Properties

Label 435.2.c.e.349.5
Level $435$
Weight $2$
Character 435.349
Analytic conductor $3.473$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,2,Mod(349,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.47349248793\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.3899266318336.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 6x^{7} + 19x^{6} - 12x^{5} + 4x^{4} + 2x^{3} + 9x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.5
Root \(0.561843 + 0.561843i\) of defining polynomial
Character \(\chi\) \(=\) 435.349
Dual form 435.2.c.e.349.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.712495i q^{2} -1.00000i q^{3} +1.49235 q^{4} +(2.01848 - 0.962154i) q^{5} -0.712495 q^{6} +2.77986i q^{7} -2.48828i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-0.712495i q^{2} -1.00000i q^{3} +1.49235 q^{4} +(2.01848 - 0.962154i) q^{5} -0.712495 q^{6} +2.77986i q^{7} -2.48828i q^{8} -1.00000 q^{9} +(-0.685530 - 1.43816i) q^{10} +4.26814 q^{11} -1.49235i q^{12} +0.779856i q^{13} +1.98063 q^{14} +(-0.962154 - 2.01848i) q^{15} +1.21181 q^{16} +1.90354i q^{17} +0.712495i q^{18} -6.72036 q^{19} +(3.01228 - 1.43587i) q^{20} +2.77986 q^{21} -3.04103i q^{22} +2.17168i q^{23} -2.48828 q^{24} +(3.14852 - 3.88418i) q^{25} +0.555643 q^{26} +1.00000i q^{27} +4.14852i q^{28} -1.00000 q^{29} +(-1.43816 + 0.685530i) q^{30} -8.82061 q^{31} -5.83998i q^{32} -4.26814i q^{33} +1.35626 q^{34} +(2.67465 + 5.61108i) q^{35} -1.49235 q^{36} -1.48402i q^{37} +4.78822i q^{38} +0.779856 q^{39} +(-2.39411 - 5.02255i) q^{40} -7.71389 q^{41} -1.98063i q^{42} -8.19624i q^{43} +6.36956 q^{44} +(-2.01848 + 0.962154i) q^{45} +1.54731 q^{46} +5.19381i q^{47} -1.21181i q^{48} -0.727598 q^{49} +(-2.76746 - 2.24330i) q^{50} +1.90354 q^{51} +1.16382i q^{52} -11.7853i q^{53} +0.712495 q^{54} +(8.61515 - 4.10661i) q^{55} +6.91707 q^{56} +6.72036i q^{57} +0.712495i q^{58} +4.46028 q^{59} +(-1.43587 - 3.01228i) q^{60} -5.24905 q^{61} +6.28464i q^{62} -2.77986i q^{63} -1.73733 q^{64} +(0.750341 + 1.57412i) q^{65} -3.04103 q^{66} +8.49375i q^{67} +2.84075i q^{68} +2.17168 q^{69} +(3.99787 - 1.90567i) q^{70} +0.663102 q^{71} +2.48828i q^{72} +16.5345i q^{73} -1.05736 q^{74} +(-3.88418 - 3.14852i) q^{75} -10.0291 q^{76} +11.8648i q^{77} -0.555643i q^{78} -9.54554 q^{79} +(2.44602 - 1.16595i) q^{80} +1.00000 q^{81} +5.49611i q^{82} -0.0123998i q^{83} +4.14852 q^{84} +(1.83150 + 3.84226i) q^{85} -5.83978 q^{86} +1.00000i q^{87} -10.6203i q^{88} +5.46783 q^{89} +(0.685530 + 1.43816i) q^{90} -2.16789 q^{91} +3.24091i q^{92} +8.82061i q^{93} +3.70056 q^{94} +(-13.5649 + 6.46602i) q^{95} -5.83998 q^{96} +0.952006i q^{97} +0.518410i q^{98} -4.26814 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{4} + 6 q^{6} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 10 q^{4} + 6 q^{6} - 10 q^{9} + 4 q^{10} + 24 q^{11} - 12 q^{14} + 2 q^{15} + 2 q^{16} + 4 q^{19} + 8 q^{20} + 16 q^{21} - 18 q^{24} + 2 q^{25} - 10 q^{29} - 18 q^{30} + 4 q^{31} - 8 q^{34} + 2 q^{35} + 10 q^{36} - 4 q^{39} - 14 q^{40} - 28 q^{41} - 40 q^{44} - 12 q^{46} + 14 q^{49} - 12 q^{50} - 6 q^{54} + 2 q^{55} - 4 q^{56} - 8 q^{59} - 2 q^{60} - 24 q^{61} + 18 q^{64} + 6 q^{65} + 28 q^{66} - 16 q^{69} + 20 q^{70} + 60 q^{71} - 4 q^{74} + 12 q^{75} - 88 q^{76} + 36 q^{79} - 30 q^{80} + 10 q^{81} + 12 q^{84} - 14 q^{85} + 60 q^{86} + 44 q^{89} - 4 q^{90} - 24 q^{91} + 100 q^{94} - 36 q^{95} + 2 q^{96} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/435\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(146\) \(262\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.712495i 0.503810i −0.967752 0.251905i \(-0.918943\pi\)
0.967752 0.251905i \(-0.0810571\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 1.49235 0.746175
\(5\) 2.01848 0.962154i 0.902692 0.430288i
\(6\) −0.712495 −0.290875
\(7\) 2.77986i 1.05069i 0.850890 + 0.525343i \(0.176063\pi\)
−0.850890 + 0.525343i \(0.823937\pi\)
\(8\) 2.48828i 0.879741i
\(9\) −1.00000 −0.333333
\(10\) −0.685530 1.43816i −0.216784 0.454785i
\(11\) 4.26814 1.28689 0.643446 0.765491i \(-0.277504\pi\)
0.643446 + 0.765491i \(0.277504\pi\)
\(12\) 1.49235i 0.430805i
\(13\) 0.779856i 0.216293i 0.994135 + 0.108147i \(0.0344916\pi\)
−0.994135 + 0.108147i \(0.965508\pi\)
\(14\) 1.98063 0.529347
\(15\) −0.962154 2.01848i −0.248427 0.521169i
\(16\) 1.21181 0.302953
\(17\) 1.90354i 0.461677i 0.972992 + 0.230838i \(0.0741469\pi\)
−0.972992 + 0.230838i \(0.925853\pi\)
\(18\) 0.712495i 0.167937i
\(19\) −6.72036 −1.54176 −0.770878 0.636983i \(-0.780182\pi\)
−0.770878 + 0.636983i \(0.780182\pi\)
\(20\) 3.01228 1.43587i 0.673566 0.321071i
\(21\) 2.77986 0.606614
\(22\) 3.04103i 0.648349i
\(23\) 2.17168i 0.452827i 0.974031 + 0.226413i \(0.0727000\pi\)
