Properties

Label 435.2.c.e.349.10
Level $435$
Weight $2$
Character 435.349
Analytic conductor $3.473$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,2,Mod(349,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.47349248793\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.3899266318336.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 6x^{7} + 19x^{6} - 12x^{5} + 4x^{4} + 2x^{3} + 9x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.10
Root \(-1.20964 - 1.20964i\) of defining polynomial
Character \(\chi\) \(=\) 435.349
Dual form 435.2.c.e.349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.51908i q^{2} -1.00000i q^{3} -4.34577 q^{4} +(-1.27413 - 1.83755i) q^{5} +2.51908 q^{6} +0.173311i q^{7} -5.90919i q^{8} -1.00000 q^{9} +(4.62893 - 3.20964i) q^{10} +5.08250 q^{11} +4.34577i q^{12} -1.82669i q^{13} -0.436584 q^{14} +(-1.83755 + 1.27413i) q^{15} +6.19418 q^{16} -4.24598i q^{17} -2.51908i q^{18} +8.62093 q^{19} +(5.53709 + 7.98556i) q^{20} +0.173311 q^{21} +12.8032i q^{22} -3.16348i q^{23} -5.90919 q^{24} +(-1.75317 + 4.68256i) q^{25} +4.60158 q^{26} +1.00000i q^{27} -0.753170i q^{28} -1.00000 q^{29} +(-3.20964 - 4.62893i) q^{30} +3.22185 q^{31} +3.78527i q^{32} -5.08250i q^{33} +10.6960 q^{34} +(0.318467 - 0.220821i) q^{35} +4.34577 q^{36} +1.97828i q^{37} +21.7168i q^{38} -1.82669 q^{39} +(-10.8584 + 7.52909i) q^{40} -9.96541 q^{41} +0.436584i q^{42} -7.91070i q^{43} -22.0874 q^{44} +(1.27413 + 1.83755i) q^{45} +7.96907 q^{46} -8.66893i q^{47} -6.19418i q^{48} +6.96996 q^{49} +(-11.7958 - 4.41638i) q^{50} -4.24598 q^{51} +7.93837i q^{52} -5.40285i q^{53} -2.51908 q^{54} +(-6.47578 - 9.33933i) q^{55} +1.02413 q^{56} -8.62093i q^{57} -2.51908i q^{58} -7.66286 q^{59} +(7.98556 - 5.53709i) q^{60} +2.76215 q^{61} +8.11611i q^{62} -0.173311i q^{63} +2.85296 q^{64} +(-3.35663 + 2.32744i) q^{65} +12.8032 q^{66} +8.13872i q^{67} +18.4520i q^{68} -3.16348 q^{69} +(0.556267 + 0.802245i) q^{70} -6.25938 q^{71} +5.90919i q^{72} +6.74356i q^{73} -4.98345 q^{74} +(4.68256 + 1.75317i) q^{75} -37.4646 q^{76} +0.880853i q^{77} -4.60158i q^{78} -4.54763 q^{79} +(-7.89221 - 11.3821i) q^{80} +1.00000 q^{81} -25.1037i q^{82} +11.6224i q^{83} -0.753170 q^{84} +(-7.80219 + 5.40994i) q^{85} +19.9277 q^{86} +1.00000i q^{87} -30.0334i q^{88} +16.4911 q^{89} +(-4.62893 + 3.20964i) q^{90} +0.316585 q^{91} +13.7478i q^{92} -3.22185i q^{93} +21.8377 q^{94} +(-10.9842 - 15.8414i) q^{95} +3.78527 q^{96} +2.74419i q^{97} +17.5579i q^{98} -5.08250 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{4} + 6 q^{6} - 10 q^{9} + 4 q^{10} + 24 q^{11} - 12 q^{14} + 2 q^{15} + 2 q^{16} + 4 q^{19} + 8 q^{20} + 16 q^{21} - 18 q^{24} + 2 q^{25} - 10 q^{29} - 18 q^{30} + 4 q^{31} - 8 q^{34} + 2 q^{35}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/435\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(146\) \(262\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51908i 1.78126i 0.454729 + 0.890630i \(0.349736\pi\)
−0.454729 + 0.890630i \(0.650264\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −4.34577 −2.17289
\(5\) −1.27413 1.83755i −0.569810 0.821777i
\(6\) 2.51908 1.02841
\(7\) 0.173311i 0.0655054i 0.999463 + 0.0327527i \(0.0104274\pi\)
−0.999463 + 0.0327527i \(0.989573\pi\)
\(8\) 5.90919i 2.08921i
\(9\) −1.00000 −0.333333
\(10\) 4.62893 3.20964i 1.46380 1.01498i
\(11\) 5.08250 1.53243 0.766215 0.642584i \(-0.222138\pi\)
0.766215 + 0.642584i \(0.222138\pi\)
\(12\) 4.34577i 1.25452i
\(13\) 1.82669i 0.506632i −0.967384 0.253316i \(-0.918479\pi\)
0.967384 0.253316i \(-0.0815213\pi\)
\(14\) −0.436584 −0.116682
\(15\) −1.83755 + 1.27413i −0.474453 + 0.328980i
\(16\) 6.19418 1.54854
\(17\) 4.24598i 1.02980i −0.857250 0.514901i \(-0.827829\pi\)
0.857250 0.514901i \(-0.172171\pi\)
\(18\) 2.51908i 0.593753i
\(19\) 8.62093 1.97778 0.988889 0.148656i \(-0.0474948\pi\)
0.988889 + 0.148656i \(0.0474948\pi\)
\(20\) 5.53709 + 7.98556i 1.23813 + 1.78563i
\(21\) 0.173311 0.0378196
\(22\) 12.8032i 2.72966i
\(23\) 3.16348i 0.659632i −0.944045 0.329816i \(-0.893013\pi\)
0.944045 0.329816i \(-0.106987\pi\)
\(24\) −5.90919 −1.20621
\(25\) −1.75317 + 4.68256i −0.350634 + 0.936513i
\(26\) 4.60158 0.902444
\(27\) 1.00000i 0.192450i
\(28\) 0.753170i 0.142336i
\(29\) −1.00000 −0.185695
\(30\) −3.20964 4.62893i −0.585998 0.845124i
\(31\) 3.22185 0.578662 0.289331 0.957229i \(-0.406567\pi\)
0.289331 + 0.957229i \(0.406567\pi\)
\(32\) 3.78527i 0.669147i
\(33\) 5.08250i 0.884749i
\(34\) 10.6960 1.83434
\(35\) 0.318467 0.220821i 0.0538308 0.0373256i
\(36\) 4.34577 0.724295
\(37\) 1.97828i 0.325227i 0.986690 + 0.162614i \(0.0519924\pi\)
