Properties

Label 435.2.a.i
Level $435$
Weight $2$
Character orbit 435.a
Self dual yes
Analytic conductor $3.473$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,2,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.47349248793\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.469.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - q^{3} + (\beta_{2} + 2) q^{4} + q^{5} - \beta_1 q^{6} + ( - \beta_{2} + \beta_1 - 2) q^{7} + (\beta_{2} + \beta_1) q^{8} + q^{9} + \beta_1 q^{10} + 3 q^{11} + ( - \beta_{2} - 2) q^{12}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} - 3 q^{3} + 5 q^{4} + 3 q^{5} - q^{6} - 4 q^{7} + 3 q^{9} + q^{10} + 9 q^{11} - 5 q^{12} + 6 q^{13} + 9 q^{14} - 3 q^{15} + q^{16} + 2 q^{17} + q^{18} - 4 q^{19} + 5 q^{20} + 4 q^{21} + 3 q^{22}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 5x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.16425
0.772866
2.39138
−2.16425 −1.00000 2.68397 1.00000 2.16425 −4.84822 −1.48028 1.00000 −2.16425
1.2 0.772866 −1.00000 −1.40268 1.00000 −0.772866 2.17554 −2.62981 1.00000 0.772866
1.3 2.39138 −1.00000 3.71871 1.00000 −2.39138 −1.32733 4.11009 1.00000 2.39138
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.2.a.i 3
3.b odd 2 1 1305.2.a.q 3
4.b odd 2 1 6960.2.a.cl 3
5.b even 2 1 2175.2.a.u 3
5.c odd 4 2 2175.2.c.m 6
15.d odd 2 1 6525.2.a.bf 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.2.a.i 3 1.a even 1 1 trivial
1305.2.a.q 3 3.b odd 2 1
2175.2.a.u 3 5.b even 2 1
2175.2.c.m 6 5.c odd 4 2
6525.2.a.bf 3 15.d odd 2 1
6960.2.a.cl 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(435))\):

\( T_{2}^{3} - T_{2}^{2} - 5T_{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{3} + 4T_{7}^{2} - 7T_{7} - 14 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - T^{2} - 5T + 4 \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 4 T^{2} + \cdots - 14 \) Copy content Toggle raw display
$11$ \( (T - 3)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 6T^{2} - T + 2 \) Copy content Toggle raw display
$17$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$19$ \( T^{3} + 4 T^{2} + \cdots - 88 \) Copy content Toggle raw display
$23$ \( T^{3} - T^{2} + \cdots + 112 \) Copy content Toggle raw display
$29$ \( (T + 1)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} \) Copy content Toggle raw display
$37$ \( T^{3} - 13T^{2} + 256 \) Copy content Toggle raw display
$41$ \( T^{3} - 13 T^{2} + \cdots - 28 \) Copy content Toggle raw display
$43$ \( T^{3} + 13 T^{2} + \cdots - 308 \) Copy content Toggle raw display
$47$ \( T^{3} - 2 T^{2} + \cdots + 266 \) Copy content Toggle raw display
$53$ \( T^{3} + 3 T^{2} + \cdots + 316 \) Copy content Toggle raw display
$59$ \( T^{3} - 22 T^{2} + \cdots - 256 \) Copy content Toggle raw display
$61$ \( T^{3} - 10 T^{2} + \cdots + 112 \) Copy content Toggle raw display
$67$ \( T^{3} + 28 T^{2} + \cdots + 194 \) Copy content Toggle raw display
$71$ \( T^{3} - 192T + 488 \) Copy content Toggle raw display
$73$ \( T^{3} - 3 T^{2} + \cdots + 1168 \) Copy content Toggle raw display
$79$ \( T^{3} + 2 T^{2} + \cdots - 224 \) Copy content Toggle raw display
$83$ \( T^{3} + 15 T^{2} + \cdots + 44 \) Copy content Toggle raw display
$89$ \( T^{3} - 30 T^{2} + \cdots + 602 \) Copy content Toggle raw display
$97$ \( T^{3} + T^{2} + \cdots + 76 \) Copy content Toggle raw display
show more
show less