−0.974031 + 0.226413i \(0.927300\pi\)
\(24\) −2.48828 −0.507919
\(25\) 3.14852 3.88418i 0.629704 0.776835i
\(26\) 0.555643 0.108971
\(27\) 1.00000i 0.192450i
\(28\) 4.14852i 0.783997i
\(29\) −1.00000 −0.185695
\(30\) −1.43816 + 0.685530i −0.262570 + 0.125160i
\(31\) −8.82061 −1.58423 −0.792114 0.610373i \(-0.791020\pi\)
−0.792114 + 0.610373i \(0.791020\pi\)
\(32\) 5.83998i 1.03237i
\(33\) 4.26814i 0.742988i
\(34\) 1.35626 0.232597
\(35\) 2.67465 + 5.61108i 0.452098 + 0.948446i
\(36\) −1.49235 −0.248725
\(37\) 1.48402i 0.243971i −0.992532 0.121986i \(-0.961074\pi\)
0.992532 0.121986i \(-0.0389262\pi\)
\(38\) 4.78822i 0.776752i
\(39\) 0.779856 0.124877
\(40\) −2.39411 5.02255i −0.378542 0.794135i
\(41\) −7.71389 −1.20471 −0.602354 0.798229i \(-0.705770\pi\)
−0.602354 + 0.798229i \(0.705770\pi\)
\(42\) 1.98063i 0.305618i
\(43\) 8.19624i 1.24991i −0.780659 0.624957i \(-0.785116\pi\)
0.780659 0.624957i \(-0.214884\pi\)
\(44\) 6.36956 0.960247
\(45\) −2.01848 + 0.962154i −0.300897 + 0.143429i
\(46\) 1.54731 0.228139
\(47\) 5.19381i 0.757595i 0.925480 + 0.378798i \(0.123662\pi\)
−0.925480 + 0.378798i \(0.876338\pi\)
\(48\) 1.21181i 0.174910i
\(49\) −0.727598 −0.103943
\(50\) −2.76746 2.24330i −0.391377 0.317251i
\(51\) 1.90354 0.266549
\(52\) 1.16382i 0.161393i
\(53\) 11.7853i 1.61884i −0.587231 0.809419i \(-0.699782\pi\)
0.587231 0.809419i \(-0.300218\pi\)
\(54\) 0.712495 0.0969583
\(55\) 8.61515 4.10661i 1.16167 0.553735i
\(56\) 6.91707 0.924332
\(57\) 6.72036i 0.890133i
\(58\) 0.712495i 0.0935552i
\(59\) 4.46028 0.580679 0.290339 0.956924i \(-0.406232\pi\)
0.290339 + 0.956924i \(0.406232\pi\)
\(60\) −1.43587 3.01228i −0.185370 0.388884i
\(61\) −5.24905 −0.672071 −0.336036 0.941849i \(-0.609086\pi\)
−0.336036 + 0.941849i \(0.609086\pi\)
\(62\) 6.28464i 0.798150i
\(63\) 2.77986i 0.350229i
\(64\) −1.73733 −0.217166
\(65\) 0.750341 + 1.57412i 0.0930684 + 0.195246i
\(66\) −3.04103 −0.374325
\(67\) 8.49375i 1.03768i 0.854872 + 0.518838i \(0.173635\pi\)
−0.854872 + 0.518838i \(0.826365\pi\)
\(68\) 2.84075i 0.344492i
\(69\) 2.17168 0.261440
\(70\) 3.99787 1.90567i 0.477837 0.227772i
\(71\) 0.663102 0.0786957 0.0393479 0.999226i \(-0.487472\pi\)
0.0393479 + 0.999226i \(0.487472\pi\)
\(72\) 2.48828i 0.293247i
\(73\) 16.5345i 1.93522i 0.252455 + 0.967609i \(0.418762\pi\)
−0.252455 + 0.967609i \(0.581238\pi\)
\(74\) −1.05736 −0.122915
\(75\) −3.88418 3.14852i −0.448506 0.363560i
\(76\) −10.0291 −1.15042
\(77\) 11.8648i 1.35212i
\(78\) 0.555643i 0.0629142i
\(79\) −9.54554 −1.07396 −0.536978 0.843596i \(-0.680434\pi\)
−0.536978 + 0.843596i \(0.680434\pi\)
\(80\) 2.44602 1.16595i 0.273473 0.130357i
\(81\) 1.00000 0.111111
\(82\) 5.49611i 0.606944i
\(83\) 0.0123998i 0.00136106i −1.00000 0.000680528i \(-0.999783\pi\)
1.00000 0.000680528i \(-0.000216619\pi\)
\(84\) 4.14852 0.452641
\(85\) 1.83150 + 3.84226i 0.198654 + 0.416752i
\(86\) −5.83978 −0.629720
\(87\) 1.00000i 0.107211i
\(88\) 10.6203i 1.13213i
\(89\) 5.46783 0.579588 0.289794 0.957089i \(-0.406413\pi\)
0.289794 + 0.957089i \(0.406413\pi\)
\(90\) 0.685530 + 1.43816i 0.0722612 + 0.151595i
\(91\) −2.16789 −0.227256
\(92\) 3.24091i 0.337888i
\(93\) 8.82061i 0.914655i
\(94\) 3.70056 0.381684
\(95\) −13.5649 + 6.46602i −1.39173 + 0.663399i
\(96\) −5.83998 −0.596040
\(97\) 0.952006i 0.0966615i 0.998831 + 0.0483308i \(0.0153902\pi\)
−0.998831 + 0.0483308i \(0.984610\pi\)
\(98\) 0.518410i 0.0523673i
\(99\) −4.26814 −0.428964
\(100\) 4.69870 5.79655i 0.469870 0.579655i
\(101\) 8.31781 0.827653 0.413826 0.910356i \(-0.364192\pi\)
0.413826 + 0.910356i \(0.364192\pi\)
\(102\) 1.35626i 0.134290i
\(103\) 12.4091i 1.22271i 0.791357 + 0.611355i \(0.209375\pi\)
−0.791357 + 0.611355i \(0.790625\pi\)
\(104\) 1.94050 0.190282
\(105\) 5.61108 2.67465i 0.547586 0.261019i
\(106\) −8.39698 −0.815587
\(107\) 17.5579i 1.69739i 0.528883 + 0.848695i \(0.322611\pi\)
−0.528883 + 0.848695i \(0.677389\pi\)
\(108\) 1.49235i 0.143602i
\(109\) −1.00973 −0.0967146 −0.0483573 0.998830i \(-0.515399\pi\)
−0.0483573 + 0.998830i \(0.515399\pi\)
\(110\) −2.92594 6.13825i −0.278977 0.585259i
\(111\) −1.48402 −0.140857
\(112\) 3.36866i 0.318309i
\(113\) 15.5787i 1.46552i −0.680487 0.732761i \(-0.738232\pi\)
0.680487 0.732761i \(-0.261768\pi\)
\(114\) 4.78822 0.448458
\(115\) 2.08949 + 4.38349i 0.194846 + 0.408763i
\(116\) −1.49235 −0.138561
\(117\) 0.779856i 0.0720977i
\(118\) 3.17792i 0.292552i
\(119\) −5.29157 −0.485078
\(120\) −5.02255 + 2.39411i −0.458494 + 0.218551i
\(121\) 7.21701 0.656091
\(122\) 3.73992i 0.338596i
\(123\) 7.71389i 0.695538i
\(124\) −13.1634 −1.18211
\(125\) 2.61805 10.8695i 0.234165 0.972197i
\(126\) −1.98063 −0.176449
\(127\) 16.9536i 1.50438i 0.658943 + 0.752192i \(0.271004\pi\)