−0.986690 + 0.162614i \(0.948008\pi\)
\(38\) 21.7168i 3.52294i
\(39\) −1.82669 −0.292504
\(40\) −10.8584 + 7.52909i −1.71687 + 1.19045i
\(41\) −9.96541 −1.55634 −0.778168 0.628056i \(-0.783851\pi\)
−0.778168 + 0.628056i \(0.783851\pi\)
\(42\) 0.436584i 0.0673664i
\(43\) 7.91070i 1.20637i −0.797601 0.603185i \(-0.793898\pi\)
0.797601 0.603185i \(-0.206102\pi\)
\(44\) −22.0874 −3.32980
\(45\) 1.27413 + 1.83755i 0.189937 + 0.273926i
\(46\) 7.96907 1.17497
\(47\) 8.66893i 1.26449i −0.774767 0.632246i \(-0.782133\pi\)
0.774767 0.632246i \(-0.217867\pi\)
\(48\) 6.19418i 0.894053i
\(49\) 6.96996 0.995709
\(50\) −11.7958 4.41638i −1.66817 0.624570i
\(51\) −4.24598 −0.594556
\(52\) 7.93837i 1.10085i
\(53\) 5.40285i 0.742138i −0.928605 0.371069i \(-0.878991\pi\)
0.928605 0.371069i \(-0.121009\pi\)
\(54\) −2.51908 −0.342804
\(55\) −6.47578 9.33933i −0.873194 1.25932i
\(56\) 1.02413 0.136855
\(57\) 8.62093i 1.14187i
\(58\) 2.51908i 0.330772i
\(59\) −7.66286 −0.997619 −0.498810 0.866712i \(-0.666229\pi\)
−0.498810 + 0.866712i \(0.666229\pi\)
\(60\) 7.98556 5.53709i 1.03093 0.714835i
\(61\) 2.76215 0.353657 0.176828 0.984242i \(-0.443416\pi\)
0.176828 + 0.984242i \(0.443416\pi\)
\(62\) 8.11611i 1.03075i
\(63\) 0.173311i 0.0218351i
\(64\) 2.85296 0.356620
\(65\) −3.35663 + 2.32744i −0.416339 + 0.288684i
\(66\) 12.8032 1.57597
\(67\) 8.13872i 0.994303i 0.867664 + 0.497152i \(0.165621\pi\)
−0.867664 + 0.497152i \(0.834379\pi\)
\(68\) 18.4520i 2.23764i
\(69\) −3.16348 −0.380838
\(70\) 0.556267 + 0.802245i 0.0664866 + 0.0958866i
\(71\) −6.25938 −0.742852 −0.371426 0.928463i \(-0.621131\pi\)
−0.371426 + 0.928463i \(0.621131\pi\)
\(72\) 5.90919i 0.696404i
\(73\) 6.74356i 0.789274i 0.918837 + 0.394637i \(0.129130\pi\)
−0.918837 + 0.394637i \(0.870870\pi\)
\(74\) −4.98345 −0.579314
\(75\) 4.68256 + 1.75317i 0.540696 + 0.202439i
\(76\) −37.4646 −4.29748
\(77\) 0.880853i 0.100382i
\(78\) 4.60158i 0.521026i
\(79\) −4.54763 −0.511649 −0.255824 0.966723i \(-0.582347\pi\)
−0.255824 + 0.966723i \(0.582347\pi\)
\(80\) −7.89221 11.3821i −0.882376 1.27256i
\(81\) 1.00000 0.111111
\(82\) 25.1037i 2.77224i
\(83\) 11.6224i 1.27573i 0.770149 + 0.637865i \(0.220182\pi\)
−0.770149 + 0.637865i \(0.779818\pi\)
\(84\) −0.753170 −0.0821776
\(85\) −7.80219 + 5.40994i −0.846267 + 0.586791i
\(86\) 19.9277 2.14886
\(87\) 1.00000i 0.107211i
\(88\) 30.0334i 3.20157i
\(89\) 16.4911 1.74805 0.874024 0.485882i \(-0.161501\pi\)
0.874024 + 0.485882i \(0.161501\pi\)
\(90\) −4.62893 + 3.20964i −0.487933 + 0.338326i
\(91\) 0.316585 0.0331872
\(92\) 13.7478i 1.43330i
\(93\) 3.22185i 0.334090i
\(94\) 21.8377 2.25239
\(95\) −10.9842 15.8414i −1.12696 1.62529i
\(96\) 3.78527 0.386332
\(97\) 2.74419i 0.278631i 0.990248 + 0.139315i \(0.0444901\pi\)
−0.990248 + 0.139315i \(0.955510\pi\)
\(98\) 17.5579i 1.77362i
\(99\) −5.08250 −0.510810
\(100\) 7.61887 20.3493i 0.761887 2.03493i
\(101\) 6.41474 0.638290 0.319145 0.947706i \(-0.396604\pi\)
0.319145 + 0.947706i \(0.396604\pi\)
\(102\) 10.6960i 1.05906i
\(103\) 7.08642i 0.698245i 0.937077 + 0.349123i \(0.113520\pi\)
−0.937077 + 0.349123i \(0.886480\pi\)
\(104\) −10.7942 −1.05846
\(105\) −0.220821 0.318467i −0.0215499 0.0310792i
\(106\) 13.6102 1.32194
\(107\) 0.925187i 0.0894412i 0.999000 + 0.0447206i \(0.0142398\pi\)
−0.999000 + 0.0447206i \(0.985760\pi\)
\(108\) 4.34577i 0.418172i
\(109\) −4.11700 −0.394337 −0.197169 0.980370i \(-0.563175\pi\)
−0.197169 + 0.980370i \(0.563175\pi\)
\(110\) 23.5265 16.3130i 2.24317 1.55538i
\(111\) 1.97828 0.187770
\(112\) 1.07352i 0.101438i
\(113\) 6.84626i 0.644042i −0.946732 0.322021i \(-0.895638\pi\)
0.946732 0.322021i \(-0.104362\pi\)
\(114\) 21.7168 2.03397
\(115\) −5.81305 + 4.03070i −0.542070 + 0.375864i
\(116\) 4.34577 0.403495
\(117\) 1.82669i 0.168877i
\(118\) 19.3034i 1.77702i
\(119\) 0.735875 0.0674575
\(120\) 7.52909 + 10.8584i 0.687309 + 0.991233i
\(121\) 14.8318 1.34834
\(122\) 6.95807i 0.629954i
\(123\) 9.96541i 0.898551i
\(124\) −14.0014 −1.25737
\(125\) 10.8382 2.74467i 0.969399 0.245491i
\(126\) 0.436584 0.0388940
\(127\) 5.25850i 0.466617i −0.972403 0.233308i \(-0.925045\pi\)
0.972403 0.233308i \(-0.0749551\pi\)
\(128\) 14.7574i 1.30438i
\(129\) −7.91070 −0.696498
\(130\) −5.86302 8.45562i −0.514221 0.741607i
\(131\) 17.7157 1.54783 0.773913 0.633293i \(-0.218297\pi\)
0.773913 + 0.633293i \(0.218297\pi\)
\(132\) 22.0874i 1.92246i
\(133\) 1.49410i 0.129555i
\(134\) −20.5021 −1.77111
\(135\) 1.83755 1.27413i 0.158151 0.109660i
\(136\) −25.0903 −2.15147
\(137\) 1.14479i 0.0978057i −0.998804 0.0489028i \(-0.984428\pi\)
0.998804 0.0489028i \(-0.0155725\pi\)
