101i 0.171767i
\(703\) 36.8498i 1.38982i
\(704\) −0.251622 −0.00948336
\(705\) 15.6515 16.9072i 0.589470 0.636763i
\(706\) 31.1944 1.17402
\(707\) 1.18514i 0.0445717i
\(708\) 0.308927i 0.0116102i
\(709\) 19.4755 0.731419 0.365710 0.930729i \(-0.380826\pi\)
0.365710 + 0.930729i \(0.380826\pi\)
\(710\) 33.0459 + 30.5915i 1.24019 + 1.14808i
\(711\) −12.4074 −0.465313
\(712\) 9.17485i 0.343842i
\(713\) 38.9047i 1.45699i
\(714\) 4.33410 0.162200
\(715\) 0.712375 + 0.659466i 0.0266413 + 0.0246626i
\(716\) −1.75636 −0.0656381
\(717\) 24.1169i 0.900663i
\(718\) 60.1830i 2.24601i
\(719\) 34.3195 1.27990 0.639951 0.768415i \(-0.278954\pi\)
0.639951 + 0.768415i \(0.278954\pi\)
\(720\) 7.58963 8.19854i 0.282849 0.305542i
\(721\) −3.80032 −0.141531
\(722\) 11.8182i 0.439829i
\(723\) 7.22805i 0.268814i
\(724\) −15.8678 −0.589723
\(725\) 0.385107 + 4.98515i 0.0143025 + 0.185144i
\(726\) 18.8144 0.698268
\(727\) 19.3206i 0.716560i −0.933614 0.358280i \(-0.883363\pi\)
0.933614 0.358280i \(-0.116637\pi\)
\(728\) 3.15722i 0.117014i
\(729\) −1.00000 −0.0370370
\(730\) 2.92074 3.15507i 0.108101 0.116774i
\(731\) 40.7758 1.50815
\(732\) 5.37587i 0.198698i
\(733\) 3.10588i 0.114718i 0.998354 + 0.0573591i \(0.0182680\pi\)
−0.998354 + 0.0573591i \(0.981732\pi\)
\(734\) 39.7683 1.46787
\(735\) 10.7838 + 9.98285i 0.397766 + 0.368223i
\(736\) 37.9663 1.39946
\(737\) 0.575703i 0.0212063i
\(738\) 10.5860i 0.389678i
\(739\) −38.7106 −1.42399 −0.711997 0.702183i \(-0.752209\pi\)
−0.711997 + 0.702183i \(0.752209\pi\)
\(740\) 16.3308 + 15.1179i 0.600332 + 0.555744i
\(741\) −9.23579 −0.339285
\(742\) 4.54096i 0.166704i
\(743\) 8.41130i 0.308581i −0.988026 0.154290i \(-0.950691\pi\)
0.988026 0.154290i \(-0.0493091\pi\)
\(744\) −9.18526 −0.336748
\(745\) −24.5264 + 26.4941i −0.898576 + 0.970669i
\(746\) 8.56373 0.313541
\(747\) 7.89306i 0.288792i
\(748\) 0.593801i 0.0217115i
\(749\) 2.28074 0.0833364
\(750\) 15.0284 + 11.9002i 0.548760 + 0.434535i
\(751\) −30.5930 −1.11635 −0.558177 0.829722i \(-0.688499\pi\)
−0.558177 + 0.829722i \(0.688499\pi\)
\(752\) 51.4808i 1.87731i
\(753\) 8.74458i 0.318670i
\(754\) 4.55101 0.165738
\(755\) −1.11357 + 1.20292i −0.0405271 + 0.0437786i
\(756\) −0.614893 −0.0223634
\(757\) 41.6526i 1.51389i 0.653479 + 0.756945i \(0.273309\pi\)
−0.653479 + 0.756945i \(0.726691\pi\)
\(758\) 49.3347i 1.79192i
\(759\) −1.25936 −0.0457117
\(760\) 10.3793 + 9.60841i 0.376496 + 0.348534i
\(761\) −28.3957 −1.02934 −0.514671 0.857388i \(-0.672086\pi\)
−0.514671 + 0.857388i \(0.672086\pi\)
\(762\) 22.2829i 0.807224i
\(763\) 5.30670i 0.192115i
\(764\) −7.12965 −0.257942
\(765\) −6.33925 5.86842i −0.229196 0.212173i
\(766\) 42.7753 1.54554
\(767\) 0.872565i 0.0315065i
\(768\) 18.3544i 0.662306i
\(769\) 48.6782 1.75538 0.877690 0.479229i \(-0.159084\pi\)
0.877690 + 0.479229i \(0.159084\pi\)
\(770\) −0.278729 + 0.301092i −0.0100447 + 0.0108506i
\(771\) −10.1877 −0.366902
\(772\) 25.6358i 0.922652i
\(773\) 54.9974i 1.97812i −0.147513 0.989060i \(-0.547127\pi\)
0.147513 0.989060i \(-0.452873\pi\)
\(774\) −18.0968 −0.650476
\(775\) −1.94585 25.1887i −0.0698969 0.904804i
\(776\) 15.4351 0.554089
\(777\) 6.92950i 0.248595i
\(778\) 53.3143i 1.91141i
\(779\) −21.4833 −0.769717
\(780\) 3.78905 4.09304i 0.135670 0.146554i
\(781\) 1.92112 0.0687429
\(782\) 51.0018i 1.82382i
\(783\) 1.00000i