−0.658943 + 0.752192i \(0.728996\pi\)
\(128\) 10.4421i 0.922961i
\(129\) −8.19624 −0.721639
\(130\) 1.12155 0.534614i 0.0983669 0.0468888i
\(131\) 11.9324 1.04254 0.521268 0.853393i \(-0.325459\pi\)
0.521268 + 0.853393i \(0.325459\pi\)
\(132\) 6.36956i 0.554399i
\(133\) 18.6816i 1.61990i
\(134\) 6.05175 0.522792
\(135\) 0.962154 + 2.01848i 0.0828090 + 0.173723i
\(136\) 4.73655 0.406156
\(137\) 0.239785i 0.0204862i 0.999948 + 0.0102431i \(0.00326054\pi\)
−0.999948 + 0.0102431i \(0.996739\pi\)
\(138\) 1.54731i 0.131716i
\(139\) 17.0255 1.44408 0.722040 0.691851i \(-0.243205\pi\)
0.722040 + 0.691851i \(0.243205\pi\)
\(140\) 3.99151 + 8.37370i 0.337345 + 0.707707i
\(141\) 5.19381 0.437398
\(142\) 0.472457i 0.0396477i
\(143\) 3.32853i 0.278346i
\(144\) −1.21181 −0.100984
\(145\) −2.01848 + 0.962154i −0.167626 + 0.0799025i
\(146\) 11.7808 0.974982
\(147\) 0.727598i 0.0600113i
\(148\) 2.21468i 0.182045i
\(149\) 4.13046 0.338380 0.169190 0.985583i \(-0.445885\pi\)
0.169190 + 0.985583i \(0.445885\pi\)
\(150\) −2.24330 + 2.76746i −0.183165 + 0.225962i
\(151\) −3.21580 −0.261698 −0.130849 0.991402i \(-0.541770\pi\)
−0.130849 + 0.991402i \(0.541770\pi\)
\(152\) 16.7221i 1.35635i
\(153\) 1.90354i 0.153892i
\(154\) 8.45362 0.681212
\(155\) −17.8042 + 8.48678i −1.43007 + 0.681675i
\(156\) 1.16382 0.0931800
\(157\) 6.84237i 0.546081i −0.962003 0.273040i \(-0.911971\pi\)
0.962003 0.273040i \(-0.0880292\pi\)
\(158\) 6.80115i 0.541070i
\(159\) −11.7853 −0.934637
\(160\) −5.61895 11.7879i −0.444217 0.931913i
\(161\) −6.03696 −0.475779
\(162\) 0.712495i 0.0559789i
\(163\) 14.0502i 1.10050i −0.835001 0.550248i \(-0.814533\pi\)
0.835001 0.550248i \(-0.185467\pi\)
\(164\) −11.5118 −0.898923
\(165\) −4.10661 8.61515i −0.319699 0.670689i
\(166\) −0.00883480 −0.000685713
\(167\) 17.8725i 1.38301i −0.722370 0.691507i \(-0.756947\pi\)
0.722370 0.691507i \(-0.243053\pi\)
\(168\) 6.91707i 0.533663i
\(169\) 12.3918 0.953217
\(170\) 2.73759 1.30494i 0.209964 0.100084i
\(171\) 6.72036 0.513919
\(172\) 12.2317i 0.932656i
\(173\) 2.82518i 0.214795i −0.994216 0.107397i \(-0.965748\pi\)
0.994216 0.107397i \(-0.0342517\pi\)
\(174\) 0.712495 0.0540141
\(175\) 10.7974 + 8.75243i 0.816210 + 0.661622i
\(176\) 5.17218 0.389868
\(177\) 4.46028i 0.335255i
\(178\) 3.89580i 0.292002i
\(179\) −20.2829 −1.51601 −0.758006 0.652247i \(-0.773826\pi\)
−0.758006 + 0.652247i \(0.773826\pi\)
\(180\) −3.01228 + 1.43587i −0.224522 + 0.107024i
\(181\) −8.63783 −0.642045 −0.321023 0.947072i \(-0.604027\pi\)
−0.321023 + 0.947072i \(0.604027\pi\)
\(182\) 1.54461i 0.114494i
\(183\) 5.24905i 0.388021i
\(184\) 5.40376 0.398370
\(185\) −1.42785 2.99546i −0.104978 0.220231i
\(186\) 6.28464 0.460812
\(187\) 8.12458i 0.594128i
\(188\) 7.75099i 0.565299i
\(189\) −2.77986 −0.202205
\(190\) 4.60701 + 9.66493i 0.334227 + 0.701168i
\(191\) 0.896850 0.0648938 0.0324469 0.999473i \(-0.489670\pi\)
0.0324469 + 0.999473i \(0.489670\pi\)
\(192\) 1.73733i 0.125381i
\(193\) 10.4506i 0.752251i −0.926569 0.376126i \(-0.877256\pi\)
0.926569 0.376126i \(-0.122744\pi\)
\(194\) 0.678299 0.0486991
\(195\) 1.57412 0.750341i 0.112725 0.0537331i
\(196\) −1.08583 −0.0775594
\(197\) 9.57740i 0.682361i −0.939998 0.341181i \(-0.889173\pi\)
0.939998 0.341181i \(-0.110827\pi\)
\(198\) 3.04103i 0.216116i
\(199\) −5.61768 −0.398227 −0.199113 0.979976i \(-0.563806\pi\)
−0.199113 + 0.979976i \(0.563806\pi\)
\(200\) −9.66493 7.83441i −0.683414 0.553976i
\(201\) 8.49375 0.599103
\(202\) 5.92640i 0.416980i
\(203\) 2.77986i 0.195108i
\(204\) 2.84075 0.198892
\(205\) −15.5703 + 7.42195i −1.08748 + 0.518372i
\(206\) 8.84145 0.616013
\(207\) 2.17168i 0.150942i
\(208\) 0.945039i 0.0655267i
\(209\) −28.6834 −1.98407
\(210\) −1.90567 3.99787i −0.131504 0.275879i
\(211\) −0.605216 −0.0416648 −0.0208324 0.999783i \(-0.506632\pi\)
−0.0208324 + 0.999783i \(0.506632\pi\)
\(212\) 17.5878i 1.20794i
\(213\) 0.663102i 0.0454350i
\(214\) 12.5099 0.855162
\(215\) −7.88604 16.5439i −0.537824 1.12829i
\(216\) 2.48828 0.169306
\(217\) 24.5200i 1.66453i
\(218\) 0.719428i 0.0487258i
\(219\) 16.5345 1.11730
\(220\) 12.8568 6.12850i 0.866807 0.413183i
\(221\) −1.48449 −0.0998575
\(222\) 1.05736i 0.0709651i
\(223\) 16.5537i 1.10852i 0.832344 + 0.554260i \(0.186999\pi\)
−0.832344 + 0.554260i \(0.813001\pi\)
\(224\) 16.2343 1.08470
\(225\) −3.14852 + 3.88418i −0.209901 + 0.258945i
\(226\) −11.0997 −0.738344
\(227\) 22.0061i 1.46060i 0.683128 + 0.730299i \(0.260619\pi\)
−0.683128 + 0.730299i \(0.739381\pi\)
\(228\) 10.0291i 0.664195i
\(229\) 24.5647 1.62328 0.811641 0.584157i \(-0.198575\pi\)
0.811641 + 0.584157i \(0.198575\pi\)
\(230\) 3.12322 1.48875i 0.205939 0.0981654i
\(231\) 11.8648 0.780647
\(232\) 2.48828i 0.163364i