\(138\) 7.96907i 0.678372i
\(139\) −4.08670 −0.346630 −0.173315 0.984866i \(-0.555448\pi\)
−0.173315 + 0.984866i \(0.555448\pi\)
\(140\) −1.38399 + 0.959639i −0.116968 + 0.0811043i
\(141\) −8.66893 −0.730055
\(142\) 15.7679i 1.32321i
\(143\) 9.28414i 0.776379i
\(144\) −6.19418 −0.516182
\(145\) 1.27413 + 1.83755i 0.105811 + 0.152600i
\(146\) −16.9876 −1.40590
\(147\) 6.96996i 0.574873i
\(148\) 8.59715i 0.706682i
\(149\) −1.50268 −0.123105 −0.0615523 0.998104i \(-0.519605\pi\)
−0.0615523 + 0.998104i \(0.519605\pi\)
\(150\) −4.41638 + 11.7958i −0.360596 + 0.963119i
\(151\) −21.4897 −1.74881 −0.874404 0.485199i \(-0.838747\pi\)
−0.874404 + 0.485199i \(0.838747\pi\)
\(152\) 50.9427i 4.13200i
\(153\) 4.24598i 0.343267i
\(154\) −2.21894 −0.178807
\(155\) −4.10507 5.92031i −0.329727 0.475531i
\(156\) 7.93837 0.635578
\(157\) 11.1167i 0.887206i 0.896223 + 0.443603i \(0.146300\pi\)
−0.896223 + 0.443603i \(0.853700\pi\)
\(158\) 11.4559i 0.911379i
\(159\) −5.40285 −0.428474
\(160\) 6.95561 4.82293i 0.549889 0.381286i
\(161\) 0.548266 0.0432094
\(162\) 2.51908i 0.197918i
\(163\) 12.2180i 0.956988i 0.878091 + 0.478494i \(0.158817\pi\)
−0.878091 + 0.478494i \(0.841183\pi\)
\(164\) 43.3074 3.38174
\(165\) −9.33933 + 6.47578i −0.727066 + 0.504139i
\(166\) −29.2779 −2.27240
\(167\) 21.3634i 1.65315i 0.562826 + 0.826576i \(0.309714\pi\)
−0.562826 + 0.826576i \(0.690286\pi\)
\(168\) 1.02413i 0.0790131i
\(169\) 9.66321 0.743324
\(170\) −13.6281 19.6544i −1.04523 1.50742i
\(171\) −8.62093 −0.659259
\(172\) 34.3781i 2.62130i
\(173\) 13.1686i 1.00119i −0.865682 0.500594i \(-0.833115\pi\)
0.865682 0.500594i \(-0.166885\pi\)
\(174\) −2.51908 −0.190971
\(175\) −0.811540 0.303844i −0.0613466 0.0229684i
\(176\) 31.4819 2.37304
\(177\) 7.66286i 0.575976i
\(178\) 41.5423i 3.11373i
\(179\) −10.6947 −0.799357 −0.399679 0.916655i \(-0.630878\pi\)
−0.399679 + 0.916655i \(0.630878\pi\)
\(180\) −5.53709 7.98556i −0.412710 0.595209i
\(181\) −15.2511 −1.13361 −0.566804 0.823852i \(-0.691820\pi\)
−0.566804 + 0.823852i \(0.691820\pi\)
\(182\) 0.797504i 0.0591149i
\(183\) 2.76215i 0.204184i
\(184\) −18.6936 −1.37811
\(185\) 3.63519 2.52059i 0.267264 0.185318i
\(186\) 8.11611 0.595102
\(187\) 21.5802i 1.57810i
\(188\) 37.6732i 2.74760i
\(189\) −0.173311 −0.0126065
\(190\) 39.9057 27.6701i 2.89507 2.00740i
\(191\) −25.7131 −1.86053 −0.930266 0.366885i \(-0.880424\pi\)
−0.930266 + 0.366885i \(0.880424\pi\)
\(192\) 2.85296i 0.205895i
\(193\) 22.8935i 1.64791i 0.566658 + 0.823953i \(0.308236\pi\)
−0.566658 + 0.823953i \(0.691764\pi\)
\(194\) −6.91284 −0.496313
\(195\) 2.32744 + 3.35663i 0.166672 + 0.240373i
\(196\) −30.2899 −2.16356
\(197\) 0.840810i 0.0599052i 0.999551 + 0.0299526i \(0.00953564\pi\)
−0.999551 + 0.0299526i \(0.990464\pi\)
\(198\) 12.8032i 0.909885i
\(199\) 26.5996 1.88560 0.942799 0.333361i \(-0.108183\pi\)
0.942799 + 0.333361i \(0.108183\pi\)
\(200\) 27.6701 + 10.3598i 1.95657 + 0.732549i
\(201\) 8.13872 0.574061
\(202\) 16.1592i 1.13696i
\(203\) 0.173311i 0.0121640i
\(204\) 18.4520 1.29190
\(205\) 12.6973 + 18.3119i 0.886815 + 1.27896i
\(206\) −17.8513 −1.24376
\(207\) 3.16348i 0.219877i
\(208\) 11.3148i 0.784543i
\(209\) 43.8159 3.03081
\(210\) 0.802245 0.556267i 0.0553602 0.0383861i
\(211\) 1.86360 0.128296 0.0641478 0.997940i \(-0.479567\pi\)
0.0641478 + 0.997940i \(0.479567\pi\)
\(212\) 23.4795i 1.61258i
\(213\) 6.25938i 0.428886i
\(214\) −2.33062 −0.159318
\(215\) −14.5363 + 10.0793i −0.991367 + 0.687401i
\(216\) 5.90919 0.402069
\(217\) 0.558382i 0.0379055i
\(218\) 10.3711i 0.702417i
\(219\) 6.74356 0.455687
\(220\) 28.1422 + 40.5866i 1.89735 + 2.73635i
\(221\) −7.75608 −0.521731
\(222\) 4.98345i 0.334467i
\(223\) 25.0759i 1.67920i −0.543202 0.839602i \(-0.682788\pi\)
0.543202 0.839602i \(-0.317212\pi\)
\(224\) −0.656028 −0.0438327
\(225\) 1.75317 4.68256i 0.116878 0.312171i
\(226\) 17.2463 1.14721
\(227\) 20.3877i 1.35318i 0.736360 + 0.676590i \(0.236543\pi\)
−0.736360 + 0.676590i \(0.763457\pi\)
\(228\) 37.4646i 2.48115i
\(229\) 5.84179 0.386037 0.193018 0.981195i \(-0.438172\pi\)
0.193018 + 0.981195i \(0.438172\pi\)
\(230\) −10.1537 14.6435i −0.669512 0.965567i
\(231\) 0.880853 0.0579558
\(232\) 5.90919i 0.387957i
\(233\) 14.1216i 0.925134i −0.886584 0.462567i \(-0.846928\pi\)
0.886584 0.462567i \(-0.153072\pi\)
\(234\) −4.60158 −0.300815
\(235\) −15.9296 + 11.0454i −1.03913 + 0.720520i
\(236\) 33.3010 2.16771
\(237\) 4.54763i 0.295400i
\(238\) 1.85373i 0.120159i
\(239\) 6.39059 0.413373 0.206686 0.978407i \(-0.433732\pi\)
0.206686 + 0.978407i \(0.433732\pi\)
\(240\) −11.3821 + 7.89221i −0.734712 + 0.509440i