\(233\) 5.56824i 0.364787i −0.983226 0.182394i \(-0.941615\pi\)
0.983226 0.182394i \(-0.0583845\pi\)
\(234\) −0.555643 −0.0363235
\(235\) 4.99725 + 10.4836i 0.325984 + 0.683875i
\(236\) 6.65630 0.433288
\(237\) 9.54554i 0.620049i
\(238\) 3.77022i 0.244387i
\(239\) −6.90640 −0.446738 −0.223369 0.974734i \(-0.571705\pi\)
−0.223369 + 0.974734i \(0.571705\pi\)
\(240\) −1.16595 2.44602i −0.0752618 0.157890i
\(241\) −25.1989 −1.62320 −0.811602 0.584210i \(-0.801404\pi\)
−0.811602 + 0.584210i \(0.801404\pi\)
\(242\) 5.14208i 0.330545i
\(243\) 1.00000i 0.0641500i
\(244\) −7.83342 −0.501483
\(245\) −1.46864 + 0.700061i −0.0938281 + 0.0447253i
\(246\) 5.49611 0.350419
\(247\) 5.24091i 0.333471i
\(248\) 21.9482i 1.39371i
\(249\) −0.0123998 −0.000785805
\(250\) −7.74446 1.86535i −0.489803 0.117975i
\(251\) 28.3687 1.79062 0.895309 0.445446i \(-0.146955\pi\)
0.895309 + 0.445446i \(0.146955\pi\)
\(252\) 4.14852i 0.261332i
\(253\) 9.26903i 0.582739i
\(254\) 12.0793 0.757924
\(255\) 3.84226 1.83150i 0.240612 0.114693i
\(256\) −10.9146 −0.682163
\(257\) 8.71100i 0.543377i −0.962385 0.271688i \(-0.912418\pi\)
0.962385 0.271688i \(-0.0875820\pi\)
\(258\) 5.83978i 0.363569i
\(259\) 4.12536 0.256337
\(260\) 1.11977 + 2.34914i 0.0694453 + 0.145688i
\(261\) 1.00000 0.0618984
\(262\) 8.50175i 0.525240i
\(263\) 13.2128i 0.814736i −0.913264 0.407368i \(-0.866447\pi\)
0.913264 0.407368i \(-0.133553\pi\)
\(264\) −10.6203 −0.653636
\(265\) −11.3393 23.7884i −0.696567 1.46131i
\(266\) −13.3106 −0.816123
\(267\) 5.46783i 0.334625i
\(268\) 12.6757i 0.774289i
\(269\) 10.3447 0.630725 0.315363 0.948971i \(-0.397874\pi\)
0.315363 + 0.948971i \(0.397874\pi\)
\(270\) 1.43816 0.685530i 0.0875234 0.0417200i
\(271\) 9.76022 0.592891 0.296445 0.955050i \(-0.404199\pi\)
0.296445 + 0.955050i \(0.404199\pi\)
\(272\) 2.30674i 0.139866i
\(273\) 2.16789i 0.131206i
\(274\) 0.170845 0.0103212
\(275\) 13.4383 16.5782i 0.810361 0.999703i
\(276\) 3.24091 0.195080
\(277\) 1.87503i 0.112659i −0.998412 0.0563297i \(-0.982060\pi\)
0.998412 0.0563297i \(-0.0179398\pi\)
\(278\) 12.1306i 0.727542i
\(279\) 8.82061 0.528076
\(280\) 13.9620 6.65528i 0.834387 0.397729i
\(281\) −21.2930 −1.27024 −0.635118 0.772415i \(-0.719049\pi\)
−0.635118 + 0.772415i \(0.719049\pi\)
\(282\) 3.70056i 0.220365i
\(283\) 15.8729i 0.943544i −0.881721 0.471772i \(-0.843615\pi\)
0.881721 0.471772i \(-0.156385\pi\)
\(284\) 0.989581 0.0587208
\(285\) 6.46602 + 13.5649i 0.383014 + 0.803516i
\(286\) 2.37156 0.140233
\(287\) 21.4435i 1.26577i
\(288\) 5.83998i 0.344124i
\(289\) 13.3765 0.786855
\(290\) 0.685530 + 1.43816i 0.0402557 + 0.0844515i
\(291\) 0.952006 0.0558076
\(292\) 24.6753i 1.44401i
\(293\) 33.1369i 1.93588i −0.251189 0.967938i \(-0.580822\pi\)
0.251189 0.967938i \(-0.419178\pi\)
\(294\) 0.518410 0.0302343
\(295\) 9.00298 4.29147i 0.524174 0.249859i
\(296\) −3.69266 −0.214631
\(297\) 4.26814i 0.247663i
\(298\) 2.94293i 0.170479i
\(299\) −1.69360 −0.0979433
\(300\) −5.79655 4.69870i −0.334664 0.271279i
\(301\) 22.7844 1.31327
\(302\) 2.29124i 0.131846i
\(303\) 8.31781i 0.477845i
\(304\) −8.14381 −0.467080
\(305\) −10.5951 + 5.05039i −0.606673 + 0.289184i
\(306\) −1.35626 −0.0775325
\(307\) 17.2605i 0.985109i 0.870282 + 0.492555i \(0.163937\pi\)
−0.870282 + 0.492555i \(0.836063\pi\)
\(308\) 17.7065i 1.00892i
\(309\) 12.4091 0.705932
\(310\) 6.04679 + 12.6854i 0.343435 + 0.720483i
\(311\) −32.5116 −1.84356 −0.921781 0.387711i \(-0.873266\pi\)
−0.921781 + 0.387711i \(0.873266\pi\)
\(312\) 1.94050i 0.109859i
\(313\) 6.26304i 0.354008i −0.984210 0.177004i \(-0.943359\pi\)
0.984210 0.177004i \(-0.0566405\pi\)
\(314\) −4.87516 −0.275121
\(315\) −2.67465 5.61108i −0.150699 0.316149i
\(316\) −14.2453 −0.801360
\(317\) 18.8523i 1.05885i −0.848356 0.529426i \(-0.822407\pi\)
0.848356 0.529426i \(-0.177593\pi\)
\(318\) 8.39698i 0.470879i
\(319\) −4.26814 −0.238970
\(320\) −3.50676 + 1.67158i −0.196034 + 0.0934440i
\(321\) 17.5579 0.979989
\(322\) 4.30130i 0.239702i
\(323\) 12.7925i 0.711793i
\(324\) 1.49235 0.0829084
\(325\) 3.02910 + 2.45539i 0.168024 + 0.136201i
\(326\) −10.0107 −0.554441
\(327\) 1.00973i 0.0558382i
\(328\) 19.1943i 1.05983i
\(329\) −14.4380 −0.795995
\(330\) −6.13825 + 2.92594i −0.337900 + 0.161067i
\(331\) −0.596245 −0.0327726 −0.0163863 0.999866i \(-0.505216\pi\)
−0.0163863 + 0.999866i \(0.505216\pi\)
\(332\) 0.0185049i 0.00101559i
\(333\) 1.48402i 0.0813238i
\(334\) −12.7341 −0.696776
\(335\) 8.17229 + 17.1445i 0.446500 + 0.936702i
\(336\) 3.36866 0.183776
\(337\) 32.6414i 1.77809i 0.457818 + 0.889046i \(0.348631\pi\)
−0.457818 + 0.889046i \(0.651369\pi\)
\(338\) 8.82911i 0.480240i
\(339\) −15.5787 −0.846119
\(340\) 2.73324 + 5.73400i 0.148231 + 0.310970i
\(341\) −37.6476 −2.03873
\(342\) 4.78822i 0.258917i
\(343\) 17.4364i 0.941476i
\(344\) −20.3946 −1.09960
\(345\) 4.38349 2.08949i 0.235999 0.112494i
\(346\) −2.01293 −0.108216
\(347\) 13.1985i 0.708531i −0.935145 0.354265i \(-0.884731\pi\)
0.935145 0.354265i \(-0.115269\pi\)
\(348\) 1.49235i 0.0799984i
\(349\) −15.6412 −0.837255 −0.418628 0.908158i \(-0.637489\pi\)
−0.418628 + 0.908158i \(0.637489\pi\)
\(350\) 6.23606 7.69313i 0.333332 0.411215i
\(351\) −0.779856 −0.0416256
\(352\) 24.9258i 1.32855i
\(353\) 5.65486i 0.300978i 0.988612 + 0.150489i \(0.0480848\pi\)
−0.988612 + 0.150489i \(0.951915\pi\)
\(354\) −3.17792 −0.168905
\(355\) 1.33846 0.638006i 0.0710380 0.0338619i
\(356\) 8.15991 0.432475
\(357\) 5.29157i 0.280060i
\(358\) 14.4514i 0.763782i
\(359\) −25.2693 −1.33366 −0.666832 0.745208i \(-0.732350\pi\)
−0.666832 + 0.745208i \(0.732350\pi\)
\(360\) 2.39411 + 5.02255i 0.126181 + 0.264712i
\(361\) 26.1632 1.37701
\(362\) 6.15441i 0.323469i
\(363\) 7.21701i 0.378795i
\(364\) −3.23525 −0.169573
\(365\) 15.9087 + 33.3746i 0.832701 + 1.74690i
\(366\) 3.73992 0.195489
\(367\) 26.2788i 1.37174i −0.727722 0.685872i \(-0.759421\pi\)
0.727722 0.685872i \(-0.240579\pi\)
\(368\) 2.63167i 0.137185i
\(369\) 7.71389 0.401569
\(370\) −2.13425 + 1.01734i −0.110954 + 0.0528890i
\(371\) 32.7615 1.70089
\(372\) 13.1634i 0.682493i
\(373\) 1.43033i 0.0740596i 0.999314 + 0.0370298i \(0.0117897\pi\)
−0.999314 + 0.0370298i \(0.988210\pi\)
\(374\) 5.78872 0.299328
\(375\) −10.8695 2.61805i −0.561298 0.135195i
\(376\) 12.9237 0.666487
\(377\) 0.779856i 0.0401646i
\(378\) 1.98063i 0.101873i
\(379\) 35.2336 1.80983 0.904915 0.425591i \(-0.139934\pi\)
0.904915 + 0.425591i \(0.139934\pi\)
\(380\) −20.2436 + 9.64957i −1.03847 + 0.495012i
\(381\) 16.9536 0.868557
\(382\) 0.639001i 0.0326941i
\(383\) 32.0701i 1.63870i 0.573291 + 0.819352i \(0.305666\pi\)
−0.573291 + 0.819352i \(0.694334\pi\)
\(384\) −10.4421 −0.532872
\(385\) 11.4158 + 23.9489i 0.581802 + 1.22055i
\(386\) −7.44601 −0.378992
\(387\) 8.19624i 0.416638i
\(388\) 1.42073i 0.0721265i
\(389\) −1.63922 −0.0831117 −0.0415558 0.999136i \(-0.513231\pi\)
−0.0415558 + 0.999136i \(0.513231\pi\)
\(390\) −0.534614 1.12155i −0.0270713 0.0567921i
\(391\) −4.13389 −0.209060
\(392\) 1.81047i 0.0914425i
\(393\) 11.9324i 0.601908i
\(394\) −6.82385 −0.343781
\(395\) −19.2675 + 9.18428i −0.969452 + 0.462111i
\(396\) −6.36956 −0.320082
\(397\) 2.04098i 0.102434i 0.998688 + 0.0512170i \(0.0163100\pi\)
−0.998688 + 0.0512170i \(0.983690\pi\)
\(398\) 4.00257i 0.200631i
\(399\) −18.6816 −0.935251
\(400\) 3.81542 4.70689i 0.190771 0.235345i
\(401\) 17.4108 0.869455 0.434727 0.900562i \(-0.356845\pi\)
0.434727 + 0.900562i \(0.356845\pi\)
\(402\) 6.05175i 0.301834i
\(403\) 6.87880i 0.342658i
\(404\) 12.4131 0.617574
\(405\) 2.01848 0.962154i 0.100299 0.0478098i
\(406\) −1.98063 −0.0982972
\(407\) 6.33400i 0.313965i
\(408\) 4.73655i 0.234494i
\(409\) 37.3010 1.84441 0.922207 0.386696i \(-0.126384\pi\)
0.922207 + 0.386696i \(0.126384\pi\)
\(410\) 5.28810 + 11.0938i 0.261161 + 0.547883i
\(411\) 0.239785 0.0118277
\(412\) 18.5188i 0.912356i
\(413\) 12.3989i 0.610111i
\(414\) −1.54731 −0.0760462
\(415\) −0.0119305 0.0250287i −0.000585646 0.00122861i
\(416\) 4.55434 0.223295
\(417\) 17.0255i 0.833740i
\(418\) 20.4368i 0.999596i
\(419\) −4.32941 −0.211506 −0.105753 0.994392i \(-0.533725\pi\)
−0.105753 + 0.994392i \(0.533725\pi\)
\(420\) 8.37370 3.99151i 0.408595 0.194766i
\(421\) −34.2505 −1.66927 −0.834634 0.550806i \(-0.814321\pi\)
−0.834634 + 0.550806i \(0.814321\pi\)
\(422\) 0.431214i 0.0209911i
\(423\) 5.19381i 0.252532i
\(424\) −29.3252 −1.42416
\(425\) 7.39369 + 5.99334i 0.358647 + 0.290720i
\(426\) −0.472457 −0.0228906
\(427\) 14.5916i 0.706137i
\(428\) 26.2026i 1.26655i
\(429\) 3.32853 0.160703
\(430\) −11.7875 + 5.61877i −0.568443 + 0.270961i
\(431\) 34.4885 1.66125 0.830626 0.556831i \(-0.187983\pi\)
0.830626 + 0.556831i \(0.187983\pi\)
\(432\) 1.21181i 0.0583034i
\(433\) 3.02258i 0.145256i −0.997359 0.0726279i \(-0.976861\pi\)
0.997359 0.0726279i \(-0.0231386\pi\)
\(434\) −17.4704 −0.838606
\(435\) 0.962154 + 2.01848i 0.0461317 + 0.0967787i
\(436\) −1.50687 −0.0721661
\(437\) 14.5945i 0.698148i
\(438\) 11.7808i 0.562906i
\(439\) −8.37392 −0.399665 −0.199833 0.979830i \(-0.564040\pi\)
−0.199833 + 0.979830i \(0.564040\pi\)
\(440\) −10.2184 21.4369i −0.487143 1.02197i
\(441\) 0.727598 0.0346475
\(442\) 1.05769i 0.0503092i
\(443\) 29.8770i 1.41950i 0.704454 + 0.709749i \(0.251192\pi\)
−0.704454 + 0.709749i \(0.748808\pi\)
\(444\) −2.21468 −0.105104
\(445\) 11.0367 5.26089i 0.523189 0.249390i
\(446\) 11.7945 0.558484
\(447\) 4.13046i 0.195364i
\(448\) 4.82952i 0.228174i