\(241\) −10.1713 −0.655188 −0.327594 0.944819i \(-0.606238\pi\)
−0.327594 + 0.944819i \(0.606238\pi\)
\(242\) 37.3624i 2.40175i
\(243\) 1.00000i 0.0641500i
\(244\) −12.0037 −0.768455
\(245\) −8.88066 12.8076i −0.567365 0.818251i
\(246\) −25.1037 −1.60055
\(247\) 15.7478i 1.00201i
\(248\) 19.0385i 1.20895i
\(249\) 11.6224 0.736543
\(250\) 6.91406 + 27.3023i 0.437283 + 1.72675i
\(251\) −15.7587 −0.994678 −0.497339 0.867556i \(-0.665690\pi\)
−0.497339 + 0.867556i \(0.665690\pi\)
\(252\) 0.753170i 0.0474452i
\(253\) 16.0784i 1.01084i
\(254\) 13.2466 0.831165
\(255\) 5.40994 + 7.80219i 0.338784 + 0.488592i
\(256\) −31.4691 −1.96682
\(257\) 12.3486i 0.770283i 0.922858 + 0.385142i \(0.125847\pi\)
−0.922858 + 0.385142i \(0.874153\pi\)
\(258\) 19.9277i 1.24064i
\(259\) −0.342858 −0.0213041
\(260\) 14.5871 10.1145i 0.904656 0.627277i
\(261\) 1.00000 0.0618984
\(262\) 44.6272i 2.75708i
\(263\) 4.16928i 0.257089i 0.991704 + 0.128545i \(0.0410305\pi\)
−0.991704 + 0.128545i \(0.958969\pi\)
\(264\) −30.0334 −1.84843
\(265\) −9.92799 + 6.88395i −0.609872 + 0.422877i
\(266\) −3.76377 −0.230771
\(267\) 16.4911i 1.00924i
\(268\) 35.3690i 2.16051i
\(269\) 1.36011 0.0829273 0.0414636 0.999140i \(-0.486798\pi\)
0.0414636 + 0.999140i \(0.486798\pi\)
\(270\) 3.20964 + 4.62893i 0.195333 + 0.281708i
\(271\) 11.1448 0.676998 0.338499 0.940967i \(-0.390081\pi\)
0.338499 + 0.940967i \(0.390081\pi\)
\(272\) 26.3003i 1.59469i
\(273\) 0.316585i 0.0191606i
\(274\) 2.88381 0.174217
\(275\) −8.91048 + 23.7991i −0.537322 + 1.43514i
\(276\) 13.7478 0.827518
\(277\) 0.704673i 0.0423397i 0.999776 + 0.0211699i \(0.00673908\pi\)
−0.999776 + 0.0211699i \(0.993261\pi\)
\(278\) 10.2947i 0.617437i
\(279\) −3.22185 −0.192887
\(280\) −1.30487 1.88188i −0.0779811 0.112464i
\(281\) −13.8119 −0.823950 −0.411975 0.911195i \(-0.635161\pi\)
−0.411975 + 0.911195i \(0.635161\pi\)
\(282\) 21.8377i 1.30042i
\(283\) 8.92142i 0.530324i −0.964204 0.265162i \(-0.914575\pi\)
0.964204 0.265162i \(-0.0854254\pi\)
\(284\) 27.2018 1.61413
\(285\) −15.8414 + 10.9842i −0.938363 + 0.650649i
\(286\) 23.3875 1.38293
\(287\) 1.72712i 0.101948i
\(288\) 3.78527i 0.223049i
\(289\) −1.02833 −0.0604902
\(290\) −4.62893 + 3.20964i −0.271820 + 0.188477i
\(291\) 2.74419 0.160867
\(292\) 29.3060i 1.71500i
\(293\) 31.2817i 1.82750i 0.406278 + 0.913749i \(0.366826\pi\)
−0.406278 + 0.913749i \(0.633174\pi\)
\(294\) 17.5579 1.02400
\(295\) 9.76350 + 14.0809i 0.568453 + 0.819820i
\(296\) 11.6900 0.679469
\(297\) 5.08250i 0.294916i
\(298\) 3.78538i 0.219281i
\(299\) −5.77870 −0.334191
\(300\) −20.3493 7.61887i −1.17487 0.439876i
\(301\) 1.37101 0.0790238
\(302\) 54.1343i 3.11508i
\(303\) 6.41474i 0.368517i
\(304\) 53.3996 3.06268
\(305\) −3.51934 5.07558i −0.201517 0.290627i
\(306\) −10.6960 −0.611448
\(307\) 21.8533i 1.24723i −0.781730 0.623617i \(-0.785662\pi\)
0.781730 0.623617i \(-0.214338\pi\)
\(308\) 3.82798i 0.218120i
\(309\) 7.08642 0.403132
\(310\) 14.9137 10.3410i 0.847043 0.587329i
\(311\) 28.8838 1.63785 0.818925 0.573901i \(-0.194570\pi\)
0.818925 + 0.573901i \(0.194570\pi\)
\(312\) 10.7942i 0.611104i
\(313\) 8.24232i 0.465884i −0.972491 0.232942i \(-0.925165\pi\)
0.972491 0.232942i \(-0.0748352\pi\)
\(314\) −28.0038 −1.58034
\(315\) −0.318467 + 0.220821i −0.0179436 + 0.0124419i
\(316\) 19.7630 1.11175
\(317\) 7.15829i 0.402050i −0.979586 0.201025i \(-0.935573\pi\)
0.979586 0.201025i \(-0.0644272\pi\)
\(318\) 13.6102i 0.763223i
\(319\) −5.08250 −0.284565
\(320\) −3.63505 5.24246i −0.203206 0.293062i
\(321\) 0.925187 0.0516389
\(322\) 1.38113i 0.0769672i
\(323\) 36.6043i 2.03672i
\(324\) −4.34577 −0.241432
\(325\) 8.55359 + 3.20250i 0.474468 + 0.177643i
\(326\) −30.7781 −1.70464
\(327\) 4.11700i 0.227671i
\(328\) 58.8875i 3.25152i
\(329\) 1.50242 0.0828311
\(330\) −16.3130 23.5265i −0.898002 1.29509i
\(331\) −24.6936 −1.35728 −0.678642 0.734470i \(-0.737431\pi\)
−0.678642 + 0.734470i \(0.737431\pi\)
\(332\) 50.5085i 2.77201i
\(333\) 1.97828i 0.108409i
\(334\) −53.8162 −2.94469
\(335\) 14.9553 10.3698i 0.817095 0.566563i
\(336\) 1.07352 0.0585653
\(337\) 11.7142i 0.638116i 0.947735 + 0.319058i \(0.103366\pi\)
−0.947735 + 0.319058i \(0.896634\pi\)
\(338\) 24.3424i 1.32405i
\(339\) −6.84626 −0.371838
\(340\) 33.9065 23.5104i 1.83884 1.27503i
\(341\) 16.3751 0.886759
\(342\) 21.7168i 1.17431i
\(343\) 2.42115i 0.130730i
\(344\) −46.7458 −2.52036
\(345\) 4.03070 + 5.81305i 0.217005 + 0.312964i
\(346\) 33.1727 1.78337
\(347\) 0.828990i 0.0445025i 0.999752 + 0.0222513i \(0.00708338\pi\)
−0.999752 + 0.0222513i \(0.992917\pi\)
\(348\) 4.34577i 0.232958i
\(349\) 8.44370 0.451981 0.225991 0.974129i \(-0.427438\pi\)
0.225991 + 0.974129i \(0.427438\pi\)
\(350\) 0.765407 2.04433i 0.0409127 0.109274i
\(351\) 1.82669 0.0975014
\(352\) 19.2386i 1.02542i
\(353\) 4.90553i 0.261095i 0.991442 + 0.130547i \(0.0416735\pi\)
−0.991442 + 0.130547i \(0.958327\pi\)
\(354\) −19.3034 −1.02596
\(355\) 7.97528 + 11.5019i 0.423284 + 0.610458i
\(356\) −71.6664 −3.79831
\(357\) 0.735875i 0.0389466i
\(358\) 26.9407i 1.42386i
\(359\) −4.69044 −0.247552 −0.123776 0.992310i \(-0.539500\pi\)
−0.123776 + 0.992310i \(0.539500\pi\)
\(360\) 10.8584 7.52909i 0.572289 0.396818i
\(361\) 55.3205 2.91161
\(362\) 38.4189i 2.01925i
\(363\) 14.8318i 0.778466i
\(364\) −1.37581 −0.0721119
\(365\) 12.3916 8.59219i 0.648607 0.449736i
\(366\) 6.95807 0.363704
\(367\) 29.2460i 1.52663i 0.646028 + 0.763314i \(0.276429\pi\)
−0.646028 + 0.763314i \(0.723571\pi\)
\(368\) 19.5952i 1.02147i
\(369\) 9.96541 0.518779
\(370\) 6.34958 + 9.15733i 0.330099 + 0.476067i
\(371\) 0.936373 0.0486140
\(372\) 14.0014i 0.725940i
\(373\) 34.5171i 1.78723i −0.448839 0.893613i \(-0.648162\pi\)
0.448839 0.893613i \(-0.351838\pi\)
\(374\) 54.3622 2.81100
\(375\) −2.74467 10.8382i −0.141734 0.559683i
\(376\) −51.2263 −2.64179
\(377\) 1.82669i 0.0940793i
\(378\) 0.436584i 0.0224555i
\(379\) 3.20131 0.164440 0.0822201 0.996614i \(-0.473799\pi\)
0.0822201 + 0.996614i \(0.473799\pi\)
\(380\) 47.7349 + 68.8430i 2.44875 + 3.53157i
\(381\) −5.25850 −0.269401
\(382\) 64.7733i 3.31409i
\(383\) 19.4424i 0.993458i −0.867906 0.496729i \(-0.834534\pi\)
0.867906 0.496729i \(-0.165466\pi\)
\(384\) 14.7574 0.753084
\(385\) 1.61861 1.12232i 0.0824920 0.0571989i
\(386\) −57.6705 −2.93535
\(387\) 7.91070i 0.402123i
\(388\) 11.9256i 0.605432i
\(389\) −2.55875 −0.129734 −0.0648669 0.997894i \(-0.520662\pi\)
−0.0648669 + 0.997894i \(0.520662\pi\)
\(390\) −8.45562 + 5.86302i −0.428167 + 0.296886i
\(391\) −13.4321 −0.679289
\(392\) 41.1868i 2.08025i
\(393\) 17.7157i 0.893637i
\(394\) −2.11807 −0.106707
\(395\) 5.79429 + 8.35650i 0.291542 + 0.420461i
\(396\) 22.0874 1.10993
\(397\) 30.6583i 1.53869i 0.638831 + 0.769347i \(0.279418\pi\)
−0.638831 + 0.769347i \(0.720582\pi\)
\(398\) 67.0067i 3.35874i
\(399\) 1.49410 0.0747987
\(400\) −10.8594 + 29.0046i −0.542972 + 1.45023i
\(401\) 11.1628 0.557446 0.278723 0.960372i \(-0.410089\pi\)
0.278723 + 0.960372i \(0.410089\pi\)
\(402\) 20.5021i 1.02255i
\(403\) 5.88532i 0.293169i
\(404\) −27.8770 −1.38693
\(405\) −1.27413 1.83755i −0.0633122 0.0913085i
\(406\) 0.436584 0.0216673
\(407\) 10.0546i 0.498388i
\(408\) 25.0903i 1.24215i
\(409\) −13.3880 −0.661994 −0.330997 0.943632i \(-0.607385\pi\)
−0.330997 + 0.943632i \(0.607385\pi\)
\(410\) −46.1292 + 31.9854i −2.27816 + 1.57965i
\(411\) −1.14479 −0.0564681
\(412\) 30.7959i 1.51721i
\(413\) 1.32806i 0.0653495i
\(414\) −7.96907 −0.391658
\(415\) 21.3568 14.8085i 1.04836 0.726923i
\(416\) 6.91451 0.339012
\(417\) 4.08670i 0.200127i
\(418\) 110.376i 5.39865i
\(419\) −29.2982 −1.43131 −0.715655 0.698454i \(-0.753872\pi\)
−0.715655 + 0.698454i \(0.753872\pi\)
\(420\) 0.959639 + 1.38399i 0.0468256 + 0.0675316i
\(421\) 10.1098 0.492724 0.246362 0.969178i \(-0.420765\pi\)
0.246362 + 0.969178i \(0.420765\pi\)
\(422\) 4.69456i 0.228528i
\(423\) 8.66893i 0.421498i
\(424\) −31.9264 −1.55048
\(425\) 19.8821 + 7.44392i 0.964422 + 0.361083i
\(426\) −15.7679 −0.763957
\(427\) 0.478710i 0.0231664i
\(428\) 4.02065i 0.194345i
\(429\) −9.28414 −0.448243
\(430\) −25.3905 36.6181i −1.22444 1.76588i
\(431\) 30.3330 1.46109 0.730545 0.682865i \(-0.239266\pi\)
0.730545 + 0.682865i \(0.239266\pi\)
\(432\) 6.19418i 0.298018i
\(433\) 6.50520i 0.312620i 0.987708 + 0.156310i \(0.0499599\pi\)
−0.987708 + 0.156310i \(0.950040\pi\)
\(434\) −1.40661 −0.0675195
\(435\) 1.83755 1.27413i 0.0881037 0.0610900i
\(436\) 17.8915 0.856850
\(437\) 27.2722i 1.30460i
\(438\) 16.9876i 0.811698i
\(439\) 9.40248 0.448756 0.224378 0.974502i \(-0.427965\pi\)
0.224378 + 0.974502i \(0.427965\pi\)
\(440\) −55.1879 + 38.2666i −2.63098 + 1.82429i
\(441\) −6.96996 −0.331903
\(442\) 19.5382i 0.929337i
\(443\) 28.1657i 1.33819i −0.743175 0.669097i \(-0.766681\pi\)
0.743175 0.669097i \(-0.233319\pi\)
\(444\) −8.59715 −0.408003
\(445\) −21.0118 30.3031i −0.996055 1.43651i
\(446\) 63.1682 2.99110
\(447\) 1.50268i 0.0710744i
\(448\) 0.494450i 0.0233605i
\(449\) 32.2625 1.52256 0.761281 0.648422i \(-0.224571\pi\)
0.761281 + 0.648422i \(0.224571\pi\)
\(450\) 11.7958 + 4.41638i 0.556057 + 0.208190i
\(451\) −50.6492 −2.38498
\(452\) 29.7523i 1.39943i
\(453\) 21.4897i 1.00967i
\(454\) −51.3583 −2.41037
\(455\) −0.403372 0.581741i −0.0189104 0.0272724i