\(449\) −12.0780 −0.569994 −0.284997 0.958528i \(-0.591993\pi\)
−0.284997 + 0.958528i \(0.591993\pi\)
\(450\) 2.76746 + 2.24330i 0.130459 + 0.105750i
\(451\) −32.9240 −1.55033
\(452\) 23.2489i 1.09354i
\(453\) 3.21580i 0.151092i
\(454\) 15.6793 0.735864
\(455\) −4.37583 + 2.08584i −0.205142 + 0.0977857i
\(456\) 16.7221 0.783086
\(457\) 3.03357i 0.141905i 0.997480 + 0.0709523i \(0.0226038\pi\)
−0.997480 + 0.0709523i \(0.977396\pi\)
\(458\) 17.5022i 0.817826i
\(459\) −1.90354 −0.0888497
\(460\) 3.11825 + 6.54171i 0.145389 + 0.305009i
\(461\) −4.44508 −0.207028 −0.103514 0.994628i \(-0.533009\pi\)
−0.103514 + 0.994628i \(0.533009\pi\)
\(462\) 8.45362i 0.393298i
\(463\) 9.04875i 0.420531i 0.977644 + 0.210266i \(0.0674329\pi\)
−0.977644 + 0.210266i \(0.932567\pi\)
\(464\) −1.21181 −0.0562570
\(465\) 8.48678 + 17.8042i 0.393565 + 0.825651i
\(466\) −3.96734 −0.183784
\(467\) 8.11327i 0.375437i 0.982223 + 0.187719i \(0.0601093\pi\)
−0.982223 + 0.187719i \(0.939891\pi\)
\(468\) 1.16382i 0.0537975i
\(469\) −23.6114 −1.09027
\(470\) 7.46951 3.56051i 0.344543 0.164234i
\(471\) −6.84237 −0.315280
\(472\) 11.0984i 0.510847i
\(473\) 34.9827i 1.60851i
\(474\) 6.80115 0.312387
\(475\) −21.1592 + 26.1030i −0.970850 + 1.19769i
\(476\) −7.89688 −0.361953
\(477\) 11.7853i 0.539613i
\(478\) 4.92078i 0.225071i
\(479\) −6.62947 −0.302908 −0.151454 0.988464i \(-0.548396\pi\)
−0.151454 + 0.988464i \(0.548396\pi\)
\(480\) −11.7879 + 5.61895i −0.538040 + 0.256469i
\(481\) 1.15732 0.0527693
\(482\) 17.9541i 0.817787i
\(483\) 6.03696i 0.274691i
\(484\) 10.7703 0.489559
\(485\) 0.915976 + 1.92160i 0.0415923 + 0.0872556i
\(486\) −0.712495 −0.0323194
\(487\) 29.2047i 1.32339i −0.749773 0.661695i \(-0.769837\pi\)
0.749773 0.661695i \(-0.230163\pi\)
\(488\) 13.0611i 0.591249i
\(489\) −14.0502 −0.635372
\(490\) 0.498790 + 1.04640i 0.0225330 + 0.0472715i
\(491\) −4.32464 −0.195168 −0.0975841 0.995227i \(-0.531111\pi\)
−0.0975841 + 0.995227i \(0.531111\pi\)
\(492\) 11.5118i 0.518994i
\(493\) 1.90354i 0.0857312i
\(494\) −3.73412 −0.168006
\(495\) −8.61515 + 4.10661i −0.387222 + 0.184578i
\(496\) −10.6889 −0.479947
\(497\) 1.84333i 0.0826846i
\(498\) 0.00883480i 0.000395897i
\(499\) −4.29688 −0.192355 −0.0961774 0.995364i \(-0.530662\pi\)
−0.0961774 + 0.995364i \(0.530662\pi\)
\(500\) 3.90705 16.2211i 0.174728 0.725429i
\(501\) −17.8725 −0.798483
\(502\) 20.2126i 0.902131i
\(503\) 14.2512i 0.635429i 0.948186 + 0.317715i \(0.102915\pi\)
−0.948186 + 0.317715i \(0.897085\pi\)
\(504\) −6.91707 −0.308111
\(505\) 16.7893 8.00301i 0.747115 0.356129i
\(506\) 6.60414 0.293590
\(507\) 12.3918i 0.550340i
\(508\) 25.3007i 1.12254i
\(509\) 19.4974 0.864206 0.432103 0.901824i \(-0.357772\pi\)
0.432103 + 0.901824i \(0.357772\pi\)
\(510\) −1.30494 2.73759i −0.0577835 0.121223i
\(511\) −45.9635 −2.03331
\(512\) 13.1076i 0.579280i
\(513\) 6.72036i 0.296711i
\(514\) −6.20654 −0.273759
\(515\) 11.9395 + 25.0476i 0.526117 + 1.10373i
\(516\) −12.2317 −0.538469
\(517\) 22.1679i 0.974943i
\(518\) 2.93930i 0.129145i
\(519\) −2.82518 −0.124012
\(520\) 3.91686 1.86706i 0.171766 0.0818760i
\(521\) 24.5229 1.07437 0.537185 0.843465i \(-0.319488\pi\)
0.537185 + 0.843465i \(0.319488\pi\)
\(522\) 0.712495i 0.0311851i
\(523\) 10.8566i 0.474725i 0.971421 + 0.237362i \(0.0762829\pi\)
−0.971421 + 0.237362i \(0.923717\pi\)
\(524\) 17.8073 0.777914
\(525\) 8.75243 10.7974i 0.381987 0.471239i
\(526\) −9.41406 −0.410472
\(527\) 16.7904i 0.731401i
\(528\) 5.17218i 0.225090i
\(529\) 18.2838 0.794948
\(530\) −16.9491 + 8.07919i −0.736224 + 0.350938i
\(531\) −4.46028 −0.193560
\(532\) 27.8795i 1.20873i
\(533\) 6.01572i 0.260570i
\(534\) −3.89580 −0.168588
\(535\) 16.8934 + 35.4403i 0.730367 + 1.53222i
\(536\) 21.1348 0.912886
\(537\) 20.2829i 0.875270i
\(538\) 7.37052i 0.317766i
\(539\) −3.10549 −0.133763
\(540\) 1.43587 + 3.01228i 0.0617901 + 0.129628i
\(541\) −22.7032 −0.976085 −0.488043 0.872820i \(-0.662289\pi\)
−0.488043 + 0.872820i \(0.662289\pi\)
\(542\) 6.95410i 0.298704i
\(543\) 8.63783i 0.370685i
\(544\) 11.1166 0.476622
\(545\) −2.03812 + 0.971516i −0.0873035 + 0.0416152i
\(546\) 1.54461 0.0661031
\(547\) 32.8229i 1.40340i −0.712471 0.701702i \(-0.752424\pi\)
0.712471 0.701702i \(-0.247576\pi\)
\(548\) 0.357843i 0.0152863i
\(549\) 5.24905 0.224024
\(550\) −11.8119 9.57474i −0.503660 0.408268i
\(551\) 6.72036 0.286297
\(552\) 5.40376i 0.229999i
\(553\) 26.5352i 1.12839i
\(554\) −1.33595 −0.0567590
\(555\) −2.99546 + 1.42785i −0.127150 + 0.0606091i
\(556\) 25.4080 1.07754
\(557\) 26.3234i 1.11536i 0.830057 + 0.557679i \(0.188308\pi\)
−0.830057 + 0.557679i \(0.811692\pi\)
\(558\) 6.28464i 0.266050i
\(559\) 6.39189 0.270348
\(560\) 3.24117 + 6.79958i 0.136965 + 0.287335i
\(561\) 8.12458 0.343020