\(456\) −50.9427 −2.38561
\(457\) 27.1466i 1.26986i 0.772568 + 0.634932i \(0.218972\pi\)
−0.772568 + 0.634932i \(0.781028\pi\)
\(458\) 14.7160i 0.687631i
\(459\) 4.24598 0.198185
\(460\) 25.2622 17.5165i 1.17786 0.816710i
\(461\) 7.00940 0.326460 0.163230 0.986588i \(-0.447809\pi\)
0.163230 + 0.986588i \(0.447809\pi\)
\(462\) 2.21894i 0.103234i
\(463\) 21.7590i 1.01123i 0.862760 + 0.505613i \(0.168734\pi\)
−0.862760 + 0.505613i \(0.831266\pi\)
\(464\) −6.19418 −0.287558
\(465\) −5.92031 + 4.10507i −0.274548 + 0.190368i
\(466\) 35.5733 1.64790
\(467\) 30.7825i 1.42445i 0.701953 + 0.712223i \(0.252312\pi\)
−0.701953 + 0.712223i \(0.747688\pi\)
\(468\) 7.93837i 0.366951i
\(469\) −1.41053 −0.0651322
\(470\) −27.8242 40.1279i −1.28343 1.85096i
\(471\) 11.1167 0.512228
\(472\) 45.2813i 2.08424i
\(473\) 40.2061i 1.84868i
\(474\) −11.4559 −0.526185
\(475\) −15.1140 + 40.3681i −0.693476 + 1.85221i
\(476\) −3.19794 −0.146577
\(477\) 5.40285i 0.247379i
\(478\) 16.0984i 0.736324i
\(479\) 6.29237 0.287506 0.143753 0.989614i \(-0.454083\pi\)
0.143753 + 0.989614i \(0.454083\pi\)
\(480\) −4.82293 6.95561i −0.220136 0.317479i
\(481\) 3.61370 0.164771
\(482\) 25.6222i 1.16706i
\(483\) 0.548266i 0.0249470i
\(484\) −64.4555 −2.92979
\(485\) 5.04259 3.49647i 0.228972 0.158766i
\(486\) 2.51908 0.114268
\(487\) 30.3406i 1.37487i −0.726248 0.687433i \(-0.758738\pi\)
0.726248 0.687433i \(-0.241262\pi\)
\(488\) 16.3220i 0.738864i
\(489\) 12.2180 0.552517
\(490\) 32.2635 22.3711i 1.45752 1.01062i
\(491\) 17.7822 0.802502 0.401251 0.915968i \(-0.368576\pi\)
0.401251 + 0.915968i \(0.368576\pi\)
\(492\) 43.3074i 1.95245i
\(493\) 4.24598i 0.191229i
\(494\) 39.6699 1.78483
\(495\) 6.47578 + 9.33933i 0.291065 + 0.419772i
\(496\) 19.9567 0.896083
\(497\) 1.08482i 0.0486608i
\(498\) 29.2779i 1.31197i
\(499\) −0.262248 −0.0117399 −0.00586993 0.999983i \(-0.501868\pi\)
−0.00586993 + 0.999983i \(0.501868\pi\)
\(500\) −47.1004 + 11.9277i −2.10639 + 0.533424i
\(501\) 21.3634 0.954447
\(502\) 39.6974i 1.77178i
\(503\) 15.0486i 0.670986i 0.942043 + 0.335493i \(0.108903\pi\)
−0.942043 + 0.335493i \(0.891097\pi\)
\(504\) −1.02413 −0.0456182
\(505\) −8.17323 11.7874i −0.363704 0.524532i
\(506\) 40.5028 1.80057
\(507\) 9.66321i 0.429158i
\(508\) 22.8522i 1.01390i
\(509\) −39.8752 −1.76744 −0.883719 0.468019i \(-0.844968\pi\)
−0.883719 + 0.468019i \(0.844968\pi\)
\(510\) −19.6544 + 13.6281i −0.870309 + 0.603462i
\(511\) −1.16873 −0.0517017
\(512\) 49.7585i 2.19904i
\(513\) 8.62093i 0.380624i
\(514\) −31.1071 −1.37207
\(515\) 13.0216 9.02904i 0.573802 0.397867i
\(516\) 34.3781 1.51341
\(517\) 44.0598i 1.93775i
\(518\) 0.863687i 0.0379482i
\(519\) −13.1686 −0.578036
\(520\) 13.7533 + 19.8349i 0.603122 + 0.869820i
\(521\) 18.3187 0.802557 0.401279 0.915956i \(-0.368566\pi\)
0.401279 + 0.915956i \(0.368566\pi\)
\(522\) 2.51908i 0.110257i
\(523\) 6.04576i 0.264363i 0.991226 + 0.132181i \(0.0421981\pi\)
−0.991226 + 0.132181i \(0.957802\pi\)
\(524\) −76.9882 −3.36325
\(525\) −0.303844 + 0.811540i −0.0132608 + 0.0354185i
\(526\) −10.5028 −0.457942
\(527\) 13.6799i 0.595906i
\(528\) 31.4819i 1.37007i
\(529\) 12.9924 0.564886
\(530\) −17.3412 25.0094i −0.753254 1.08634i
\(531\) 7.66286 0.332540
\(532\) 6.49303i 0.281508i
\(533\) 18.2037i 0.788490i
\(534\) 41.5423 1.79771
\(535\) 1.70008 1.17881i 0.0735007 0.0509645i
\(536\) 48.0932 2.07731
\(537\) 10.6947i 0.461509i
\(538\) 3.42622i 0.147715i
\(539\) 35.4248 1.52585
\(540\) −7.98556 + 5.53709i −0.343644 + 0.238278i
\(541\) −35.6643 −1.53333 −0.766664 0.642049i \(-0.778085\pi\)
−0.766664 + 0.642049i \(0.778085\pi\)
\(542\) 28.0746i 1.20591i
\(543\) 15.2511i 0.654489i
\(544\) 16.0722 0.689088
\(545\) 5.24561 + 7.56519i 0.224697 + 0.324057i
\(546\) 0.797504 0.0341300
\(547\) 5.23087i 0.223656i −0.993728 0.111828i \(-0.964329\pi\)
0.993728 0.111828i \(-0.0356706\pi\)
\(548\) 4.97498i 0.212520i
\(549\) −2.76215 −0.117886
\(550\) −59.9519 22.4462i −2.55636 0.957110i
\(551\) −8.62093 −0.367264
\(552\) 18.6936i 0.795653i
\(553\) 0.788155i 0.0335157i
\(554\) −1.77513 −0.0754180
\(555\) −2.52059 3.63519i −0.106993 0.154305i
\(556\) 17.7599 0.753186
\(557\) 32.9893i 1.39780i 0.715219 + 0.698900i \(0.246327\pi\)
−0.715219 + 0.698900i \(0.753673\pi\)
\(558\) 8.11611i 0.343582i
\(559\) −14.4504 −0.611186
\(560\) 1.97264 1.36781i 0.0833594 0.0578004i
\(561\) −21.5802 −0.911116
\(562\) 34.7933i 1.46767i
\(563\) 5.94931i 0.250734i −0.992110 0.125367i \(-0.959989\pi\)
0.992110 0.125367i \(-0.0400108\pi\)
\(564\) 37.6732 1.58633
\(565\) −12.5803 + 8.72305i −0.529259 + 0.366981i
\(566\) 22.4738 0.944644
\(567\) 0.173311i 0.00727838i
\(568\) 36.9878i 1.55198i
\(569\) 14.6940 0.616003 0.308002 0.951386i \(-0.400340\pi\)
0.308002 + 0.951386i \(0.400340\pi\)
\(570\) −27.6701 39.9057i −1.15897 1.67147i
\(571\) 7.86509 0.329144 0.164572 0.986365i \(-0.447376\pi\)
0.164572 + 0.986365i \(0.447376\pi\)
\(572\) 40.3467i 1.68698i
\(573\) 25.7131i 1.07418i
\(574\) 4.35074 0.181597
\(575\) 14.8132 + 5.54612i 0.617753 + 0.231289i
\(576\) −2.85296 −0.118873
\(577\) 29.7454i 1.23832i 0.785265 + 0.619159i \(0.212526\pi\)
−0.785265 + 0.619159i \(0.787474\pi\)
\(578\) 2.59045i 0.107749i
\(579\) 22.8935 0.951419
\(580\) −5.53709 7.98556i −0.229915 0.331582i
\(581\) −2.01430 −0.0835671
\(582\) 6.91284i 0.286547i
\(583\) 27.4599i 1.13727i
\(584\) 39.8489 1.64896
\(585\) 3.35663 2.32744i 0.138780 0.0962280i
\(586\) −78.8013 −3.25525
\(587\) 46.1639i 1.90539i −0.303929 0.952695i \(-0.598299\pi\)
0.303929 0.952695i \(-0.401701\pi\)
\(588\) 30.2899i 1.24913i
\(589\) 27.7754 1.14446
\(590\) −35.4709 + 24.5951i −1.46031 + 1.01256i
\(591\) 0.840810 0.0345863
\(592\) 12.2538i 0.503629i
\(593\) 22.6806i 0.931382i 0.884948 + 0.465691i \(0.154194\pi\)
−0.884948 + 0.465691i \(0.845806\pi\)
\(594\) −12.8032 −0.525323
\(595\) −0.937602 1.35221i −0.0384379 0.0554350i
\(596\) 6.53031 0.267492
\(597\) 26.5996i 1.08865i
\(598\) 14.5570i 0.595280i
\(599\) −22.8764 −0.934704 −0.467352 0.884071i \(-0.654792\pi\)
−0.467352 + 0.884071i \(0.654792\pi\)
\(600\) 10.3598 27.6701i 0.422937 1.12963i
\(601\) 14.6918 0.599291 0.299646 0.954051i \(-0.403132\pi\)
0.299646 + 0.954051i \(0.403132\pi\)
\(602\) 3.45369i 0.140762i
\(603\) 8.13872i 0.331434i
\(604\) 93.3893 3.79996
\(605\) −18.8977 27.2541i −0.768299 1.10804i
\(606\) 16.1592 0.656424
\(607\) 20.9484i 0.850270i −0.905130 0.425135i \(-0.860227\pi\)
0.905130 0.425135i \(-0.139773\pi\)
\(608\) 32.6325i 1.32342i
\(609\) −0.173311 −0.00702292
\(610\) 12.7858 8.86551i 0.517682 0.358954i
\(611\) −15.8354 −0.640633
\(612\) 18.4520i 0.745880i
\(613\) 42.0373i 1.69787i 0.528496 + 0.848936i \(0.322756\pi\)
−0.528496 + 0.848936i \(0.677244\pi\)
\(614\) 55.0503 2.22165
\(615\) 18.3119 12.6973i 0.738408 0.512003i
\(616\) 5.20512 0.209720
\(617\) 44.6853i 1.79896i 0.436958 + 0.899482i \(0.356056\pi\)
−0.436958 + 0.899482i \(0.643944\pi\)
\(618\) 17.8513i 0.718083i
\(619\) 22.1966 0.892157 0.446079 0.894994i \(-0.352820\pi\)
0.446079 + 0.894994i \(0.352820\pi\)
\(620\) 17.8397 + 25.7283i 0.716459 + 1.03327i
\(621\) 3.16348 0.126946
\(622\) 72.7606i 2.91744i
\(623\) 2.85808i 0.114507i
\(624\) −11.3148 −0.452956
\(625\) −18.8528 16.4187i −0.754112 0.656746i
\(626\) 20.7631 0.829859
\(627\) 43.8159i 1.74984i
\(628\) 48.3104i 1.92780i
\(629\) 8.39974 0.334919
\(630\) −0.556267 0.802245i −0.0221622 0.0319622i
\(631\) −5.29765 −0.210896 −0.105448 0.994425i \(-0.533628\pi\)
−0.105448 + 0.994425i \(0.533628\pi\)
\(632\) 26.8728i 1.06894i
\(633\) 1.86360i 0.0740715i
\(634\) 18.0323 0.716155
\(635\) −9.66275 + 6.70003i −0.383455 + 0.265883i
\(636\) 23.4795 0.931024
\(637\) 12.7320i 0.504458i
\(638\) 12.8032i 0.506884i
\(639\) 6.25938 0.247617
\(640\) 27.1174 18.8029i 1.07191 0.743248i
\(641\) 3.21592 0.127021 0.0635107 0.997981i \(-0.479770\pi\)
0.0635107 + 0.997981i \(0.479770\pi\)
\(642\) 2.33062i 0.0919823i
\(643\) 32.0630i 1.26444i −0.774788 0.632221i \(-0.782143\pi\)
0.774788 0.632221i \(-0.217857\pi\)
\(644\) −2.38264 −0.0938891
\(645\) 10.0793 + 14.5363i 0.396871 + 0.572366i
\(646\) 92.2092 3.62792
\(647\) 9.26571i 0.364273i 0.983273 + 0.182136i \(0.0583012\pi\)
−0.983273 + 0.182136i \(0.941699\pi\)
\(648\) 5.90919i 0.232135i
\(649\) −38.9465 −1.52878
\(650\) −8.06735 + 21.5472i −0.316427 + 0.845150i
\(651\) 0.558382 0.0218847
\(652\) 53.0966i 2.07942i
\(653\) 22.2362i 0.870171i −0.900389 0.435085i \(-0.856718\pi\)
0.900389 0.435085i \(-0.143282\pi\)
\(654\) −10.3711 −0.405541
\(655\) −22.5721 32.5534i −0.881966 1.27197i
\(656\) −61.7275 −2.41006
\(657\) 6.74356i 0.263091i
\(658\) 3.78472i 0.147544i
\(659\) −34.6708 −1.35058 −0.675291 0.737552i \(-0.735982\pi\)
−0.675291 + 0.737552i \(0.735982\pi\)
\(660\) 40.5866 28.1422i 1.57983 1.09544i
\(661\) −9.67217 −0.376204 −0.188102 0.982150i \(-0.560234\pi\)
−0.188102 + 0.982150i \(0.560234\pi\)
\(662\) 62.2052i 2.41767i
\(663\) 7.75608i 0.301221i
\(664\) 68.6792 2.66527
\(665\) 2.74549 1.90369i 0.106465 0.0738218i
\(666\) 4.98345 0.193105
\(667\) 3.16348i 0.122491i
\(668\) 92.8405i 3.59211i
\(669\) −25.0759 −0.969489
\(670\) 26.1224 + 37.6736i 1.00920 + 1.45546i
\(671\) 14.0386 0.541954
\(672\) 0.656028i 0.0253068i
\(673\) 24.7689i 0.954770i −0.878694 0.477385i \(-0.841585\pi\)