\(562\) 15.1712i 0.639958i
\(563\) 28.4750i 1.20008i −0.799971 0.600039i \(-0.795152\pi\)
0.799971 0.600039i \(-0.204848\pi\)
\(564\) 7.75099 0.326375
\(565\) −14.9891 31.4453i −0.630597 1.32291i
\(566\) −11.3093 −0.475367
\(567\) 2.77986i 0.116743i
\(568\) 1.64999i 0.0692318i
\(569\) 14.7555 0.618582 0.309291 0.950967i \(-0.399908\pi\)
0.309291 + 0.950967i \(0.399908\pi\)
\(570\) 9.66493 4.60701i 0.404819 0.192966i
\(571\) −0.204397 −0.00855376 −0.00427688 0.999991i \(-0.501361\pi\)
−0.00427688 + 0.999991i \(0.501361\pi\)
\(572\) 4.96734i 0.207695i
\(573\) 0.896850i 0.0374664i
\(574\) −15.2784 −0.637708
\(575\) 8.43519 + 6.83758i 0.351772 + 0.285147i
\(576\) 1.73733 0.0723887
\(577\) 37.3300i 1.55407i −0.629457 0.777035i \(-0.716723\pi\)
0.629457 0.777035i \(-0.283277\pi\)
\(578\) 9.53071i 0.396425i
\(579\) −10.4506 −0.434312
\(580\) −3.01228 + 1.43587i −0.125078 + 0.0596213i
\(581\) 0.0344697 0.00143004
\(582\) 0.678299i 0.0281164i
\(583\) 50.3014i 2.08327i
\(584\) 41.1425 1.70249
\(585\) −0.750341 1.57412i −0.0310228 0.0650820i
\(586\) −23.6098 −0.975314
\(587\) 10.8497i 0.447813i −0.974611 0.223907i \(-0.928119\pi\)
0.974611 0.223907i \(-0.0718811\pi\)
\(588\) 1.08583i 0.0447789i
\(589\) 59.2776 2.44249
\(590\) −3.05765 6.41458i −0.125882 0.264084i
\(591\) −9.57740 −0.393962
\(592\) 1.79835i 0.0739119i
\(593\) 14.0575i 0.577272i −0.957439 0.288636i \(-0.906798\pi\)
0.957439 0.288636i \(-0.0932018\pi\)
\(594\) 3.04103 0.124775
\(595\) −10.6809 + 5.09131i −0.437876 + 0.208723i
\(596\) 6.16409 0.252491
\(597\) 5.61768i 0.229916i
\(598\) 1.20668i 0.0493448i
\(599\) 5.52446 0.225724 0.112862 0.993611i \(-0.463998\pi\)
0.112862 + 0.993611i \(0.463998\pi\)
\(600\) −7.83441 + 9.66493i −0.319838 + 0.394569i
\(601\) −6.85394 −0.279578 −0.139789 0.990181i \(-0.544642\pi\)
−0.139789 + 0.990181i \(0.544642\pi\)
\(602\) 16.2337i 0.661638i
\(603\) 8.49375i 0.345892i
\(604\) −4.79910 −0.195273
\(605\) 14.5674 6.94387i 0.592248 0.282308i
\(606\) −5.92640 −0.240743
\(607\) 30.4979i 1.23787i 0.785442 + 0.618935i \(0.212436\pi\)
−0.785442 + 0.618935i \(0.787564\pi\)
\(608\) 39.2467i 1.59166i
\(609\) −2.77986 −0.112645
\(610\) 3.59838 + 7.54895i 0.145694 + 0.305648i
\(611\) −4.05042 −0.163863
\(612\) 2.84075i 0.114831i
\(613\) 29.9211i 1.20850i −0.796794 0.604250i \(-0.793473\pi\)
0.796794 0.604250i \(-0.206527\pi\)
\(614\) 12.2980 0.496308
\(615\) 7.42195 + 15.5703i 0.299282 + 0.627857i
\(616\) 29.5230 1.18952
\(617\) 1.04305i 0.0419917i −0.999780 0.0209959i \(-0.993316\pi\)
0.999780 0.0209959i \(-0.00668368\pi\)
\(618\) 8.84145i 0.355655i
\(619\) −22.1661 −0.890930 −0.445465 0.895299i \(-0.646962\pi\)
−0.445465 + 0.895299i \(0.646962\pi\)
\(620\) −26.5701 + 12.6653i −1.06708 + 0.508649i
\(621\) −2.17168 −0.0871465
\(622\) 23.1643i 0.928805i
\(623\) 15.1998i 0.608966i
\(624\) 0.945039 0.0378318
\(625\) −5.17364 24.4588i −0.206946 0.978352i
\(626\) −4.46238 −0.178353
\(627\) 28.6834i 1.14551i
\(628\) 10.2112i 0.407472i
\(629\) 2.82489 0.112636
\(630\) −3.99787 + 1.90567i −0.159279 + 0.0759239i
\(631\) 20.1089 0.800524 0.400262 0.916401i \(-0.368919\pi\)
0.400262 + 0.916401i \(0.368919\pi\)
\(632\) 23.7520i 0.944804i
\(633\) 0.605216i 0.0240552i
\(634\) −13.4322 −0.533460
\(635\) 16.3119 + 34.2204i 0.647319 + 1.35800i
\(636\) −17.5878 −0.697403
\(637\) 0.567422i 0.0224821i
\(638\) 3.04103i 0.120395i
\(639\) −0.663102 −0.0262319
\(640\) −10.0469 21.0772i −0.397139 0.833149i
\(641\) 5.93422 0.234388 0.117194 0.993109i \(-0.462610\pi\)
0.117194 + 0.993109i \(0.462610\pi\)
\(642\) 12.5099i 0.493728i
\(643\) 0.951317i 0.0375163i −0.999824 0.0187581i \(-0.994029\pi\)
0.999824 0.0187581i \(-0.00597125\pi\)
\(644\) −9.00926 −0.355015
\(645\) −16.5439 + 7.88604i −0.651417 + 0.310513i
\(646\) −9.11458 −0.358608
\(647\) 35.1384i 1.38143i −0.723126 0.690716i \(-0.757295\pi\)
0.723126 0.690716i \(-0.242705\pi\)
\(648\) 2.48828i 0.0977490i
\(649\) 19.0371 0.747271
\(650\) 1.74945 2.15822i 0.0686192 0.0846522i
\(651\) −24.5200 −0.961015
\(652\) 20.9678i 0.821163i
\(653\) 45.9930i 1.79984i 0.436050 + 0.899922i \(0.356377\pi\)
−0.436050 + 0.899922i \(0.643623\pi\)
\(654\) 0.719428 0.0281319
\(655\) 24.0852 11.4808i 0.941088 0.448591i
\(656\) −9.34779 −0.364970
\(657\) 16.5345i 0.645072i
\(658\) 10.2870i 0.401030i
\(659\) 19.3162 0.752451 0.376226 0.926528i \(-0.377222\pi\)
0.376226 + 0.926528i \(0.377222\pi\)
\(660\) −6.12850 12.8568i −0.238551 0.500451i
\(661\) 44.3224 1.72394 0.861970 0.506959i \(-0.169230\pi\)
0.861970 + 0.506959i \(0.169230\pi\)
\(662\) 0.424821i 0.0165111i
\(663\) 1.48449i 0.0576528i
\(664\) −0.0308542 −0.00119738
\(665\) −17.9746 37.7085i −0.697025 1.46227i
\(666\) 1.05736 0.0409717
\(667\) 2.17168i 0.0840878i