0.878694 0.477385i \(-0.158415\pi\)
\(674\) −29.5091 −1.13665
\(675\) −4.68256 1.75317i −0.180232 0.0674795i
\(676\) −41.9941 −1.61516
\(677\) 33.3636i 1.28227i 0.767430 + 0.641133i \(0.221535\pi\)
−0.767430 + 0.641133i \(0.778465\pi\)
\(678\) 17.2463i 0.662340i
\(679\) −0.475599 −0.0182518
\(680\) 31.9684 + 46.1046i 1.22593 + 1.76803i
\(681\) 20.3877 0.781259
\(682\) 41.2501i 1.57955i
\(683\) 13.9516i 0.533842i 0.963718 + 0.266921i \(0.0860063\pi\)
−0.963718 + 0.266921i \(0.913994\pi\)
\(684\) 37.4646 1.43249
\(685\) −2.10360 + 1.45861i −0.0803744 + 0.0557306i
\(686\) −6.09907 −0.232864
\(687\) 5.84179i 0.222878i
\(688\) 49.0003i 1.86812i
\(689\) −9.86932 −0.375991
\(690\) −14.6435 + 10.1537i −0.557470 + 0.386543i
\(691\) 50.5611 1.92344 0.961718 0.274042i \(-0.0883607\pi\)
0.961718 + 0.274042i \(0.0883607\pi\)
\(692\) 57.2276i 2.17547i
\(693\) 0.880853i 0.0334608i
\(694\) −2.08829 −0.0792705
\(695\) 5.20700 + 7.50952i 0.197513 + 0.284852i
\(696\) 5.90919 0.223987
\(697\) 42.3129i 1.60272i
\(698\) 21.2704i 0.805096i
\(699\) −14.1216 −0.534126
\(700\) 3.52676 + 1.32043i 0.133299 + 0.0499077i
\(701\) −24.0803 −0.909499 −0.454749 0.890620i \(-0.650271\pi\)
−0.454749 + 0.890620i \(0.650271\pi\)
\(702\) 4.60158i 0.173675i
\(703\) 17.0546i 0.643227i
\(704\) 14.5002 0.546496
\(705\) 11.0454 + 15.9296i 0.415992 + 0.599942i
\(706\) −12.3574 −0.465078
\(707\) 1.11174i 0.0418114i
\(708\) 33.3010i 1.25153i
\(709\) −0.769569 −0.0289018 −0.0144509 0.999896i \(-0.504600\pi\)
−0.0144509 + 0.999896i \(0.504600\pi\)
\(710\) −28.9743 + 20.0904i −1.08738 + 0.753979i
\(711\) 4.54763 0.170550
\(712\) 97.4487i 3.65205i
\(713\) 10.1923i 0.381703i
\(714\) 1.85373 0.0693740
\(715\) −17.0601 + 11.8292i −0.638010 + 0.442388i
\(716\) 46.4766 1.73691
\(717\) 6.39059i 0.238661i
\(718\) 11.8156i 0.440955i
\(719\) −4.92456 −0.183655 −0.0918275 0.995775i \(-0.529271\pi\)
−0.0918275 + 0.995775i \(0.529271\pi\)
\(720\) 7.89221 + 11.3821i 0.294125 + 0.424186i
\(721\) −1.22815 −0.0457388
\(722\) 139.357i 5.18632i
\(723\) 10.1713i 0.378273i
\(724\) 66.2780 2.46320
\(725\) 1.75317 4.68256i 0.0651111 0.173906i
\(726\) 37.3624 1.38665
\(727\) 41.8838i 1.55339i −0.629880 0.776693i \(-0.716896\pi\)
0.629880 0.776693i \(-0.283104\pi\)
\(728\) 1.87076i 0.0693350i
\(729\) −1.00000 −0.0370370
\(730\) 21.6444 + 31.2155i 0.801096 + 1.15534i
\(731\) −33.5887 −1.24232
\(732\) 12.0037i 0.443668i
\(733\) 27.1372i 1.00234i −0.865350 0.501168i \(-0.832904\pi\)
0.865350 0.501168i \(-0.167096\pi\)
\(734\) −73.6730 −2.71932
\(735\) −12.8076 + 8.88066i −0.472417 + 0.327568i
\(736\) 11.9746 0.441390
\(737\) 41.3650i 1.52370i
\(738\) 25.1037i 0.924079i
\(739\) 3.41445 0.125603 0.0628013 0.998026i \(-0.479997\pi\)
0.0628013 + 0.998026i \(0.479997\pi\)
\(740\) −15.7977 + 10.9539i −0.580735 + 0.402674i
\(741\) −15.7478 −0.578509
\(742\) 2.35880i 0.0865942i
\(743\) 3.73961i 0.137193i 0.997644 + 0.0685966i \(0.0218521\pi\)
−0.997644 + 0.0685966i \(0.978148\pi\)
\(744\) −19.0385 −0.697986
\(745\) 1.91462 + 2.76125i 0.0701461 + 0.101164i
\(746\) 86.9513 3.18351
\(747\) 11.6224i 0.425243i
\(748\) 93.7825i 3.42903i
\(749\) −0.160345 −0.00585888
\(750\) 27.3023 6.91406i 0.996940 0.252466i
\(751\) −24.1900 −0.882707 −0.441354 0.897333i \(-0.645502\pi\)
−0.441354 + 0.897333i \(0.645502\pi\)
\(752\) 53.6969i 1.95812i
\(753\) 15.7587i 0.574278i
\(754\) −4.60158 −0.167580
\(755\) 27.3807 + 39.4884i 0.996487 + 1.43713i
\(756\) 0.753170 0.0273925
\(757\) 3.55451i 0.129191i 0.997912 + 0.0645953i \(0.0205757\pi\)
−0.997912 + 0.0645953i \(0.979424\pi\)
\(758\) 8.06436i 0.292911i
\(759\) −16.0784 −0.583608
\(760\) −93.6097 + 64.9078i −3.39558 + 2.35445i
\(761\) −44.2390 −1.60366 −0.801832 0.597550i \(-0.796141\pi\)
−0.801832 + 0.597550i \(0.796141\pi\)
\(762\) 13.2466i 0.479873i
\(763\) 0.713522i 0.0258312i
\(764\) 111.743 4.04272
\(765\) 7.80219 5.40994i 0.282089 0.195597i
\(766\) 48.9769 1.76961
\(767\) 13.9977i 0.505426i
\(768\) 31.4691i 1.13554i
\(769\) −6.30558 −0.227385 −0.113692 0.993516i \(-0.536268\pi\)
−0.113692 + 0.993516i \(0.536268\pi\)
\(770\) 2.82722 + 4.07741i 0.101886 + 0.146940i
\(771\) 12.3486 0.444723
\(772\) 99.4897i 3.58071i
\(773\) 24.2649i 0.872747i −0.899766 0.436374i \(-0.856263\pi\)
0.899766 0.436374i \(-0.143737\pi\)
\(774\) −19.9277 −0.716286
\(775\) −5.64845 + 15.0865i −0.202898 + 0.541924i
\(776\) 16.2159 0.582118
\(777\) 0.342858i 0.0123000i
\(778\) 6.44570i 0.231090i
\(779\) −85.9111 −3.07809
\(780\) −10.1145 14.5871i −0.362159 0.522303i
\(781\) −31.8133 −1.13837
\(782\) 33.8365i 1.20999i
\(783\) 1.00000i 0.0357371i