\(668\) 26.6720i 1.03197i
\(669\) 16.5537 0.640004
\(670\) 12.2153 5.82272i 0.471920 0.224951i
\(671\) −22.4037 −0.864883
\(672\) 16.2343i 0.626251i
\(673\) 12.7421i 0.491170i −0.969375 0.245585i \(-0.921020\pi\)
0.969375 0.245585i \(-0.0789801\pi\)
\(674\) 23.2569 0.895821
\(675\) 3.88418 + 3.14852i 0.149502 + 0.121187i
\(676\) 18.4930 0.711267
\(677\) 9.41654i 0.361907i −0.983492 0.180954i \(-0.942082\pi\)
0.983492 0.180954i \(-0.0579184\pi\)
\(678\) 11.0997i 0.426283i
\(679\) −2.64644 −0.101561
\(680\) 9.56063 4.55729i 0.366634 0.174764i
\(681\) 22.0061 0.843276
\(682\) 26.8237i 1.02713i
\(683\) 6.92316i 0.264907i −0.991189 0.132454i \(-0.957714\pi\)
0.991189 0.132454i \(-0.0422856\pi\)
\(684\) 10.0291 0.383473
\(685\) 0.230710 + 0.484001i 0.00881497 + 0.0184927i
\(686\) 12.4233 0.474325
\(687\) 24.5647i 0.937202i
\(688\) 9.93231i 0.378666i
\(689\) 9.19085 0.350144
\(690\) −1.48875 3.12322i −0.0566758 0.118899i
\(691\) −48.7272 −1.85367 −0.926835 0.375469i \(-0.877482\pi\)
−0.926835 + 0.375469i \(0.877482\pi\)
\(692\) 4.21616i 0.160274i
\(693\) 11.8648i 0.450707i
\(694\) −9.40384 −0.356965
\(695\) 34.3655 16.3811i 1.30356 0.621371i
\(696\) 2.48828 0.0943181
\(697\) 14.6837i 0.556186i
\(698\) 11.1443i 0.421818i
\(699\) −5.56824 −0.210610
\(700\) 16.1136 + 13.0617i 0.609036 + 0.493686i
\(701\) 2.88580 0.108995 0.0544975 0.998514i \(-0.482644\pi\)
0.0544975 + 0.998514i \(0.482644\pi\)
\(702\) 0.555643i 0.0209714i
\(703\) 9.97314i 0.376144i
\(704\) −7.41516 −0.279469
\(705\) 10.4836 4.99725i 0.394835 0.188207i
\(706\) 4.02906 0.151636
\(707\) 23.1223i 0.869604i
\(708\) 6.65630i 0.250159i
\(709\) 1.73056 0.0649924 0.0324962 0.999472i \(-0.489654\pi\)
0.0324962 + 0.999472i \(0.489654\pi\)
\(710\) −0.454576 0.953645i −0.0170599 0.0357896i
\(711\) 9.54554 0.357986
\(712\) 13.6055i 0.509887i
\(713\) 19.1555i 0.717381i
\(714\) 3.77022 0.141097
\(715\) 3.20256 + 6.71857i 0.119769 + 0.251260i
\(716\) −30.2692 −1.13121
\(717\) 6.90640i 0.257924i
\(718\) 18.0043i 0.671913i
\(719\) 12.9089 0.481420 0.240710 0.970597i \(-0.422620\pi\)
0.240710 + 0.970597i \(0.422620\pi\)
\(720\) −2.44602 + 1.16595i −0.0911577 + 0.0434524i
\(721\) −34.4956 −1.28468
\(722\) 18.6412i 0.693752i
\(723\) 25.1989i 0.937158i
\(724\) −12.8907 −0.479078
\(725\) −3.14852 + 3.88418i −0.116933 + 0.144255i
\(726\) −5.14208 −0.190841
\(727\) 38.3405i 1.42197i −0.703207 0.710985i \(-0.748249\pi\)
0.703207 0.710985i \(-0.251751\pi\)
\(728\) 5.39431i 0.199927i
\(729\) −1.00000 −0.0370370
\(730\) 23.7792 11.3349i 0.880108 0.419523i
\(731\) 15.6019 0.577057
\(732\) 7.83342i 0.289531i
\(733\) 34.8966i 1.28894i 0.764631 + 0.644468i \(0.222921\pi\)
−0.764631 + 0.644468i \(0.777079\pi\)
\(734\) −18.7235 −0.691098
\(735\) 0.700061 + 1.46864i 0.0258222 + 0.0541717i
\(736\) 12.6826 0.467485
\(737\) 36.2525i 1.33538i
\(738\) 5.49611i 0.202315i
\(739\) −14.2969 −0.525921 −0.262960 0.964807i \(-0.584699\pi\)
−0.262960 + 0.964807i \(0.584699\pi\)
\(740\) −2.13086 4.47028i −0.0783320 0.164331i
\(741\) −5.24091 −0.192530
\(742\) 23.3424i 0.856927i
\(743\) 44.1357i 1.61918i 0.586995 + 0.809591i \(0.300311\pi\)
−0.586995 + 0.809591i \(0.699689\pi\)
\(744\) 21.9482 0.804659
\(745\) 8.33725 3.97414i 0.305453 0.145601i
\(746\) 1.01910 0.0373120
\(747\) 0.0123998i 0.000453685i
\(748\) 12.1247i 0.443324i
\(749\) −48.8085 −1.78343
\(750\) −1.86535 + 7.74446i −0.0681128 + 0.282788i
\(751\) 9.56375 0.348986 0.174493 0.984658i \(-0.444171\pi\)
0.174493 + 0.984658i \(0.444171\pi\)
\(752\) 6.29393i 0.229516i
\(753\) 28.3687i 1.03381i
\(754\) −0.555643 −0.0202353
\(755\) −6.49103 + 3.09410i −0.236233 + 0.112606i
\(756\) −4.14852 −0.150880
\(757\) 30.1910i 1.09731i 0.836048 + 0.548656i \(0.184860\pi\)
−0.836048 + 0.548656i \(0.815140\pi\)
\(758\) 25.1038i 0.911811i
\(759\) 9.26903 0.336445
\(760\) 16.0893 + 33.7533i 0.583619 + 1.22436i
\(761\) 8.27038 0.299801 0.149900 0.988701i \(-0.452105\pi\)
0.149900 + 0.988701i \(0.452105\pi\)
\(762\) 12.0793i 0.437588i
\(763\) 2.80690i 0.101617i
\(764\) 1.33841 0.0484221
\(765\) −1.83150 3.84226i −0.0662180 0.138917i
\(766\) 22.8498 0.825595
\(767\) 3.47837i 0.125597i
\(768\) 10.9146i 0.393847i
\(769\) 22.4592 0.809901 0.404950 0.914339i \(-0.367289\pi\)
0.404950 + 0.914339i \(0.367289\pi\)
\(770\) 17.0635 8.13368i 0.614924 0.293118i
\(771\) −8.71100 −0.313719
\(772\) 15.5960i 0.561311i
\(773\) 26.9520i 0.969398i 0.874681 + 0.484699i \(0.161071\pi\)
−0.874681 + 0.484699i \(0.838929\pi\)
\(774\) 5.83978 0.209907
\(775\) −27.7719 + 34.2608i −0.997595 + 1.23068i
\(776\) 2.36886 0.0850371
\(777\) 4.12536i 0.147996i
\(778\) 1.16794i 0.0418725i
\(779\) 51.8401 1.85737
\(780\) 2.34914 1.11977i 0.0841128 0.0400943i
\(781\) 2.83021 0.101273